

LUBRICATION, CORROSION and WEAR

A CONTINUING BIBLIOGRAPHY

WITH INDEXES

GPO PRICE \$		
CFSTI PRICE(S) \$	N67 11944 302	(THRU)
Hard copy (HC)	(NASA CR OR TMX OR AD NUMBER)	(¢ode)
Microfiche (MF)		

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Thus bibliography was prepared by the NASA Scientific and Technical Information. Facility operated for the National Aeronautics and Space Administration by Documentation Incorporated

LUBRICATION, CORROSION and WEAR

A CONTINUING BIBLIOGRAPHY WITH INDEXES

A Selection of Annotated References to Unclassified Reports and Journal Articles Introduced into the NASA Information System during the period April, 1965—August, 1966.

INTRODUCTION

With the publication of this first supplement, NASA SP-7020(01), to the original issue of the Continuing Bibliography on "Lubrication, Corrosion and Wear" (SP-7020), the National Aeronautics and Space Administration continues its program of periodic distribution of selected references to subjects of interest to the aerospace community. The references are assembled in this form to provide a convenient source of information for use by scientists and engineers who need this type of specialized compilation. Continuing Bibliographies are updated periodically by supplements which can be appended to the original issue.

NASA SP-7020(01) presents a selection of annotated references to unclassified reports and journal articles that have been announced in Scientific and Technical Aerospace Reports (STAR), or in International Aerospace Abstracts (IAA). The variety of special lubrication, corrosion, and wear problems, that arise in connection with the design and development of equipment and materials for use in the unique environment of space, has created numerous research programs to investigate and solve these problems. The references contained in NASA SP-7020(01) reflect this variety and cover such diverse topics as lubricating systems; design and performance of bearings; special applications of lubricants, e.g., as heat transfer and anticorrosion agents; stress corrosion and fatigue cracking in metals and alloys; friction and wear characteristics of materials; and finally, types of corrosion and techniques for corrosion prevention. A limited number of references describing the instrumentation and methods for the testing of lubricants is also included.

Each entry in the bibliography consists of a citation and an abstract. The listing of entries is arranged in two major groups. All report literature references appear in the first group and are subdivided according to their date of announcement in *STAR*. The second group contains published literature references subdivided according to their date of announcement in *IAA*. All reports and articles cited were introduced into the NASA Information System during the period April, 1965. August, 1966.

A subject index and a personal author index are included.

AVAILABILITY OF DOCUMENTS

STAR Entries (N65, N66)

NASA documents listed are available without charge to:

- 1. NASA Offices, Centers, contractors, subcontractors, grantees, and consultants.
- 2. Other U.S. Government agencies and their contractors.
- 3. Libraries in the United States that maintain collections of NASA documents for public reference.
- 4. Other organizations in the United States having a need for NASA documents in work related to the aerospace program.
- 5. Foreign government or academic (university) organizations that have established reciprocal arrangements for the exchange of publications with NASA, that have current agreements for scientific and technical cooperative activities with NASA, or that have agreements with NASA to maintain collections of NASA documents for public use.

Non-NASA documents listed are provided by NASA without charge only to NASA Offices, Centers, contractors, subcontractors, grantees, and consultants.

Organizations and individuals not falling into one of these categories may purchase the documents listed from either of two sales agencies, as specifically identified in the abstract section:

Clearinghouse for Federal Scientific and Technical Information (CFSTI), Springfield, Virginia 22151 Superintendent of Documents (GPO) U.S. Government Printing Office Washington, D.C. 20402

Information on the availability of this publication and other reports covering NASA scientific and technical information may be obtained by writing to:

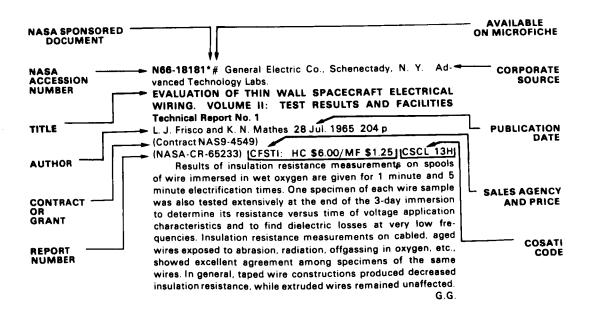
Scientific and Technical Information Division National Aeronautics and Space Administration Code USS-AD Washington, D.C. 20546

Collections of NASA documents are currently on file in the organizations listed on the inside of the back cover.

(continued)

IAA Series (A65, A66)

All articles listed are available from Technical Information Service, American Institute of Aeronautics and Astronautics, Inc. Individual and Corporate AIAA Members in the United States and Canada may borrow publications without charge. Interlibrary loan privileges are extended to the libraries of government agencies and of academic non-profit institutions in the United States and Canada. Loan requests may be made by mail, telephone, telegram, or in person. Additional information about lending, photocopying, and reference service will be furnished on request. Address all inquiries to:


Technical Information Service
American Institute of Aeronautics and Astronautics, Inc.
750 Third Avenue, New York, New York 10017

For further details please consult the Introductions to STAR and IAA, respectively.

TABLE OF CONTENTS

	Page
1965 STAR Entries (N65 Series)	1
1966 STAR Entries (N66 Series)	40
1965 IAA Entries (A65 Series)	95
1966 IAA Entries (A66 Series)	25
Subject Index	I-1
Personal Author Index	99

TYPICAL CITATION AND ABSTRACT

LUBRICATION CORROSION and WEAR

a continuing bibliography OCTOBER 1966

1965 STAR ENTRIES

N65-13415 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

CORROSION RESISTANCE OF IRON-ALUMINUM ALLOYS IN FLUORINE AT TEMPERATURES OF 500°-700° M. A. Stepanov, A. V. Kurdyumov and V. N. Goloborodov In Its Nonferrous Met. 29 Jun. 1964 p 231-238 refs (See N65-13401 04-17)

As the aluminum content in iron-aluminum alloys is increased from 5.5% to 31%, the hardness increases from 166 to 444 units on the Brinnel scale. Tests established that the corrosion resistance of all the alloys is very low in fluorine at elevated temperatures. At 500°C the corrosion rate is determined in tens of grams/m2-hour, while at higher temperatures (600° to 700° C) destruction proceeds even more intensively.

N65-13791# IIT Research Inst., Chicago, III. RESEARCH ON THE BASIC NATURE OF STRESS COR-ROSION FOR VARIOUS STRUCTURAL ALLOYS AT ROOM AND ELEVATED TEMPERATURE

F. A. Crossley Wright-Patterson AFB, Ohio, AF Mater. Lab., May 1964 79 p refs (Contract AF 33(657)-10971)

(ASD-TR-61-713, Pt. III; AD-605703)

Wrought, high-strength aluminum alloys characteristically have markedly inferior resistance to stress corrosion in the short-transverse direction relative to resistance in the longitudinal and long-transverse directions. The anisotropy of resistance is due to marked anisotropy of microstructure. Investigation of experimental and commercial 1-in, plate showed that the elongated, platelike grain structure usually found in commercial materials was associated with short life, whereas equiaxed or irregular grain structure was associated with significantly longer life. Excess alloy content resulting in secondphase particles in the microstructure contributes to the development of the undesirable elongated grain structure. Exposure at 650° F under stress for times of 1400 or 2000 hr gave no indication that the steels PH 13-8 Mo and PH 14-8 Mo are susceptible to hot salt stress corrosion. Experiments to determine the kinetics of hot salt stress-corrosion cracking of Ti-8Al-1Mo-1V alloy are described.

N65-13989# IIT Research Inst. Chicago, III

INTERFACE FRICTION IN HOT METAL DEFORMATION Bimonthly Report, 24 Jul.-23 Sep. 1964

J. A. Schey ?? Oct 1964 7 p. (Contract NOw-64-0458-f) (IITRI-B6027-2; AD-609115)

(AL64T057; AD-609072)

An investigation of frictional phenomena encountered at the interface of tool and workpiece during the hot deformation processing of metals is discussed. A procedure established to provide reproducible surface conditions involves the degreasing of the specimen and anvils followed by dressing on 600-grit polishing paper prior to each series of impressions Experiments were carried out at room temperature with the best lubricant known in current technology. The forces developed in dry compression at 20°C were substantially higher than those developed with full lubrication. Compression with various anvils gave not only different forces, but also different trends. With an annealed 1095 anvil, the force required for a given reduction tends to increase for successive impressions; when using the 4340, H-11, and 304 anvils. the force decreases. A significant decrease in the force required for deformation was noted for the 304 anvils as compared with that for 4340, H-11, or 1095 anvils

N65-14058# SKF Industries, Inc., King of Prussia, Pa. Re-

INFLUENCE OF LUBRICATION ON ENDURANCE OF ROLL-ING CONTACTS Progress Report No. 11, 22 Mar.-22 Jun. 1964

E. F. Brady, A. Schwartz, J. Mc Cool, R. Valori, W. Schmidt et al [1964] 75 p refs (Contract NOw-61-0716-c)

The following studies were made: Radiotracer Wear Tests—wear tests for polyphenyl ether lubricant, and a single wear test using the base stock of a Mil-L-23699 lubricant; Autoradiographic Particle Size Measurement in the Investigation of Wear in Rolling Contacts; Autoradiographic Study of Metallic Transfer in Rolling Contact; Surface Geometry Analysis of As-Ground Balls-surface roughness, calibration constants, and calculations; Conductivity Testing on Four-Ball Tester-conductivity for the Mil-L-23699 base oil and the base mineral oil (Primol 355), and a conductivity test using asground balls; Film Profile Measurements-effect of speed on the lubricant film, film profiles at different angular orientations, and contact conductivity measurement on the two-ball tester; Endurance Effect of Hydrodynamic Films-plastic deformation of ball tracks GG

N65-14123# Battelle Memorial Inst., Columbus, Ohio. Defense Metals Information Center BERYLLIUM REVIEW OF RECENT DEVELOPMENTS Hugh D. Hanes 6 Nov. 1964 3 p refs

A survey is given of studies on the deformation characteristics of beryllium single crystals and the effects of iron and silicon additions on these characteristics, on the tensile properties of beryllium extrusions of various grain sizes at different temperatures, on the corrosion of beryllium by high-temperature air, on the corrosion resistance of beryllium in hightemperature water, and on the reactions of beryllium with nitrogen, air, oxygen, and carbon monoxide at high temperatures The development of a series of beryllium-aluminum alloys for compression applications in spacecraft is reported, and the dimensional stabilization of extrusions by warm drawing is described. Extrusion and other methods of forming angle beams and tubing are discussed. Techniques for producing spherical beryllium powder by atomizing directly from the melt are mentioned. The sustitution of beryllium for fused sil-DEW. ica in spacecraft optics is recommended.

N65-14144# Socony Mobil Oil Co., Inc., Paulsboro, N.J. STUDY AND EVALUATION OF THE OXIDATIVE AND DE-POSIT-FORMING PROPERTIES OF HIGH TEMPERATURE LUBRICANTS Technical Documentary Report, 1 Aug. 1963-31 Mar. 1964

S. J. Leonardi and E. A. Oberright Wright-Patterson AFB, Ohio, AF Aero Propulsion Lab., Nov. 1964 16 p. (Contract AF 33(657)-11741)

(ASD-TDR-62-222, Pt. III; AD-609318)

A series of high-temperature oils was evaluated in a hightemperature thin-film oxidation unit. The apparatus measures oxygen consumption and deposits formed by the oils in thin films on a rotating heated disk. Data were obtained at several film thicknesses and contact times which were varied by changing the rate at which the oil is passed over the disk. At the optimum oil flow rate, correlation of disk cleanliness with engine deposition data was excellent. A brief exploratory study indicated that provision for bulk oxidation in addition to the high-temperature thin-film oxidation could further improve the thin-film oxidation unit as a screening tool.

N65-14222# IIT Research Inst., Chicago, III. Technology Center

INTERFACE FRICTION IN HOT METAL DEFORMATION Bimonthly Report, Sep. 24-Nov. 23, 1964

J. H. Schev 22 Dec. 1964 10 p refs (Contract NOw-64-0458-F)

(IITRI-B6027-3; AD-454402)

The objective of this program was to investigate frictional phenomena encountered at the tool-workpiece interface during the hot deformation processing of metals. Work centered around the establishment of a reference base and the compression of 7075 Al with 1090, 4340, H-11, WC (10%Co), TZM, and Al₂O₃ anvils. Exploratory experiments with 4340 and 4130 Author steels and Inconel X750 were also conducted.

N65-14228# General Electric Co., Evendale, Ohio. Advanced Engine and Technology Dept.

INFLUENCE OF STRESS CORROSION ON STRENGTH OF GLASS FIBERS

D. L. Hollinger, W. G. Kanetzky, and H. T. Plant 30 Sep. 1964 12 p

(Contract Nonr-4486(00) (X)) (BMPR-3: AD-607040)

Initial static fatigue tests at liquid nitrogen temperature on single filaments of E-glass yielded incomplete data because of frost buildup problems. It became necessary to isolate the equipment from room humidity. This has been done, and low temperature testing has resumed successfully, with delayed failure data accumulating at a satisfactory rate. The results so far indicate that even with the very high rates of loading used in these tests, the stress level at which most

fibers will fail immediately is lower at room temperature and normal humidity than at liquid nitrogen temperature. Gradually raising the temperature from liquid nitrogen temperature causes the failure of fibers which have been supporting a given load at -196°C. The implication is that the processes involved in static fatigue are greatly slowed down, but not completely eliminated, by lower temperatures in the range from room temperature to -196° C

N66-14327* # National Academy of Sciences-National Research Council, Washington, D. C. Space Science Board. SPACE RESEARCH: DIRECTIONS FOR THE FUTURE. PART ONE: PLANETARY AND LUNAR EXPLORATION Dec. 1965 144 p refs Rept. of Summer Study held at Woods Hole, Mass., Jun.-Jul. 1965 (Contract NSR-09-012-903) (NASA-CR-69076) CFSTI: HC \$4.00/MF \$0.75 CSCL 22A

CONTENTS:

- 1. MAJOR RECOMMENDATIONS p 3-9
- 2. MARS p 10-18
- 3 THE MOON p 19-32
- 4. VENUS p 32-37
- 5. THE OUTER PLANETS p 37-52 refs
- 6. SMALL OBJECTS IN THE SOLAR SYSTEM p 52-57
- 7. MERCURY p 57-59
- 8. DEEP SPACE INFORMATION TRANSFER p 59-60

WORKING PAPERS: TOPICAL REVIEWS

9. ORIGIN AND EVOLUTION OF THE SOLAR SYS-

TEM George B. Field p 61-63 refs

10. DYNAMICS OF THE SOLAR SYSTEM W. M. Kaula p 63-68 refs

11. CHEMISTRY OF THE SOLAR SYSTEM P. W. Gast. L. H. Aller, and G. Kullerud p 68-73 (See N66-14328 05-30) 12. THE SUN IN RELATION TO PLANETARY AND

SOLAR SYSTEM INVESTIGATIONS G. J. F. Mac Donald

13. INTERIORS OF THE INNER PLANETS J. C. Jamieson G. H. Sutton, R. A. Phinney, and S. P. Clark p 74-77

14. INTERIORS OF THE MAJOR PLANETS George B. Field p 78-80 refs

15. PLANETARY MAGNETIC FIELDS R. Hide p 81-90 refs (See N66-14329 05-30)

16. GEOLOGY OF PLANETARY SURFACES D. U. Wise and J. W. Salisbury p 90-96 (See N66-14330 05-30)

17. UPPER ATMOSPHERES OF THE PLANETS J. W. Chamberlain and R. M. Goody p 96-107 refs (See N66-14331 05-30)

18. ON THE CIRCULATION OF THE ATMOSPHERES OF JUPITER AND SATURN R. Hilde p 107-114 refs (See N66-14332 05-30)

19. COMETS AND INTERPLANETARY DUST J. A. Wood p 115-121 (See N66-14333 05-30)

20. THE EARTH VIEWED FROM SPACE Leo Steg p 121-

21. GEOLOGY OF THE EARTH'S SURFACE AS VIEWED FROM SPACE D. U. Wise p 125-127

22. INTERACTION OF THE SOLAR WIND WITH THE PLANETS P. J. Coleman, Jr. p 127-139 refs (See N66-14334 05-29)

N65-14379# Olin Mathieson Chemical Corp., New Haven, Conn. Chemicals Div.

DEVELOPMENT OF NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS Bimonthly Progress Report, Aug. 18-Oct. 17, 1964

H. F. Lederle 29 Oct. 1964 26 p refs (Contract NObsr-90092) (BMPR-6; AD-607489) OTS: \$2.00

The addition of ethylene oxide or glycidol to tetrameric bis (p-hydroxyphenoxy) phosphonitrile resulted in the formation of water-soluble fluid products. The synthetic method for tetrameric bis (p-nitrophenoxy) phosphonitrile—an intermediate for water-soluble products-and improved procedure for the chloromethylation of trimeric bis (phenoxy)-phosphonitrile, and a method for converting the chloromethylated product to the corresponding hydroxymethyl compound were developed. Trimeric N-methyl-m-chloroanilino-2.2,2-trifluoroethoxy-phosphonitrile was prepared. This compound had a spontaneous ignition temperature slightly higher than trimeric N-methyl anilino-2,2,2-trifluoroethoxy-phosphonitrile. Utilization of a trimer-tetramer phosphonitrilic chloride mixture in place of the pure compounds for the synthesis of substituted aryloxy-2.2.2-trifluoroethoxy phosphonitriles was investigated and found to be feasible.

N65-14411# Springfield Armory. Mass. EFFECT OF ULTRASONIC CLEANING ON CORROSION RESISTANCE OF PHOSPHATE-COATED PANELS

M S Spivak 2 Oct 1964 22 p (SA-TR16-1122; AD-450566)

Zinc and manganese phosphated steel panels were exposed to high frequency vibrations (ultrasonic cleaning) in various media to determine the effect of this cleaning procedure on the corrosion resistance of the coated panels. Phosphated panels showed diminished corrosion resistance after exposure to these vibrations in water and water-based cleaners, but were not affected after exposure to ultrasonics when trichloro-ethylene was used as the medium. Phosphate-coated panels ultrasonically cleaned and then treated with supplementary oil (MIL-L-644) exhibited relatively the same corrosion resistance as oiled phosphated panels not exposed to ultrasonic vibrations. Test procedure is given and results are discussed.

N65-14696# European Atomic Energy Community, Brussels (Belgium).

RESEARCH CARRIED OUT UNDER THE EURATOM/ UNITED STATES AGREEMENT

P. Kruys et al 1964 180 p refs

(EUR-1840.e) Available from Belg. Am. Bank and Trust Co., N.Y., account no. 22.186: 250 Belg. Fr.

CONTENTS:

- 1. THERMOHYDRODYNAMIC STUDIES ON TWO-PHASE FLOW R. Morin p 7-86
- 2. CORROSION AND OXIDATION STUDIES CARRIED OUT UNDER THE UNITED STATES/EURATOM AGREEMENT Ph. Berge p 87-110 refs
- 3. THE CAUSES OF EMBRITTLEMENT IN STEELS FOR NUCLEAR REACTOR VESSELS Jean Sebille p 111-154 refs
- 4. EURATOM'S ACTIVITY IN THE FIELD OF URANIUM OXIDE P. Fernet p 155-180 refs

N65-14870# Du Pont de Nemours (E.I.) and Co., Aiken, S.C. Savannah River Lab.

MICROPROBE STUDY OF ZIRCALOY CORROSION FILMS Kurt F. J. Heinrich Nov. 1964 46 p refs

(Contract AT(07-2)-1) (DP-906) OTS: \$2.00

The primary object of this study was to determine the potential usefulness of the electron probe analyzer as a tool for the investigation and elucidation of problems in the corrosion of zirconium alloys, particularly Zircaloy-2. The general applicability of the probe to corrosion studies was demonstrated. Techniques were developed for the preparation and study of corroded zirconium alloy specimens. Previously unknown characteristics of the distribution of the component elements

were revealed in Zircaloy-2 specimens and other zirconium alloys which had been subjected to various heat treatments. Data were also obtained on the composition and distribution of alloy elements in the fundamental corrosion layers. The possible significance of these findings is discussed in the light of current theories on corrosion mechanisms in zirconium alloys.

Author

N65-15136# Boeing Co., Renton, Wash. Airplane Div. INVESTIGATION OF THE EFFECTS OF STRESS CORROSION ON HIGH-STRENGTH STEEL ALLOYS

Gary A. Dreyer and Wesley C. Gallaugher Wright-Patterson AFB, Ohio, AF Mater. Lab., Feb. 1964 129 p refs (Contract AF 33(657)-8705) (ML-TDR-64-3; AD-605672)

The stress corrosion susceptibility of several high strength steels has been evaluated by alternate-immersion laboratory testing in a 3.5% sodium chloride solution. The steels evaluated were the stainless steels AFC 77, AM 350, AM 355, and 17-4PH; the low alloy steels D6AC, 4335M, 4340, H-11, 4330 M. and HY-Tuf; and the high nickel steels 18Ni-9Co-5Mo, 18Ni-7Co-5Mo, and 9Ni-4Co. The variables investigated were product form, grain direction, tensile strength level, stress level, cold working, ausforming, welding, and protective coatings. Detailed results relating stress-corrosion susceptibility to the variables and alloys studied are included. Notch-tensile and fatigue-cracked fracture-toughness testing was carried out for correlation with stress-corrosion susceptibility. Optical microscopy, electron microscopy, and X-ray diffraction studies were made to supplement the mechanical property and stress corrosion testing. A literature survey or related stress corrosion test data is included.

N65-15833# Naval Research Lab., Washington, D.C.
STEEL CORROSION MECHANISMS. THE GROWTH AND
BREAKDOWN OF PROTECTIVE FILMS IN HIGH-TEMPERATURE AQUEOUS SYSTEMS: STUDIES WITH 15% NaOH
AT 316° C

M. C. Bloom, G. N. Newport, and W. A. Fraser $\,$ 17 Apr. 1964 $\,$ 13 p $\,$ refs

(NRL-6082; AD-608334) OTS: \$1.00

This report summarizes what is known regarding the reaction of steel with high-temperature water as affected by sodium hydroxide additions, and also presents results of a detailed study, using the hydrogen effusion method, of the reaction of steel with 15 percent sodium hydroxide solution at 316° C. The corrosion rates are correlated with a microscopic study of the growth and breakdown of the protective magnetite (Fe₃O₄) film. There are two different corrosion-rate-governing mechanisms involved prior to the onset of pitting: a large decrease of the initial corrosion controlled by the buildup of a protective film on the metal surface, and a subsequent smaller decrease in corrosion rate possibly controlled by penetration of the magnetite film by the corrosive solution. The pitting is apparently due to the genesis of cracks in the magnetite film after it reaches a critical thickness. Author

N65-15846# Olin Mathieson Chemical Corp., New Haven, Conn. Chemicals Div.

DEVELOPMENT OF NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS Final Report, Oct. 1963-Oct. 1964
E. H. Kober, H. F. Lederle, and G. F. Ottmann 17 Nov. 1964

72 p refs (Contract NObs-90092)

(AD-608144) OTS: \$3.00

A large number of trimeric and tetrameric aryl-1,1-di-H-polyfluoroalkyl phosphonitrilates was synthesized and evaluated. Several of these products meet or approach the requirements for pour point, volatility, viscosity, density, spontaneous ignition temperature, and thermal and hydrolytic stability; these

compounds also display excellent wear properties. Several trimeric and tetrameric arylamino-polyfluoroalkoxy phosphonitriles were prepared. The properties of a few representatives of this novel class of compounds come close to meeting the requirements for naval hydraulic fluids. Addition of ethylene oxide or glycidol to hydroxy-aryloxy- or amino-aryloxy-phosphonitriles gave water-soluble products that have potential for use in water-base hydraulic fluids.

N65-15986# SKF Industries, Inc., King of Prussia, Pa. Research Lab.

INFLUENCE OF LUBRICATION ON ENDURANCE OF ROLLING CONTACTS Final Summary Report, Jun. 22, 1961–Jun. 22, 1964

K Tataiah et al [1964] 197 p refs (Contract NOw-61-0716-c) (AL64TO67, AD-609437)

A study of elastohydrodynamic lubricant film effects in rolling ball two-ball contacts is presented. Mineral oils, ester base, and polyphenyl ether lubricants with and without lubricity additives were studied. The experimental work covered the development and application of contact conductivity and X-ray beam transmission measurements for film thickness and profile determination, radiotracer wear rate determination, microautoradiography of wear debris and of metal transfer, instrumental analysis of surface microgeometry; and rolling contact fatigue test series. A tentative analysis of wear debris size distribution is given. Microautoradiography is used to show that there is direct metal transfer in lubricated sliding ball contact, but only wear debris redeposition from the lubricant in rolling contact. Some measurements of film thickness and shape by X-ray beam transmission are reported. Author

N65-16124# Pratt and Whitney Aircraft, East Hartford, Conn

SOLID FILM LUBRICATED BEARING RESEARCH PROGRAM Technical Documentary Report, 1 May 1963–30 Jun. 1964

Paul Brown, Roger M. Hawkins, M. Maguire, and M. Pitek Wright-Patterson AFB, Ohio, AF Flight Dyn. Lab., Oct. 1964 211 p. refs

(Contract AF 33(657)-10420)

(PWA-2354; FDL-TDR-64-117; AD-608629)

The program was divided into two phases. The first phase consisted of analytical evaluations of potential bearing designs, solid lubricant materials and lubricant supply systems as applied to accessory-sized ball bearings. The second phase was devoted to laboratory determinations of lubricant materials tensile strength and thermal properties followed by evaluations of selected solid lubricant materials and bearings. These tests included friction and wear evaluations of both lubricant and bearing materials in a friction and wear rig; evaluations of full-scale bearings in atmospheric and vacuum environments at temperatures ranging from -249° to 1500° F, at speeds up to 24 000 rpm for periods up to 3 hours; and vacuum-environment testing of bearings that were exposed to a fast neutron dose of approximately 1.0×10^{17} neutrons/cm² (> 1.0 MeV). Test results indicated that no lubricant tested, regardless of the supply system used or conditions under which tested. showed any clear superiority when compared to other dry film lubricants.

N65-16201*# Mechanical Technology, Inc., Latham, N.Y.
LUBRICATION ANALYSIS IN TURBULENT REGIME Second
Quarterly Report

F. K. Orcutt, C. W. Ng, J. H. Vohr, and E. B. Arwas 30 Jan. 1965-82 p refs (Contract NASw-1021)

(NASA-CR-54259; MTI-65TR2) OTS: HC \$3.00/MF \$0.75

The preloaded tilting-pad bearing was tested experimentally. Measurements of static load capacity and shaft response to dynamic loading agreed very well with calculated values, and the theoretical results were quite adequate for design analysis. Measured torques were uniformly higher than the calculated values. The analysis for static load properties of the floating-ring bearing was completed, and some numerical results are presented. Apparatus modification and preliminary experiments are reported on some studies of fundamental processes of superlaminar flow in concentric and eccentric annuli.

N65-16293# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div. CORROSION RESEARCH

4 Dec. 1964 73 p. refs. Transl. into ENGLISH from Korrozios Figyelo (Hungary), v. 3, no. 7, 1963 p. 125-159 (FTD-TT-64-730/1+2+3+4; AD-455531)

CONTENTS:

- 1. BALATON FREE SUMMER UNIVERSITY AT VESZ-PREM $\,$ p 1–2
- 2. CORROSION SYMPOSIUM OF THE VESZPREM CHEMICAL ENGINEERING UNIVERSITY Gyula Bacskai n 3-8
- 3. ORGANIZATION OF ANTICORROSION MEAS-URES IN THE HUNGARIAN CHEMICAL INDUSTRY Sandor P. Nagy p 9-12
- 4. RESULTS OF THE WORK OF THE ORGANIZATION ON INDUSTRIAL CHEMICAL CORROSION Ferenc Kubar p 13-16
- 5. USE OF CORROSION-RESISTANT PLASTICS IN THE CHEMICAL INDUSTRY Marta Batori p 17-26
- 6 CORROSION PROTECTION FOR REINFORCED-CONCRETE STRUCTURES AT INDUSTRIAL ENTERPRISES Ignacy Jarominyszki p 27–42
- 7. ANODIC PROTECTION OF STAINLESS STEELS M. Prazak p 43-48 refs
- 8. SYNTHETICS IN THE CHEMICAL INDUSTRY Bela Kiss p 49-51 .
 - 9. NEW CORROSION-TESTING METHODS p 52-55
- 10. USE OF THE POTENTIOSTAT IN CORROSION TESTING p 56-61

N65-16634# Bureau of Mines, Rolla, Mo. Rolla Metallurgy Research Center

EFFECTS OF SUBSTITUTING COBALT FOR NICKEL ON THE CORROSION RESISTANCE OF TWO TYPES OF STAINLESS STEEL

Milton M. Tilman 1965 21 p refs (RM-RI-6591)

The effects of substituting cobalt for nickel on the acid corrosion resistance of two types of austenitic stainless steel were determined. Cobalt substitutions to a maximum 2.2 weight percent were made in types 302 and 309 stainless steels. Total immersion corrosion tests were made in 10 volume-percent hydrochloric acid, and boiling-acid tests were conducted in 65 weight-percent nitric acid and in undiluted glacial acetic acid. For modified type 309 in acetic acid, corrosion rates decreased for additions greater than 0.57 weightpercent cobalt. Corrosion rates increased as cobalt was increased up to about 1 weight percent for modified type 302 in nitric and hydrochloric acids and for modified type 309 in nitric acid, but these rates decreased with a further increase in cobalt content. A gradual increase in corrosion rates with increasing cobalt content was shown for type 302 in acetic acid and for type 309 in hydrochloric acid

at N65-16667# Aluminum Co. of America, New Kensington, Pa. Alcoa Research Labs

INVESTIGATION OF THE MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS Quarterly Report, Jun. 1-Nov. 30, 1964

G. C. English and J. Mc Hardy [1964] 45 p. refs (Contract NOw-64-0170-c) (QR-3; AD-608842)

Extensive measurements were made upon 2-inch thick 7075 alloy plate in two tempers, one susceptible to stress corrosion, and one not susceptible. For these measurements, specimens taken in the short-transverse direction, to provide maximum susceptibility, were tested in an aggressive electrolyte consisting of an aqueous solution of chlorides acidified to pH 1. In this electrolyte, a susceptible specimen stressed to 75% of its yield strength failed by stress corrosion in approximately 1 hour, and a stressed, nonsusceptible specimen failed by general corrosion in 48 hours or less. Two pertinent potentials of cathodic protection were found, the first one 150 mV negative to the corrosion potential, and the second, and much more sharply defined one, 575 mV negative to this potential. Pitting ceased when a specimen was polarized cathodically beyond the first potential, but polarization to the second potential was required to eliminate stress corrosion. Author

N65-16736 Joint Publications Research Service, Washington, D. C.

ONE OF THE REQUIREMENTS OF AUSTENITIC HEAT-RESISTING STEELS FOR POWER MACHINE BUILDING V. N. Gulyayev. *In its* Properties of Heat-Resisting Steels for Heat and Power Eng. 11 Feb. 1965 p. 51–59 refs. (See N65-16731 07-17) OTS \$3.00

Corroded sites in a high-pressure steam system were examined, and samples of similar austenitic steel were treated and tested. It is concluded that, for use in a steam medium, it is advisable to use austenitic steels without stabilizing additions of niobium and titanium. Steels with these elements are necessary if the working medium is steam condensate. Steels that are susceptible to intercrystalline corrosion are especially susceptible to the presence of oxygen and chlorine ions in the water.

D.E.W.

N65-16745°# General Electric Co., Cincinnati, Ohio. Missile and Space Div.

POTASSIUM CORROSION TEST LOOP DEVELOPMENT Quarterly Progress Report No. 5, Jul. 15-Oct. 15, 1964 E. E. Hoffman, ed. 30 Dec. 1964 58 p refs (Contract NAS3-2547)

(NASA-CR-54269) OTS: HC \$2.00/MF \$0.50

The immediate corrosion test design conditions for a twoloop Cb-Zr facility are (1) boiling temperature, 1900° F; (2) superheat temperature, 2000° F; (3) condensing temperature, 1350°F; (4) subcooling temperature, 800°F; (5) mass flow rate, 20 to 40 lb/hr; (6) vapor velocity, 100 to 150 ft/ sec; and (7) average heat flux in the potassium boiler, 50000 to 100 000 BTU/hr ft² Two test loops were completed and a third is under construction, for sequential testing of components and endurance. Loop I, a natural convection loop, was operated for 1000 hours with liquid sodium at a maximum temperature of 2260° to 2380° F. Evaluation electrical components and characteristics and the use of electrical and thermal insulation was done in the Loop I test. Loop II provides for evaluation of single-phase forced-circulation sodium flow components and pressure transducers. The design was completed for a prototype corrosion test loop. This is a two-loop system including the Loop I and II components and a boiler, turbine simulator, and condenser for development and endurance testing of the components in stable operation at the corrosion test design conditions.

N65-16765# Houghton (E.F.) and Co., Philadelphia, Pa.
DEVELOPMENT OF FIRE RESISTANT WATER BASED
HYDRAULIC FLUIDS

Philip Rakoff, G. John Colucci, and Robert K. Smith 27 Nov. 1964 26 p

(Contract NObsr-90269)

(BMR-4; AD-608564)

The study of ignition inhibitors for water glycol fluids was continued, with emphasis on noncrystalline compounds. A search for better screening methods of corrosion inhibitor system in the target fluids was started. One candidate fluid was examined with respect to the target specification.

Author

N65-16825# Southwest Research Inst., San Antonio, Tex. Dept. of Aerospace Propulsion Research

FUNDAMENTAL STUDIES OF CONTACT FATIGUE Progress Report No. 3, Oct. 24, 1964—Jan. 24, 1965

R. A. Burton and J. A. Russell 24 Jan. 1965 53 p ref (Contract NOw-64-0460-d)

(RS-441: AD-455439)

Experiments are described for lubricated and unlubricated 52100 tool steel contacts under high frequency oscillatory normal load at Hertz stresses from 375 000 to 720 000 psi. The effect of several different lubricants on fatigue life and on contact wear is demonstrated. Statistical analysis of fatigue life data shows significant differences between lubricant types.

Author

N65-17022# Defence Research Lab., Kanpur (India).
VOLATILE CORROSION INHIBITORS AND THEIR CURRENT APPLICATIONS

S. K. Gupta and B. Sanyal [1962] 27 p refs

A description is given of the mechanism of protection, advantages of VCI preservation methods, chemicals possessing vapor phase inhibiting property, commercial VCI's, results of practical trials with VCI's, specification for VCI-treated packaging materials, work done in DRL(M) Kanpur, India, how VCI's are used, precautions to be observed while using VCI's, and current application of VCI's.

Author

N65-17187# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

TENDENCY OF STEEL TOWARD CORROSION CRACKING IN VARIOUS MEDIA

F. F. Azhogin and Yu. K. Pavlov 9 Dec. 1964 10 p refs Transl. into ENGLISH from Korroziya i Zashchita Metallov, Sbornik Statey, Oborongiz (Moscow), 1962 p 112–117 (FTD-TT-64-643/1+2; AD-610344)

The dependence of time, up to the appearance of cracks, upon the magnitude of applied tensile stresses within limits of elastic deformations for many instances of corrosion cracking of soft and high strength steels, magnesium, aluminum, and copper alloys in various media has a hyperbolic nature and is sufficiently accurately expressed by the equation of the corrosion cracking curve.

$$(\delta - \delta_{CR}) \tau = \kappa$$

Critical stresses δ_{CR} and the constant K appear to be quantitative characteristics of the alloy's tendency toward corrosion cracking. Investigations were carried out on various samples of steel. Results show that the tendency of steel toward corrosion cracking during the pickling in acid depends largely upon its composition.

N65-17276*# Midwest Research Inst., Kansas City, Mo.
DEVELOPMENT OF SOLID FILM LUBRICANTS FOR USE
IN SPACE ENVIRONMENTS

Vern Hopkins and Donald Gaddis [1963] 12 p Presented at 1963 USAF Aerospace Fluids and Lubricants Conf., San Antonio, 16-19 Apr. 1963

(Contract NAS8-1540)

(NASA-CR-60783) OTS: HC \$1.00/MF \$0.50

Friction coefficients are given for many potential lubricants subjected to a light load and temperatures from 80° to $400^\circ\,\text{F}_{\text{c}}$ in both a normal air atmosphere and in a vacuum of 10^{-6} torr. The main criterion for judging the performance of a potential lubricant film was the friction coefficient, which must be less than that obtained for a 0.001-in, thick film of gold. The following lubricant films exhibited lower overall friction coefficients than a 0.001-in, thick gold film: MoS_2 + graphite + bismuth/sodium silicate; MoS₂ + graphite + gold/sodium silicate; MoS₂ + graphite + molybdenum/sodium silicate; MoS₂ + graphite/sodium silicate; and MoS₂ + graphite/ sodium phosphate. Author

N65-17328* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio

EVALUATION OF FIVE BEARING-SEPARATOR MA-TERIALS AND POLYPHENYL ETHER LUBRICANTS FOR USE IN SPACE POWER GENERATION SYSTEMS

William R. Loomis Washington NASA, Mar. 1965, 18 p. refs (NASA-TN-D-2663) OTS: HC \$1.00/MF \$0.50

The suitability of five bearing-retainer materials (ironsilicone bronze. S-Inconel, Stellite Star-J, M-2, and M-50) for ultimate use in the mainshaft rolling-element bearings of the SNAP-8 space power generation system was determined in a series of friction and wear experiments. Polyphenyl ether lubricant (type 4P3E) was supplied at 250° F from a drip-feed, once-through system at a rate sufficient to maintain boundary lubricating conditions. The specimen configuration consisted of a hemispherical rider (3/16-in. rad., representing the retainer) sliding at 3600 feet per minute against the flat surface of a rotating disk (2 1/2-in-diam M-50 high speed tool steel, representing the raceway and the rolling element) ~300° F. Minimum friction coefficients and the lowest total disk and rider wear were obtained with the iron-silicon bronze specimen, but the other four retainer materials had acceptable friction properties and rider wear volumes in the same order of magnitude as the bronze

N65-17412# Pacific Naval Lab., Esquimault (British Columbia). PRINCIPLES OF DESIGN OF CATHODIC PROTECTION SYSTEMS FOR THE HULLS OF ACTIVE SHIPS J. A. H. Carson Sep. 1964 48 p refs

(Rept.-64-2)

An engineering approach to the design of cathodic protection systems for ships' hulls is presented. The method is applicable to all types of anode systems. The effects on current requirements of dissolved oxygen concentration, ship speed, temperature, salinity, type and condition of hull paint system, metallic bonding of rotating propellers to the hull, and efficiency of current distribution, are discussed. Methods are developed for estimating both the maximum current output capability and the safe current output of anodes, and are presented graphically for easy reference. Sample calculations are given, and the theoretical developments are supported, wherever possible, by data obtained from RCN ships.

N65-17429# ARO., Inc., Arnold Air Force Station, Tenn OPERATIONAL EVALUATION OF DRY THIN FILM LUBRI-CATED BEARINGS AND GEARS FOR USE IN AEROSPACE ENVIRONMENTAL CHAMBERS, DECEMBER 7, 1963-**JANUARY 27, 1964**

T. L. Ridings Arnold Eng. Develop. Center, Feb. 1965 54 p. refs

(Contract AF 40(600)-1000)

(AEDC-TR-65-1: AD-456990)

Test results indicate that dry, thin film lubricants and soft metal plating lubricants can be applied satisfactorily to certain types of bearings and gears, and are capable of sustaining heavy loads at slow speeds in space environments.

N65-17459* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

INFLUENCE OF CRYSTAL STRUCTURE ON THE FRIC-TION AND WEAR OF TITANIUM AND TITANIUM ALLOYS

Donald H. Buckley, Thomas J. Kuczkowski, and Robert L. Johnson Washington, NASA, Mar. 1965, 16 p. refs. (NASA-TN-D-2671) OTS: HC \$1.00/MF \$0.50

The friction and wear characteristics were determined in vacuum (to 10^{-9} mm Hg) for titanium and titanium alloys sliding on themselves and on 440-C stainless steel. The titanium alloys included titanium-tin, titanium-oxygen, and titaniumzirconium. The influence of tin and oxygen on the lattice parameters of titanium and its friction and wear characteristics were measured The effect of crystal transformation from a hexagonal to a cubic form for a zirconium-titanium alloy was also studied. Friction and wear experiments were conducted with a hemispherical rider sliding on a flat disk surface at loads to 1000 g and speeds to 2250 ft/min. Experiments were conducted at 75° and 425° F. While most hexagonal metals have good friction and wear properties, the results indicate that titanium, although a hexagonal metal, exhibits relatively high friction. This high friction may be related to a difference in the slip mechanisms for titanium; titanium unlike most hexagonal metals slips on the {1010} planes rather than on the (0001) basal plane. The addition of tin or oxygen to titanium expands the crystal lattice of titanium and reduces the friction and wear characteristics. The friction coefficient obtained for a titaniumzirconium alloy markedly increased; complete seizure occurred when the material transformed from the hexagonal to the cubic

N65-17697# Transport Dynamics, Inc., Santa Ana, Calif. Research and Development Div.

TYPE II FABROID 181 GLASS BACKED SIMULATED **OUTER SPACE ENVIRONMENT Qualification Test**

A. Wahlberg 11 Feb. 1964 14 p

(Res. Rept.-8-3008)

Prior to performing load/oscillating tests on Fabroid, the material was subjected to a simulated outer space environment of 1 \times 10⁻¹⁰ torr for a continuous period of 2400 hours with no visual deterioration of the material. The tests were conducted over a two-day period after the material and test apparatus were subjected to a simulated environment of 1 \times 10⁻⁸ torr for a total of 336 hours continuous time. Author

N65-17860# MSA Research Corp., Callery, Pa. FACTORS AFFECTING THE COMPATIBILITY OF LIQUID CESIUM WITH CONTAINMENT METALS Sixth Quarterly Progress Report, Dec. 1963-Feb. 1964 F. Tepper and J. Greer 16 Mar. 1964 15 p ref (Contract AF 33(657)-9168) (MSAR-64-27; AD-439675)

Tests with the dissimilar metal couples TD-nickel vs Nb-1%Zr, TD-nickel vs Mo-1/2%Ti, and Nb-1%Zr vs Mo-1/2%Ti have continued with metallographic, chemical, and microprobe analyses. Solubility studies on the refractory alloys Nb-1%Zr and Mo-1/2%Ti indicated that the solubilities of the major constituents are approximately 20 ppm, and that there are possible synergistic effects resulting from the presence of the alloying elements. Capsules fabricated from Haynes-25 alloy and TDnickel showed relatively little attack from exposure to refluxing cesium at 1800° F, and Mo-1/2%Ti alloy has survived a 255-hr test at 2500°F showing some dissolution of the alloy in the boiling liquid cesium.

N65-17908# Rock Island Arsenal Lab., III. THE EFFECT OF GREASE CHARACTERISTICS UPON FRETTING DAMAGE

_aS. Fred Calhoun 21 Dec. 1964 11 p refs (RIA-64-3575; AD-610561) OTS: \$0.50

Five different greases chosen to exhibit differences in shear stability, consistency, or base oil viscosity were tested. The test specimens were of carbon steel heat treated to two degrees of hardness, and surface finished to two smoothness ranges. Another set of specimens of 1018 carbon steel, not heat treated, were also used. Tests were made on the fretting damage tester under identical conditions. The results warrant the following conclusions: (1) A shear stable grease allows more fretting damage than a shear unstable one made from the same oil and having the same initial consistency. (2) A grease made from an oil of low viscosity allows less fretting damage than one made from an oil of higher viscosity. (3) A low viscosity oil in a grease is more effective in preventing fretting damage than a grease of softer consistency but of a higher oil viscosity. It is suspected that the nature of the oil or of the soap thickener itself may have an effect upon fretting which can modify the effect of stability, consistency, or oil viscosity. Author

N65-17992*# General Electric Co., Cincinnati, Ohio. Missile and Space Div.

STUDIES OF ALKALI METAL METAL CORROSION ON MATERIALS FOR ADVANCED SPACE POWER SYSTEMS Quarterly Progress Report 2, 26 Sep.—26 Dec. 1964

R. W. Harrison [1964] 38 p refs (Contract NAS3-6012)

(NASA-CR-54281) OTS: HC \$2.00/MF \$0.50

Stress corrosion reflux capsules were designed, and supporting components for a test facility prepared to examine the influence of stress on the corrosion behavior of D-43 columbium base alloy in potassium. Measured creep strengths of D-43 alloy bar were found to be higher than those previously reported from data compilation. A boiling nucleator was designed to be used in the capsule tests in order to avoid possible deformation in the reduced wall and/or fracture of the alumina probes as a result of boiling instabilities. A comparative investigation is being made of two stainless steel alloys. Type 316SS and titanium stabilized Type 321SS, to test the ability of the titanium addition to reduce or eliminate interstitial mass transfer through potassium in a stainless steel-Cb-1Zr alloy bimetallic system. Columbium-1% zirconium alloy specimens are being exposed to liquid potassium in capsules of the two steels for 1000 hours at 1400°F under isothermal

N65-18075# Naval Civil Engineering Lab., Port Hueneme, Calif

IMPROVED METHOD OF DETERMINING METAL CORROSION RATE BY WEIGHT LOSS

E. S. Matsui 16 Nov. 1964 19 p. refs (R-341; AD-609228) OTS: \$0.75

A deficiency was found in the procedure for the salt-spray test used to determine the weight loss suffered by metal structures, such as ballast tanks, from rusting. The procedure did not take into account the nonhomogeneity of material among the panels being tested. A modified method was developed, and the results obtained with this method were compared with those obtained using the original method. The modified method not only corrected the deficiency, but it also improved the precision of the test method significantly.

N65-18284# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.
USE OF POLYMERS IN ANTICORROSIVE TECHNOLOGY

P. G. Udyma et al [1960] 420 p refs Transl. into ENGLISH from RUSSIAN

(FTD-MT-63-54; AD-602584)

CONTENTS:

1. CONFLICT WITH CORROSION OF EQUIPMENT IN CHEMICAL INDUSTRY P. G. Udyma p 1–8

- 2. PERSPECTIVES IN THE APPLICATION OF HEAT-RESISTANT ORGANOSILICON COATINGS FOR PROTEC-TION FROM CORROSION A. F. Moiseyev p 9-18 refs
- 3. PROBLEM OF SYNTHESIS OF NEW CHEMICALLY STABLE POLYMERS M. M. Koton p 19-22
- 4. POLYETHYLENE AS A CHEMICALLY STABLE MATERIAL N. N. Samosatskiy p 23-39
- 5. NEW LIQUID POLYMERS AND RUBBER COATINGS ON THEIR BASE A. L. Labutin p 40–53
- 6. NEW THIOKOL LATEXES AND GASOLINE-OIL RE-SISTANT COATINGS ON THEIR BASE L. V. Raspopova and V. V. Shneyderova p 54–57
- 7. ANTICORROSIVE COATINGS OF FLUOROPLAST-3 [Kel-F] AND FLUOROPLAST-3M T. N. Nikolayeva, V. G. Kuryatnikova, and N. S. Kudryavtsyeva p 58-63
- 8. THE COLD CASTING OF APPARATUS AND CHEMICAL EQUIPMENT FROM GRAPHITEPLASTICS P. P. Neugodov and I. Ya. Klinov p 64-74
- 9. EXPERIMENT OF APPLICATION OF FIBERGLASS ON POLYMERIC BINDING FOR MANUFACTURE OF DETAILS OF CHEMICAL APPARATUS V. A. Kikut p 75–81
- 10. INVESTIGATION OF THE POSSIBILITY OF APPLICATION OF FURAN RESIN FL-2 FOR REFRACTORY-LINING OF CHEMICAL APPARATUS Yu. P. Aronson and M. Ya. Uritskaya p 82–90 ref
- 11. APPLICATION OF NEW LACQUERS AND PAINTS WITH A BASE OF POLYMERS A. I. Reybman p 91-102
- 12. NEW ANTICORROSIVE MATERIALS BASED ON PRODUCTS OF THE CONDENSATION OF FURYL ALCOHOL R. Ya. Fiskina and G. S. Brodskiy p 103-118
- 13. ARTICEL FROM ATM-1 Z. R. Kharitonova p 119-
- 14. FAZOL---NEW CHEMICAL STABLE INSULATOR WITH A BASE OF FURFUROL-ACETONE RESIN N. A. Moshchanskiy p 124-131
- 15. METHOD OF VORTICAL SPRAY COATING OF PLASTICS FOR PROTECTION OF METAL FROM CORROSION P. A. Afanasev and Yu. A. Avgustov p 132-137
- 16. USE OF FILTERING FABRICS FROM NEW CHEMICALLY STABLE FIBERS IN BASIC CHEMICAL PRODUCTIONS G. A. Maksudov p 138-153 refs
- 17. USE OF POLYMERS IN COMBATTING FRETTING-CORROSION V.A. Veller p 154-164 refs
- 18. APPLICATION OF CERTAIN POLYMERS IN CHEMICAL AND CHEMICAL-METALLURGICAL PRODUCTION I. I. Markov p 165-175
- 19. APPLICATION OF NEW POLYMERS IN CHLORINE INDUSTRY R. S. Osipova and I. F. Rozen p 176–179
- 20. THE USE OF POLYMERS FOR CORROSION OF COMPONENTS OF MACHINES AND EQUIPMENT OF THE TEXTILE AND CHEMICAL-FIBER INDUSTRIES E. M. Kirshon p 180-189
- 21. EPOXY RESINS FOR PROTECTION OF SHIP CON-STRUCTIONS FROM CORROSION-EROSIONAL DESTRUC-TION V. A. Bershteyn and I. A. Elin p 190-193
- 22. APPLICATION OF POLYMERS FOR PROTECTION FROM MARINE CORROSION A. K. Muromtsev p 194–207
- 23. PROTECTOR POLYMERIC COATINGS $\stackrel{.}{A}$. G. Khanlarova p 208–225 refs
- 24. USE OF POLYMERS FOR PROTECTION OF STEEL UNDERGROUND PIPELINES FROM CORROSION E. A. Andreyeva, V. I. Bulayev, and V. B. Krasnoyarskiy p 226–239
- 25. IMPROVEMENT OF PROPERTIES OF BITUMINOUS COATINGS OF PIPELINES BY MEANS OF COMBINING BITUMEN WITH POLYMERS IN PROCESS OF EMULSION OXIDATION AND CAVITATION G. I. Gorshenina, N. V. Mikhaylov, and I. V. Strizhevskiy p 240–249
- 26. PROTECTION OF UNDERGROUND CONSTRUCTIONS BY COATINGS OF POLYMER FILMS M. S. Trifel, A. G. Khanlarova, S. A. Mekhmandarov, S. G. Zaychenko, and M. F. Mukbilov p 250-264

27. INVESTIGATION OF AGING OF TAPES FROM PLASTICS IN SOLONCHAK SOILS G. A. Allakhverdiyev and V. F. Nagreyev p 265-276 refs

28. ANTICORROSIVE PROTECTION OF UNDERGROUND STEEL PIPELINES BY POLYETHYLENE B. N. Bobrov p 277-282

29 STABILITY AND PROTECTIVE PROPERTIES OF POLYMER COATINGS IN UNDERGROUND CONDITIONS V. S. Artamonov p 283-291

30. FOREIGN EXPERIENCE OF THE APPLICATION OF POLYMER MATERIALS IN ANTICORROSION TECHNOLOGY G. Ya. Vorob'eva p 292-321 refs

31. FLAME SPRAYING OF PLASTICS A. N. Yezerskiy p 322-324

32. THE APPLICATION OF PAPER BAGS WITH LAY-ERS OF RUBBERIZED PAPER 1. 1. Bulygin p 325-338

33 TRANSPORTATION AND STORAGE OF MINERAL ACIDS IN METAL CONTAINERS WITH NEW PROTECTIVE COATINGS K. G. Bergman p 339-354

34 EXPERIENCE OF THE PRODUCTION OF PIPES. LINED WITH THERMOPLASTIC MATERIALS Z. A. Grinberg p. 355-360

35. PROPERTIES OF METALLIC PIPES, LINED WITH THERMOPLASTS D.F. Kagan p 361-365

36. INVESTIGATION OF PIPES WITH THERMOPLASTIC MATERIALS P. P. Savkin p. 366-373

37. APPLICATION OF ANTICORROSION COATINGS IN THE OIL PROCESSING INDUSTRY D. B. Rabinovich p 374–381

38. FLAME-SPRAYED PROTECTIVE COATINGS A. L. Kozlovskiy p 382–393

39. NEW TREND IN OBTAINING PROTECTIVE-DECORATIVE COATINGS E. A. Sheyer, L. K. Aleksandrova, and R. B. Shnol' p 394-412

40. PAINT BASED ON POLYMERIC MATERIALS FOR PROTECTION OF OIL FIELD INSTALLATIONS FROM SEA WATER CORROSION R. G. Gadzhiyeva, L. N. Zemskova, and Yu. Ye. Sinitsyna p 413-418 refs

N65-18428# Oak Ridge National Lab., Tenn. Chemical Technology Div.

CORROSION OF THE VOLATILITY PILOT PLANT INOR-8 HYDROFLUORINATOR AND NICKEL 201 FLUORINATOR DURING FORTY FUEL-PROCESSING RUNS WITH ZIR-CONIUM-URANIUM ALLOY

E. L. Youngblood, R. P. Milford, R. G. Nicol, and J. B. Ruch Mar. 1965–77 p. refs.

(Contract W-7405-ENG-26)

(ORNL-3623) OTS: \$3.00

Corrosion of the Volatility Pilot Plant process vessels was periodically determined during 40 processing runs in which uranium was recovered from both irradiated and nonirradiated zirconium and zircaloy-2-clad fuel elements. The primary reaction vessels were the hydrofluorinator, constructed of INOR-8, which was exposed to gaseous hydrogen fluoride and an NaF-LiF-ZrF4 molten salt mixture at 500° to 650°C, and the fluorinator, constructed of Nickel 201 (low-carbon nickel), which was exposed to fluorine and molten salt at about 500° C. Corrosion in the INOR-8 hydrofluorinator occurred primarily by bulk-metal loss. The maximum corrosion rate of 0.14 mil/hr of HF exposure (38 mils/month of molten salt) occurred in the replacement bottom. No extensive corrosion was observed. The Nickel 201 fluorinator had significant bulk-metal losses and intergranular corrosion. The maximum Nickel 201 bulkmetal loss of 0.9 mil/hr of F2 exposure occurred in the lower vapor region after 14 runs. Author

N65-18429# Union Carbide Corp., Oak Ridge, Tenn. Nuclear

CHEMICAL COOLANTS FOR MACHINING URANIUM IN THE PRESENCE OF TRACE AMOUNTS OF CHLORIDE

T. P. Sprague, J. M. Googin, and L. R. Phillips 14 Oct. 1964 > 51 p. refs (Contract W-7405-ENG-26)

(Y-1475) OTS: \$3.00

The presence of trace amounts of chloride was found to cause severe corrosion pitting of uranium during machining operations. A dibasic sodium phosphate solution will increase the chloride tolerance approximately 10 times over a sodium nitrite-triethanolamine-type coolant. In the phosphate coolant, sodium caprylate is required to retard corrosion of cast iron in the machine tools and benzotriazole to eliminate corrosion of the copper alloys in the coolant circulation system and bearings. Results indicate that bacterial protection is also required for routine use.

Author

N65-18457# Allis-Chalmers Mfg Co. Milwaukee. Wis Atomic Energy Div

PATHFINDER ATOMIC POWER PLANT CORROSION-ERO-SION TESTING OF STAINLESS STEEL IN OXYGENATED SATURATED STEAM

C. R. Bergen 10 Feb. 1964 22 p (Contest AT(11-1)-589) (ACNP-64001)

An investigation was conducted of the corrosion-erosion characteristics of various stainless steels in dynamic saturated and superheated steam containing oxygen and moisture. The steels studied included types 304, 304L, 316, and 316L. All the alloys suffered some intergranular attack in wet oxygenated steam, and this intergranular attack increased with moisture content in the steam and carbon content in the alloy. Erosion was found for the high-carbon 304 but not for the others.

N65-18674# Aberdeen Proving Ground, Md. Army Coating and Chemical Lab.

A STUDY OF VARIOUS INHIBITORS FOR PREVENTION OF GALVANIC CORROSION Final Report

W. H. Deaver 4 Jan. 1965 9 p ref

(CCL-175; AD-610136)

Various types of corrosion inhibitors and metallic salts were evaluated to determine their ability to prevent or retard galvanic corrosion of magnesium-steel assemblies. Screening tests showed sodium mercaptobenzothiazole (NaMBT) to be the most effective for prevention of galvanic corrosion on specimens immersed in a 3% salt solution. An attempt was then made to utilize NaMBT in a pretreatment for magnesium-steel couples. A procedure was developed for anodically depositing a coating from a NaMBT bath: however, the coating produced failed to provide the desired corrosion resistance.

N65-18737 Joint Publications Research Service, Washington, D. C.

INFLUENCE OF RARE EARTH METALS AND THEIR OXIDES ON THE PLASTICITY AND ANTICORROSION PROPERTIES OF STAINLESS STEELS

Ye. M. Savitskiy, V. F. Popov, N. V. Keys, and V. N. Lyubimov In its Probl. of the Theory and Use of Rare Earth Metals. 23 Feb. 1965. p. 286-291 refs. (See N65-18701.09-17). CFSTI \$7.00

In case of aftercharging of REM in stainless steels in amounts of 0.05%-0.18% or of oxides of REM in amounts of 0.08%-0.12%, the technological properties of the steels are sharply improved; the surface of the ingot of steels with an addition of REM is improved on account of better fluidity, the deformability of the steels is improved, the rough cracks along the angles and edges of the blanks are eliminated, and expenditures for their cleaning during reductions are reduced by 30%-40%. The macrostructure and anticorrosion properties are improved to a considerable degree on account of purification of the grain boundaries. In the case of additions of REM and REM oxides, the strength and plasticity increase, and the anisotropy of the chemical properties of the steel is reduced in the case of additions of REM or REM oxides, the number of twists of samples of stainless steels before breaking at 1200°

increases from 10 to 24 and from 13 to 23 revolutions, respectively. Author

N65-18869# Rock Island Arsenal Lab., III.

ALUMINUM COMPLEX SOAPS AS THICKENERS FOR MULTI-PURPOSE GREASE

Max T. Fisher 21 Dec. 1964 22 p refs

(RIA-64-3160; AD-610560) CFSTI: \$0.75

The reaction of aluminum isopropylate with mixtures of fatty acids and other organic acids in a mutual solvent is the preferred method of forming complex soaps. Of the 17 different lower molecular weight organic acids complexed with an aluminum soap, an aluminum benzoate-soap complex showed the best thickening efficiency and highest dropping point. The effects of benzoate to soap ratios, preformed complex vs in situ preparations, solvent effects on in situ preparations and additive, thickener concentration and dispersion effects were evaluated on aluminum benzoate-soap complex greases made with 74 SUS at 100° F oil

Author

N65-19022# General Electric Co., Evendale, Ohio Advanced Engine and Technology Dept

INFLUENCE OF STRESS CORROSION ON STRENGTH OF GLASS FIBERS

D. L. Hollinger, W. G. Kanetzky, and H. T. Plant. 30 Nov. 1964 21 p. refs.

(Contract Nonr-4486(00)(X))

(BMPR-4: AD-609985)

Static fatigue tests at liquid nitrogen temperature were completed on virgin E-glass single filaments. In these tests, fibers approximately 0 0005-inch diam were dead-loaded in tension while at -196° C and maintained at that temperature for at least 1.7×10^{5} seconds. Loads were varied within the high stress region from 400 000 to 650 000 psi. No static fatigue failures were observed under these conditions, even though the stress range was high enough to cause immediate failure of some fibers upon load application. This is in distinct contrast to the behavior observed at room temperature in normal humidity where delayed failures occurred over several decades of time with stress level ranging from 200 000 to 400 000 psi. Author

N65-19037# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SYNTHESIS OF ORGANIC COMPOUNDS AS ADMIXTURES TO LUBRICATING OILS

A. M. Kuliyev 21 Jan. 1965 7 p Transl. into ENGLISH from Vestn. Akad. Nauk SSR (Moscow), no. 7, 1962 p 51–53

(FTD-TT-64-880/1; AD-611076)

Compounds used as antifreeze, detergent, antiscale, and antioxidant additives to lubricating oils are discussed. The synthesis of condensation products of alkylphenols and urea with formaldehyde in an acid medium is presented. Condensation products, derived from alkylphenol and a tertiary carbon atom base, appear to be highly effective antioxidizing admixtures. Antioxidizing admixtures were also obtained from the reaction of ammonia and furfurole. An addition of 0.01% to oil was found to increase stability to oxidation.

N65-19161# Army Electronics Labs., Fort Monmouth, N. J. Power Sources Div.

A STUDY OF FACTORS AFFECTING THE CORROSION RATE OF MAGNESIUM IN VARIOUS ELECTROLYTES UNDER STATIC CONDITIONS

Carl A. Nordell Aug. 1964 17 p (ECOM-2517; AD-609988)

The corrosion rates of magnesium and magnesium alloys in magnesium salt solutions of chloride, bromide, and perchlorate were studied by measuring the gaseous reaction product as a function of time. Reliable apparatus was developed to accurately determine the volumes of gas generated. Protective films were applied to the surface of the magnesium metal to suppress excessive chemical reactivity at the metal-electrolyte interface, thereby reducing static corrosion rates. Cramolin,

one of the films tested, reduced the gas evolution of an AZ21 Mg-2N MgBr₂ system from 400 cc/800 hr to 0.1 cc/800 hr Author

N65-19191 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

INVESTIGATION OF THE THERMAL STABILITY AND CORROSIVENESS OF SULFUROUS FUELS AT TEMPERATURES ABOVE 100°C

Ye. R. Tereshchenko and M. Ye. Tararyshkin. *In its* Chem. of Sulphur Org. Compds. Contained in Petrol. and Petrol. Prod. 12 Jan. 1965. p. 32–41. refs. (See N65-19188 09-06)

The corrosiveness of small concentrations of sulfur containing compounds in petroleum fuels was studied at a temperature of 150° C under static conditions in a bomb, and under dynamic conditions in apparatus simulating the operation of a fuel filter of a motor. It was observed that insoluble deposits were formed above 100° C with sedimentation in the 150° to 200° C temperature interval. These products were mainly from the oxidation of sulfur, nitrogen, and oxygen organic compounds present in the fuel. Deposits were found to decrease by a factor of 2 or 3 and corrosiveness by a factor of 10 by the hydropurification of the fuel.

N65-19200# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ELECTRIC RESISTANCE TENSOMETER

B. A. Glagovskiy, B. M. Rakhman, and U. M. Zubkov. 28 Jan. 1965. 5 p. Transl. into ENGLISH from the Russian Patent no. 153138 (Appl. no. 668220/25), 27 May 1960. p. 1-2 (FTD-TT-64-872/1+2; AD-611051)

To expand the boundaries of measurement to the plastic range, the electric resistance tensometer was made from 0.05-mm-thick titanium-aluminum foil, containing 3% to 5% aluminum. The anticorrosion stability of the foil and its non-magnetic character allow use in caustic media and in electric and magnetic fields.

N65-19234 Bureau of Naval Weapons, Washington, D. C. CORROSION PROTECTION OF HIGH-STRENGTH STEELS S. Goldberg In Battelle Mem. Inst. Probl. in the Load-Carrying Appl. of High-Strength Steels [1964] p.78-90 refs (See N65-19226 09-17)

Stress-corrosion cracking, hydrogen embrittlement, and corrosion fatigue are considerations in serviceable corrosion protective systems. The environmental conditions are -65° F to approximately 1000° F in marine environments of the spray type with intermittent bold exposure. Although 12% type chromium steels have been widely used without protective coatings, these materials require protection for many applications. Higher chromium-content materials, although not requiring corrosion protection when used alone, require coatings where they may contact other materials or are mechanically joined with themselves. Although successful protective schemes are being used, substantive advances are needed to simplify application and maintenance. Also required are nondestructive test methods to evaluate corrosion damage which may occur.

N65-19235 Naval Research Lab. Washington, D. C. STRESS-CORROSION CRACKING AND CORROSION FATIGUE OF HIGH-STRENGTH STEELS

B. F. Brown In Battelle Mem. Inst. Probl. in the Load-Carrying Appl. of High-Strength Steels [1964] p 91-102 refs (See N65-19226 09-17)

Indications from present test methods are that many heat-treated steels are susceptible to stress-corrosion cracking at strength levels as low as 150–175 ksi yield strength in reasonable environments, and that the susceptibility increases with increasing yield strength. In approximately the same strength range, these steels also begin to exhibit susceptibility to hydrogen embrittlement, so that cathodic protection against stress-corrosion cracking cannot be used in seawater, and inorganic zinc coatings are unsuitable. A new requirement is thus imposed upon coatings for at least some of these steels; i.e., the

coatings must be more than corrosion barriers, they must be vapor barriers as well.

Author

N65-19236 Gt Brit. Ministry of Aviation. London PROTECTION AGAINST CORROSION, HYDROGEN EMBRITTLEMENT

H. G. Cole In Battelle Mem. Inst Probl. in the Load-Carrying Appl. of High-Strength Steels [1964] p 103-104 (See N65-19226 09-17)

The problem of hydrogen embrittlement, theories for the movement of hydrogen through steel, and the way in which it reduces the cohesive strength of the steel are discussed. The value of cleanness and of low sulfur and phosphorus content, not only for improved mechanical properties, but also for raising the threshold hydrogen content below which embrittlement does not occur is emphasized. Cleaning processes, protective coatings, and stress corrosion are included. Cadmium plating plus paint is considered the best protective for steel, although some hold the view that phosphate treatment plus paint is as good or even better.

N65-19255# Naval Research Lab., Washington, D. C. Chemistry Div.

CORROSION OF METALS IN TROPICAL ENVIRONMENTS. PART G: ALUMINUM AND MAGNESIUM

C. R. Southwell, C. W. Hummer, Jr., and A. L. Alexander 1 Dec. 1964-18 p. refs

(NRL-6105; AD-609618) CFSTI: \$0.50

The corrosion resistance of 3 alloys of aluminum and 2 alloys of magnesium was studied following exposure up to 16 years in 5 natural tropical environments. These include sea water immersion, fresh water immersion, and exposure to tidal sea water, a tropical marine atmosphere, and a tropical inland atmosphere. Aluminum 1100, aluminum alloy 6061-T, and magnesium alloy AZ31X were exposed to each environment. In addition, Alclad aluminum 2024-T and magnesium alloy AZ61X were exposed to the two tropical atmospheres. Weight loss, pitting, and change in tensile properties were measured to show the extent of corrosion for each of these materials. Aluminum alloys demonstrate extremely high resistance to each environment, with the exception of tropical fresh water, in which case serious pitting occurred. Alloy 6061-T demonstrated some superiority in all environments to aluminum 1100. Author

N65-19419# Rock Island Arsenal Lab., III.
COMPARISON OF AUTOMOTIVE LUBRICATING GREASES
S. Fred Calhoun, Richard Faoro, and R. L. Young 21 Dec. 1964
12 p. refs

(RIA-TR-64-3578; AD-611090) CFSTI: \$0.50

Six commercial automotive greases were evaluated along with one qualified MIL-G-10924B grease. The tests were (1) worked penetration, (2) four-ball wear and extreme pressure, (3) roll stability, (4) water washout, (5) water resistance, and (6) rust prevention. Results indicate the MIL-G-10924B grease to be better than average in wear, extreme pressure, and roll stability, and superior in rust prevention and water resistance. Author

N65-19446# Aerojet-General Corp., Sacramento, Calif. Advanced Storable Engine Program Div.

HYDROSTATIC BEARING FEASIBILITY PROGRAM Quar-

terly Progress Report, 1 Jul.-30 Sep. 1964 1 Dec. 1964 67 p refs

(Contract AF 04(611)-7439) (Rept.-7439-Q-1; AD-609628)

Work on the analysis of the applicable laminar and turbulent flow laws to externally pressurized liquid-lubricated journal bearings resulted in the formation of equations for bearing pressure distribution, load-carrying capacity, fluid film stiffness, torque, horsepower loss, and coolant temperature rise that are applicable in orifice, capillary, and constant flow compensation. Computer programs to solve the equations were

prepared for journal and thrust bearings under laminar and turbulent flow conditions. The laminar flow computer programs did not yield all required data. An analysis of large turbopump bearing requirements led to the design of journal and thrust bearings, their test plans, and performance prediction. Hydrostatic thrust bearings appear to be feasible for high-speed application, very high load-carrying capacity requirements, or where the viscosity and lubricity of the fluid are not conducive to the use of rolling contact or hydrodynamic bearings.

N65-19464# Battelle Memorial Inst., Columbus, Ohio. DEVELOPMENT OF NIOBIUM ALLOYS RESISTANT TO SUPERHEATED STEAM

Arthur A. Bauer, Warren E. Berry, John A. De Mastry, Robert D. Koester, and Frank A. Rough 11 Nov. 1964 47 p. refs (Contract W-7405-ENG-92)

(BMI-1700, EURAEC-1285) CFSTI: \$1.00

Niobium-base alloys containing additions of 18 to 24 a/o titanium, 12 to 18 a/o vanadium, and 9 to 12 a/o chromium were prepared by arc melting, and evaluated for corrosion resistance in the cold-worked condition. Alloys containing greater than 9 a/o chromium could not be cold rolled because of a NbCr₂ precipitate in the grain boundaries. The niobium-21 a/o titanium-12 a/o vanadium-9 a/o chromium alloy was found to have excellent corrosion resistance to attack by 540°C deoxygenated steam, having a total weight gain of 465 mg per dm² for 10 000 hr of exposure. The resistance to steam attack at 650° and 705° C appears to be adequate to withstand reactor temperature transients. There was no evidence of stress corrosion in 540°C steam or in steam to which chloride ions had been added. Loop tests indicated that the niobium-21 a/o titanium-12 a/o vanadium-9 a/o chromium alloy does not have satisfactory corrosion resistance to BWR superheater steam (20-ppm oxygen and 2.5-ppm hydrogen) at 566° C. The 540° C short-time tensile properties were excellent, the alloy processing a yield strength of 150,000 psi and an ultimate tensile strength of 170000 psi Recrystallization occurs in 1 hr at Author 1150° ± 10° C.

N65-19465# Illinois Univ., Urbana. Coll. of Engineering THE EFFECTS OF 60-CYCLE ALTERNATING CURRENTS ON THE CORROSION OF STEELS AND OTHER METALS BURIED IN SOILS Engineering Experiment Station Bulletin 470

Walter H. Bruckner Nov 1964 64 p refs Available from Illinois Univ.: \$1.50

In laboratory-operated cells which simulated field conditions of metal buried in soil, ac was found effective in accelerating the soil corrosion of all metals tested, including ferrous and nonferrous alloys. Corrosion due to ac resulted from thermal and electrical effects. The electrical effects may be contributed by ac only when do is blocked from the circuit. No consistent relationship could be found between ac and the do component in cells with steel electrodes. In addition, a do component was found in cells with apparently identical steel electrodes and environment. The presence of ac in an electrical circuit composed of different metals buried in soil increased the do current in the galvanic cell, and increased the corrosion rate normally expected for the anode of such a cell.

N66-19527# ARO, Inc., Arnold Air Force Station, Tenn.
TESTS OF DRY COMPOSITE LUBRICATED BEARINGS
FOR USE IN AN AEROSPACE ENVIRONMENTAL CHAMBER, MAY 1-JUNE 16, 1964

T. L. Ridings Arnold Eng. Develop. Center, Mar. 1965 45 p refs

(Contract AF 40(600)-1000)

(AEDC-TR-65-35; AD-458414)

This report contains the results of a test program to determine the operational characteristics of dry composite lubricated bearings. Two different bearing types were tested:

tapered roller bearings and ball bearings. Four dry composite lubricants and two low vapor pressure greases were tested. Results indicate that the dry composite lubricants were more successful when used with ball bearings than when used with tapered roller bearings. All four composite lubricants provided low system torques (40 to 60 lb in.) under heavy loads (3000 lb/bearings) for the scheduled 100 hours. Beat results were obtained using Cu and PTFE and WSe2 and a silver alloy + PTFE + WSe2. One low vapor pressure grease was successful as a lubricant at room temperature but migrated at temperatures above room temperature. The other low vapor pressure grease was successful at temperatures up to 140° F with no migration.

N65-19592# Joint Publications Research Service, Washington D C

STEELS IN POWER MACHINERY Selected Articles

16 Mar. 1965 26 p refs Transl. into ENGLISH from Energomashinostr (Moscow), no. 10, Oct. 1964 p 26-29, 29-30, 30-32

(JPRS-29139, TT 65 30520) CFSTI: \$1.00

The first article discusses the apparent discrepancy between laboratory data on the stability of stainless and carbon steels and their actual resistance to cavitational erosion under operating conditions in hydroelectric turbines. Mechanical and impact-corrosional aspects of steel disintegration are considered in demonstrating that differences in cavitation intensity account for variations in the stability data. The second article discusses the effects of annealing variables on the strength and durability of steel pins with rolled threads. The third article discusses the ways in which an oxide layer influences the kinetic and diffusion reactions of gas corrosion of steel, particularly in cases where the oxide layer is continually being chipped away.

N65-19660# Phillips Petroleum Co., Idaho Falls, Idaho. Atomic Energy Div

CORROSION OF TYPE 316 STAINLESS STEEL IN NaK SERVICE—A LITERATURE SURVEY

C. A. Zimmerman Feb. 1965 21 p refs (Contract AT(10-1)-205)

(IDO-14651) CFSTI: \$1.00

A literature survey of work on corrosion of stainless steel, especially Type 316, by NaK and sodium was made. In general, the Type 316 and Type 304 stainless steels should give good performance with NaK. The mechanisms which can lead to failure are attack by impurities at temperatures under 550°C, and carbide precipitation, sigma formation, and mass transfer at higher temperatures.

Author

N65-19727# General Electric Co., Cincinnati, Ohio. Materials Development Lab.

THE DEVELOPMENT OF METHODS FOR THE ULTRASONIC INSPECTION OF BEARINGS Final Engineering Report, Mar. 1963–Sep. 1964

E. N. Bamberger and J. D. Marble 20 Oct. 1964-93 p. refs. (Contract NOw-63-0383-d) (AD-454013)

A program was conducted to develop and demonstrate feasibility of an ultrasonic inspection technique for antifriction bearings. The purpose of this type of nondestructive inspection is to increase the reliability of bearings by the elimination of those parts subject to premature failure. The special ultrasonic inspection technique coded MC3 is particularly suited for bearing inspection, due to the ability to control its depth of scan, thereby restricting the inspected region. Using the MC3 technique, the inner and outer raceways of 100 ball bearings were inspected prior to assembly. The inspection data were analyzed and the bearings ranked in order of probability of failure. Following testing, a reinspection was performed

on a number of long-life, unfailed bearings to determine whether the MC_3 inspection could also detect incipient subsurface failures. The MC_3 inspection is capable of sorting out those bearings likely to fail in the early portion of life, although not yet on a completely reliable basis. Until the reliability can be more absolute, the MC_3 method cannot be recommended for immediate application as a quality control measure.

N65-19849*# General Electric Co., Cincinnati, Ohio. Miesile and Space Div.

MATERIALS FOR POTASSIUM LUBRICATED JOURNAL BEARINGS Quarterly Progress Report No. 6, Jul. 22-Oct. 22, 1964

R. G. Frank, ed. [1964] 74 p refs (Contract NAS3-2534)

(NASA-CR-54264) CFSTI: HC \$3.00/MF \$0.75

Twenty Cb-1Zr alloy capsule assemblies were filled with purified potassium and tested isothermally for 1000 hours at 800° , 1200° F, and 1600° F in a vacuum of 10^{-8} to 10^{-9} torr. Chemical analyses, by the mercury amalgamation method, of samples of the potassium taken at the same time that the capsules were filled, indicated the potassium contained less than 50 ppm oxygen. Each of the three sets of six capsules contained test specimens of K601, TiC, 10%Cb+TiC, 5%W+TiC, Grade 7178, and Star J materials. Two additional capsules, tested at 1600°F, contained specimens of 10%-Mo+TiC and TiB₂, respectively. The chamber pressure at the end of the test was 1 \times 10⁻⁹ torr. To evaluate dimensional stability, duplicate specimens of 10 of the 14 candidate materials were tested for 1000 hours at 1200° and 1600° F in vacuum. The chamber pressure at the conclusion of the test was 1.3×10^{-9} torr. Of the 10 materials evaluated, the Zircoa 1027 was the only material to show a significant change in dimensions, i.e., approximately +0.4%, as a result of the 1000-hour exposure at 1600° F. Author

N65-19893* SKF Industries, Inc., King of Prussia, Pa. Research Lab

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND HIGH TEMPERATURES Progress Report No. 9, Oct. 1–Dec. 31, 1964

C. J. Wachendorfer [1964] 43 p refs

(Contract NASw-492)

(NASA-CR-57445; AL65T002) CFSTI: HC \$2.00/MF \$0.50

Testing has continued with nine consumable electrode vacuum melted steel angular-contact ball bearings and three high-temperature lubricants, viz, a highly viscous ester base oil, a six-ring polyphenyl ether, and a viscous hydrocarbon, at speeds up to 45 000 rpm, mean temperatures up to 680° F and under 365 lbs thrust load. Checkout tests were conducted to determine the operating temperature of the rig and bearings when heated by internal heat generation only, at 45 000 rpm and to arrive at a suitable arrangement for external cooling.

N65-19971# General Electric Co., Schenectady, N. Y. Advanced Technology Labs.

LUBRICATION OF HEAVILY LOADED, LOW VELOCITY BEARINGS AND GEARS OPERATING IN AEROSPACE ENVIRONMENTAL FACILITIES

Ralph E. Lee, Jr. Arnold AF Sta., Tenn., Arnold Eng. Develop. Center. Jan. 1965 212 p refs (Contract AF 40(600)-1013)

(AEDC-TR-65-19: AD-456355)

This report presents the results of a balanced study of bearings and gears for heavily loaded, low velocity space simulator applications, integrated with a research effort directed toward the development of materials, lubricants, application processes, and evaluation and testing techniques. Solid film

lubricants consisting of molybdenum disulfide and graphite with silicate and epoxy-type binders, and thin-film platings of gold and silver, were among the better performers. Molybdenum disulfide-glass, and graphite aluminum phosphate were among the more successful solid film lubricants developed. Apiezon L, a low vapor pressure petroleum distillate exhibited good performance characteristics. Lubricated cylindrical, spherical, ball, and tapered rolling element bearings of 30-, 50-, and 100-mm-bore sizes were tested in this effort. The gears tested were helical.

N65-20203 Joint Publications Research Service, Washington, D. C.

INTERACTION OF SOLDER WITH THE MATERIAL BEING SOLDERED. 2: DISSOLUTION OF BASE METAL DURING SOLDERING

N. F. Lashko and S. V. Lashko *In its* Studies in the Brazing and Soldering of Metal Alloys 2 Mar. 1965 p 9-19 refs Transi into ENGLISH from Avtomat. Svarka (Kiev). 1963 p 30-35 (See N65-20201 10-15) CFSTI: \$2.00

A study was made of the dissolution of pure metals in more readily fusible liquid metals (solders) under the conditions approximating those of capillary soldering and soldering in a bath. Rate of dissolution with rising temperature depends on the amount of solder and structure of the alloy that is formed in the soldered seam and the zone of diffused interaction. Formation of interlayers of incongruent chemical compounds at the contact of liquid solder with the metal being soldered decreases the rate of its dissolution near the peritectic temperature. Ways of lowering the rate of dissolution of the metal being soldered in the liquid solders are considered.

N65-20483*# National Aeronautics and Space Administration. Langley Research Center, Langley Station, Va. SALT-STRESS-CORROSION CRACKING OF RESIDUALLY STRESSED TI-8AI-1Mo-1V BRAKE-FORMED SHEET AT 550°F (561°K)

Richard A. Pride and John M. Woodward Washington, NASA, Apr. 1965 27 p. refs

(NASA-TM-X-1082) CFSTI: HC \$1.00/MF \$9.50

An experimental investigation of salt-stress-corrosion cracking with residual stresses was conducted with one of the supersonic-transport candidate materials. Ti-8Al-1Mo-1V. Specimens with right-angle bends were brake formed from sheet material to produce residual stresses, coated with sodium chloride, and exposed at 550° F (561° K). After various exposure times, some of the specimens were given a reverse-bend test to determine the extent of cracking based on bending deflection. Other specimens were examined metallurgically. Saltstress-corrosion cracks began to appear in less than 20 hours, and the effects were at least as severe as the effects produced by load-induced tensile stresses. Several approaches were examined for alleviating the corrosion cracking, and, of these. shot peening and nickel plating appear promising enough to warrant further investigation. Author

N65-20570# National Research Council of Canada, Ottawa (Ontario).

QUARTERLY BULLETIN OF THE DIVISION OF MECHANI-CAL ENGINEERING AND THE NATIONAL AERONAUTI-CAL ESTABLISHMENT, 1 JULY TO 30 SEPTEMBER 1964 [1964] 96 p refs

(DME/NAE-1964(3))

CONTENTS:

1. LOW TEMPERATURE CHARACTERISTICS OF MULTIPURPOSE GEAR OILS R. B. Whyte p 1-14 refs (See N65-20571 10-15)

2. PHOTOGRAMMETRIC CHECKING OF WIND TUN-NEL MODELS A. J. Bowker p 15-43 (See N65-20572 10-15) 3 CURRENT PROJECTS OF THE DIVISION OF ME-CHANICAL ENGINEERING AND THE NATIONAL AERO-NAUTICAL ESTABLISHMENT p 45-87

N65-20571 National Research Council of Canada, Ottawa (Ontario) Fuels and Lubricants Lab

LOW TEMPERATURE CHARACTERISTICS OF MULTI-PURPOSE GEAR OILS

R. B. Whyte *In its* Quart. Bull. of the Div. of Mech. Eng. and the Natl. Aeron. Estab., 1 Jul. to 30 Sep. 1964. [1964]. p. 1–14 refs. (See N65-20570.10-15).

The performance of four multipurpose gear oils in laboratory bench tests, in differential assemblies in the cold room, and in the same vehicle differential is reported. It was concluded: (1) At the low ambient temperatures at which 75 grade oils are used, the chemical activity of the E. P. additives is too low to prevent surface damage to the gear teeth under severe conditions. An increase in additive content of 25% over that used in the higher grades is sufficient to give satisfactory protection. (2) Excellent correlation was obtained between channel points and the temperature at which the oil begins to seriously affect the torque required to turn a differential assembly (3) There was no evidence that prolonged storage at low temperatures results in torque requirements greater than storage overnight. (4) The original Army recommendations for changing from 90 to 75 grade lubricants in rear axles at about +32° F ambient did not agree with either these findings or with commercial practice. Change should be made at 0° to

N65-20708# Oak Ridge National Lab. Tenn EVALUATION OF HASTELLOY F AND OTHER CORROSION-RESISTANT STRUCTURAL MATERIALS FOR A CONTINU-OUS CENTRIFUGE IN A MULTIPURPOSE FUEL-RECOV-

W. E. Clark, L. Rice, and D. N. Hess Apr. 1965 16 p. refs. (Contract W-7405-ENG-26) (ORNL-3787) CFSTI: \$1.00

Hastelloy F was found suitable as a material of construction for a centrifuge to be used for clarifying solutions generated in various nuclear head-end processing schemes. The maximum corrosion rate was ≦0.7 mil/month in all solutions tested. Test temperature was 35°C. Candidate materials besides Hastelloy F included Carpenter 20SCb stainless steel. Hastelloy C, titanium-45A, and a vacuum-melted, low-carbon variation of Ni-o-nel. Hastelloy F was the only one of these materials which was satisfactorily resistant to all of the test solutions.

N65-20710# Du Pont de Nemours (E. 1.) and Co., Aiken, S. C. Savannah River Lab.
STRESS CORROSION CRACKING OF AUSTENITIC STAIN-LESS STEEL Status Report, September 1, 1964
Mc Intyre R. Louthan, Jr. Feb. 1965 22 p refs

(Contract AT(07-2)-1)

(DP-957) CFSTI: \$1.00

Stress corrosion cracking of austenitic stainless steel is being investigated to develop a fundamental understanding of the phenomenon. This report presents the status of studies relating specimen microstructure and dislocation substructure to the susceptibility to stress corrosion cracking. Anodic dissolution plays a major role in the nucleation and propagation of stress-corrosion cracks. The susceptibilities of different heats of the same type of steel to cracking are quite different. and these differences are not attributable to differences in the composition of major alloying elements, material hardness, or dislocation substructure. It is also shown that the relative rate of preferential attack at dislocation arrays and stacking faults in thin foils of type 304 stainless steel exposed to dilute NaCl solutions increased with increasing temperature and was more rapid in heats of steel which were most suscepti-Author ble to cracking in bulk tests.

N65-20807*# Electro-Optical Systems, Inc., Pasadena, Calif. HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELLS

Harvey Frank 10 Dec. 1963 9 p

(Contract NAS3-2781)

(NASA-CR-57665; EOS-4110-M-4) CFSTI: HC \$1.00/MF \$0.50

Design of the fuel cell assembly was completed. Also, the cycle controller design was established. A few modifications of the first fuel cell design were made to improve reliability and simplify fabrication. The first such modification consisted of increasing the diameter of the separators to provide more sealing area for the Teflon gaskets. A second change consisted of increasing the thickness of the separators to simplify the machining of the inlet radial holes which serve as inlet gas ports. Five oxygen electrodes were completed. A sample of butyl rubber from which the balance diaphragm is to be made was held at 100°C for 5 days under 100 psig of oxygen. No apparent change in surface properties or elasticity was noted. Samples of magnesium and aluminum were subjected to the same tests with no apparent change in the metal surfaces. Kanigen plated nickel was tested under electrolysis. No signs of penetration into the substrate material were noted. Single cell data were also included.

N65-21054# Ampex Corp., Redwood City, Calif.
DERIVATION OF GOVERNING EQUATIONS FOR SELFACTING FOIL BEARINGS

Edward J. Barlow Feb. 1965 29 p refs (Contract Nonr-3815(00)(X)) (RR-65-1; AD-612720)

Contained is the derivation of the equations for the self-acting foil bearing. These equations include the effects of bending stiffness of the tape and of compressibility of the lubricant. They are nonlinear, and the boundary conditions are divided equally between the two ends of the tape. These complications even make obtaining numerical solutions difficult. Linearized solutions are derived for large wrap angles neglecting the bending stiffness of the tape.

Author

N65-21108# Air Force Systems Command, Wright-Patterson AFB. Ohio Foreign Technology Div.

HIGH TEMPERATURE ARRANGEMENT FOR TESTING LONG LASTING STRENGTH AND CORROSION STABILITY OF STRUCTURAL MATERIALS IN LIQUID SODIUM V. I. Nikitin 14 Jan. 1965 11 p refs Transl. into ENGLISH from Teploenerg. (Moscow). no. 5, 1963 p 80-83 (FTD-TT-64-704/1+2; AD-610299)

In this report are described structural features of a lab arrangement for testing corrosion resistance and strength of structural materials in a sodium stream at a temperature of up to 1000° C. Given are results of brief corrosion testing of nickel base alloys and chromium nickel austenitic steel at 1000° C.

N65-21161*# Thompson Ramo Woolridge, Inc., Cleveland, Ohio.

OPERATION OF A FORCED CIRCULATION, CROLOY 9 M, MERCURY LOOP TO STUDY CORROSION PRODUCT SEPARATION TECHNIQUES

D. B. Cooper and E. J. Vargo Washington, NASA, Apr. 1965 102 p. refs

(Contract NAS3-2538)

(NASA-CR-217) CFSTI: HC \$4.00/MF \$0.75

A Croloy 9M, forced circulation, mercury loop was designed and operated for a total of 2918 hours at an average boiling temperature of 1074°F. Corrosion product separators were included in both the vapor and liquid sections of the system and were evaluated for their effectiveness in reducing problems associated with mass transfer in mercury systems. Corrosion data for this system were found to agree favorably

with previously reported data for Croloy 9M. The separators in the vapor portion of the system removed 54.3% of the corroded metals found in the system, while the separator in the liquid region removed 24.7% of the corroded metals. Carbon diffusion was noted in the Type 316 SS–Croloy 9M composite tubing at temperatures above 1200° F. The diffusion of carbon from the Croloy 9M to the Type 316 SS resulted in grain coarsening of the Croloy 9M and a profusion of carbides in the Type 316 SS. The composite tubing also exhibited excessive creep after 2918 hours at 1405 \pm 10° F, apparently a result of metallurgical changes in the Type 316 SS. Deposition and corrosive and/or erosive attack were observed, after 448 hours of loop operation, in a Croloy 9M throttling valve located at the superheater outlet.

N65-21177# Rock Island Arsenal Lab., III.
INVESTIGATION OF VOLATILE CORROSION INHIBITOR

INVESTIGATION OF VOLATILE CORROSION INHIBITOR ADDITIVES FOR STANDARD OPERATING OILS TO IMPROVE THEIR PRESERVATIVE CHARACTERISTICS

Joseph H. Weinberg and Gerald Pributsky 21 Dec. 1964 24 p (RIA.-64-3577; AD-612732)

The work demonstrated the feasibility of using carefully selected concentrates to improve the preservative properties of an operating lubricant. However, unpredictable compatibility problems may prevent application of this process. Of three concentrates found that would provide vapor phase protection comparable to that of Specification MIL-L-46002 VCI oil, and exhibit only slight sedimentation in compatibility tests with operating lubricants, only one had the supply and logistics properties desirable. Concentrates in liquid form were revealed best suited because solubility problems were encountered with the powdered form of concentrate. The type of diluent which is part of the concentrate can also produce detrimental effects on a product when added to an operating oil as evidenced by drastic changes in viscosity, pour point and flash point.

N65-21303* # SKF Industries, Inc., King of Prussia, Pa. Research Lab.

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND HIGH TEMPERATURES Progress Report No. 7, Apr. 1–Jun. 30, 1964

C. J. Wachendorfer [1964] 33 p refs (Contract NASw-492) (NASA-CR-57982: AL-64T035)

Ten consumable-electrode vacuum-melted (CVM) WB-49 tool steel 7205 angular contact ball bearings were tested at 20000 rpm, 365 lbs thrust load and mean temperatures up to 610° F. Two hydrocarbon oils, Kendex bright stock 0846 and Socony XRM-109F and the ester base oil, Socony RM-139A, were used to lubricate the bearings. Also, cage designs and materials evaluation continued to aid in selecting the most desirable design which would eliminate the cage guide wear experienced in previous testing and will be utilized in bearings yet to be tested. An associated research program to select the most wear-resistant cage materials for application in high temperature bearings continued with recent testing at temperatures up to 700° F, using polyimide plastic cage specimens and two of the candidate high temperature lubricants, Monsanto OS-124 and Esso FN-3157.

N65-21344*# Materials Research Lab., Inc., Richton Park, III.
ELEVATED TEMPERATURE STRESS CORROSION OF HIGH
STRENGTH SHEET MATERIALS IN THE PRESENCE OF
STRESS CONCENTRATORS First Interim Report

R. L. Kirchner and E. J. Ripling Nov. 1964 98 p refs (Contract NASr-50)

(NASA-CR-57914) CFSTI: HC \$3.00/MF \$0.75

Under laboratory creep furnace conditions, AM 350 stainless steels, Inconel W, and V-36 were unaffected by 1000-hr exposures at 650° F and 60 ksi in the presence of sea salt. Salt coated samples of the titanium alloys, Ti-6AI-4V and

Ti-8Al-1Mo-1V, however, were found susceptible to stress corrosion cracking at 650° F and 17.5 ksi under the same creep furnace exposures. The average time to failure for the latter was about 240 hr; although two specimens survived the 1000 hr while one failed after only 23 hr. At 600° F, practically no deterioration was found in the titanium alloys after 1000 hours of exposure. The severe sensitivity of titanium alloys to hot salt in laboratory tests is not consistent with its reported behavior in service. To predict whether or not titanium is safe in specific applications requires a better understanding of the mechanism of hot salt stress corrosion cracking. A tentative mechanism for hot dry salt stress corrosion is proposed.

Author

N65-21445# Mechanical Technology, Inc., Latham, N.Y.
AN EXPERIMENTAL STUDY OF FRICTION IN ELASTO-HYDRODYNAMIC LUBRICATION

M. D. Longfield 28 Aug. 1964 26 p. refs (Contract Nonr-3729(00)(FBM)) (MTI-64TR63, AD-610134)

The main features of the apparatus were described by Orcutt. Two 1/4-inch-wide, 6-inch-diameter disks were mounted with their axes horizontal, each being driven independently through Vee-belt drives by infinitely variable-speed electric motors. The disks were made to roll or roll and slide on their peripheral surfaces while loaded together. The upper steel disk was held in a lever assembly which was supported at one end by a self-aligning pivot. Load to the disks was applied by applying dead weights to the other end of the lever arm. The lower disk, made of glass, was driven at the same or lesser speed than the steel disk. Both disks were polished on their peripheries to a surface finish of a few microinches. Provisions were available for the true alinement of the disks to provide a symmetrical distribution of load across their width. A jet of lubricant was supplied to the inlet side of the contact. and an intercooler was incorporated in the oil circuit to minimize oil supply temperature fluctuations. Author

N65-21626*# General Electric Co., Cincinnati, Ohio. Missile and Space Div.

POTASSIUM CORROSION TEST LOOP DEVELOPMENT Quarterly Progress Report No. 6 for the Period Ending Jan. 15, 1965

E. E. Hoffman, ed. 12 Mar. 1965 60 p. refs (Contract NAS3-2547)

(NASA-CR-54344) CFSTI: HC \$3.00/MF \$0.50

The development of a prototype corrosion test loop for the evaluation of refractory alloys in boiling and condensing potassium environments which simulate projected space electric power systems is considered. Loop I, a natural convection loop, was operated for 1000 hours with liquid sodium at a maximum temperature of 2260° to 2380°F to evaluate the electrical power vacuum feedthroughs, the thermocouples, the method of attaching the electrodes, the electrical resistivity characteristics of the heater segment, and the use of thermal and electrical insulation. Loop II, a single-phase sodium, forced-circulation loop to evaluate the primary loop EM pump. a flowmeter, the flow control and isolation valves, and the pressure transducers completed 2650 hours of scheduled testing. This loop operated at a pump inlet temperature of 1985° F. Residual sodium was distilled from the loop and component evaluation initiated. The prototype corrosion test loop, a two-loop Cb-1Zr system, was designed and partially fabricated It will include a boiler, turbine simulator, and condenser. This facility will be used to develop and endurance test (2500 hours) the components required to achieve stable RWH operation at the corrosion test design conditions.

N65-21714# Battelle Memorial Inst., Columbus, Ohio. PHASE, THERMODYNAMIC, OXIDATION, AND CORROSION STUDIES OF THE SYSTEM URANIUM-NITROGEN

Josef Bugl and Arthur A. Bauer 4 Sep. 1964 42 p refs (Contract W-7405-ENG-92) (BMI-1692; EURAEC-1210) CFSTI. \$1.00

The pressure-temperature dependence of UN decomposition and melting, of equilibrium between the UN and U2N3 phases, and of nitrogen solution in the U2N3 phase was determined as well as the solubility of UN in liquid uranium. From the experimental data, thermodynamic functions for the formation of $U_2\tilde{N}_3$ from UN and nitrogen gas and for the solution of nitrogen in U2N3 were determined. For the latter, integrated thermodynamic functions for the solution of nitrogen in U₂N₃ were calculated. The oxidation kinetics of UN in CO₂. oxygen, and water-saturated air were found to obey the linear weight-gain law with activation energies ranging from 10400 to 15400 cal per mole. The oxidation product in atmospheric gas at temperatures of 300°C and greater was U3O8 UN corroded in 300° C water to form UO2, but the rate of corrosion was highly sensitive to stoichiometry and to density with cast, 100% dense, stoichiometric UN exhibiting optimum corrosion resistance as compared with nonstoichiometric UN prepared either by casting or by powder metallurgy. Corrosion rates in 100° C water, 350° C Santowax R, and 820° C NaK were low or negligible. Author

N65-21777*# Kaiser Aluminum and Chemical Corp. Spokane. Wash Dept of Metallurgical Research

INVESTIGATION OF WELDING AND FABRICABILITY OF KAISER EXPERIMENTAL ALLOY MR39A Final Project Report, Jul. 1, 1962–Sep. 30, 1963

F. R. Baysinger 21 May 1964 178 p

(Contract NAS8-5065)

(NASA-CR-62233, MS-PR-64-12) CFSTI HC \$5 00 MF \$1 00 The feasibility of the new At alloys X7038 and 7039 for use in space and missile programs was investigated by (1) determination of mechanical properties at room temperature and -320° F of flat-position TIG weldments of alloys X7038-T6 X7038-T7, and 7039-T6. (2) stress corrosion tests of X7038-T6, X7038-T7, and 7039-T6 parent plate and weldments, and (3) weldability of the alloys by the MIG process in the flat position Results showed that the best overall performance with weldments of these alloys was obtained with filler X5039 containing about 4% Mg and 3% Zn Weldments of 7039-T6 made with this filler gave high tensile strength and excellent ductility, and were readily made under restraint with a minimum of weld cracking. The excellent properties of 7039 weldments were obtained with specimens containing nominal amounts of twinning, porosity, dross, incomplete penetration, and other defects. Detailed descriptions and data of the various tests and mechanical properties of the different alloys are included.

N65-22046# Naval Air Engineering Center, Philadelphia, Pa Aeronautical Materials Lab

VAPOR LUBRICATION OF HIGH SPEED BALL BEARINGS Leon Stallings 4 Jan. 1965 8 p (NAEC-AML-2107; AD-457104)

The lubricant properties of reaction products resulting from the interaction of vapors generated by volatile compounds and the constituents of the metal bearing surfaces were investigated. Vapor lubrication phenomena studied were decomposition of vapor at elevated temperature yielding a liquid fraction, formation of solids produced by chemical reaction between metal and vapor, and physical adsorption of vapors on metal surfaces. Volatile compounds investigated were amine dithiocarbamates, chlorinated aromatic amines, and bromocamphor Results of additional studies on the effect of carrier gas properties on vapor lubrication are also presented. Tables are included which show the lubricant performance properties of 14 different organic compounds using nitrogen carrier gas. Chromium alloy bearings having carbon steel retainer components served as test specimens.

N65-22059# Aeronautical Research Labs., Melbourne (Australia) Dept of Supply

CORROSION OF ALUMINIUM

K. F Lorking Sep. 1964 24 p refs (ARL/MET-54)

As part of the proposed system for analysis of mechanisms of corrosion processes on aluminium, a technique for correlation of oxide film thickness with electrode potential on corroding aluminium is described. Results of oxide film thickness measurements are also used to give a more complete analysis of the mechanism of the effect of the chloride ion on corrosions of aluminium. Methods based on film thickness measurements and electrochemical measurements are proposed for the rapid assessment of the corrosive power of solutions towards aluminium. A series of standard measurements of corrosion weight losses, oxide film thickness determination and electrochemical measurements on pure aluminium have been obtained

N65-22093# Menasco Mfg. Co., Burbank, Calif. EVALUATION OF LOW EMBRITTLEMENT TITANIUM CADMIUM (DELTA) PLATING PROCESS AS PERFORMED BY THE MENASCO, BURBANK FACILITY

B. Gahnberg and J. Shelby 11 Jun 1964 20 p (A600)

Notched sustained load specimens of 4330M steel, heat treated to the 220 to 240-Ksi range and plated with titanium cadmium plate, withstood sustained load at a stress equal to 75% of the notched tensile strength for periods up to 700 hours, without failure. Notched 4340 steel specimens, heat treated to the 260 to 280-Ksi range and plated with titanium cadmium plate, withstood 700 hours of load without failure Titanium cadmium plated salt-spray panels withstood more than 2600 hours of intermittent salt-spray exposure without any trace of corrosion products. Titanium cadmium (Delta) plating process shows no embrittling characteristics when applied to both 4330M at the 220 to 240-Ksi strength level. and 4340 at the 260 to 280-Ksi ultimate strength range. The corrosion resistance, as measured by salt-spray exposure, far exceeds that of any other conventional protective surface finish Author

N65-22144# Naval Research Lab., Washington, D. C. Chem-

SYNTHESIS, CHARACTERIZATION, AND ESTER-ESTER INTERCHANGE STUDY OF THE MIXED ESTER 2-ETHYL-HEXYL BENZYL AZELATE

Jacques G. O'Rear and Paul J. Sniegoski 8 Jan. 1965 12 p refs

(NRL-6149, AD-612092) CFSTI: \$0.50

New components are in demand for low-temperature instrument oils. To meet this demand two new esters, bis (3.4-dichlorobenzyl)beta-methyladipate and 2-ethylhexyl benzyl azelate, were synthesized and although both esters possessed the required high surface tensions (43.6 and 33.4 dynes/cm at 20°C, respectively); only the azelate had a suitable viscosity for low-temperature application. This mixed ester, 2-ethylhexyl benzyl azelate, was prepared by the esterification of the half ester. 2-ethylhexyl hydrogen azelate, with a large excess of benzyl alcohol. A study was made of the disproportionation of 2-ethylhexyl benzyl azelate into two symmetrical diesters: 2(2-ethylhexyl benzyl azelate) reversibly yields dibenzyl azelate + bis(2-ethylhexyl)azelate. The reaction rates for this esterester interchange were found to be too small to restrict the desired application of the mixed ester at temperatures below

N65-22149# Naval Research Lab., Washington, D. C. Chemistry Div

STABILIZATION OF SILICONE LUBRICATING FLUIDS AT 300° TO 400°C BY SOLUBLE CERIUM COMPLEXES H. R. Baker, J. G. O'Rear, P. J. Sniegoski, and R. E. Kagarise 8 Jan. 1965 23 p refs (NRL-6156; AD-612064)

The Si-H bond was shown to be involved in the formation of a stable cerium-silicone inhibitor system and this discovery was applied to the development of improved methods for stabilizing silicones. The inhibitory process uses initial reactions between hydrous cerous acetylacetonate and a polymethylhydrogen silicone. These reactions proceed and terminate in aerated refluxing benzene to provide a siliconesoluble adduct. The chemistry of the hydride group was followed quantitatively and some features of structure are postulated for the adduct. The simplified inhibitory process is a two-step reaction. Stabilization is completed by aerating a mixture of the cerium adduct and a silicone oil for one hour at 270° to 280° C. There is an optimum concentration of cerium adduct for the stabilization of lightly phenylated dimethyl silicones. The same concentration achieves 100 to 500 percent improvements in the 300° C stability of dimethyl silicones and their chlorophenyl- and phenyl-substituted types: with more highly phenyl-substituted silicones, stabilization temperatures are raised to 400°C and relative improvement factors roughly parallel those observed at 300° C. Author

N65-22166* # SKF Industries, Inc., King of Prussia, Pa. Re-

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND HIGH TEMPERATURES Report No. 10, Jan. 1-Mar. 31, 1965

C. J. Wachendorfer [1965] 58 p refs

(Contract NASw-492)

(NASA-CR-62341; AL-65TO31) CFSTI: HC \$3.00/MF \$0.50

Longer bearing life was obtained with polyphenyl ether type lubricants than in previous tests. A modified polyphenyl ether having a -20° F pour point operated in one test at 500° F at 42 800 rpm and 365-lbs load for 58.8 million revolutions without surface stress. Also, a six-ring fluid operated in another test at 598° F for 50.3 million revolutions with only slight glazing of the inner-ring ball track. Two of four tests with the five-ring lubricant in an air environment survived for appreciable lives, which may reflect an improved boundary lubricating characteristic of this oxidation-resistant fluid. A single test was performed at 580 lb load with M-1 bearings and an ester-base lubricant at 500°F to establish the limiting load for this bearing-lubricant combination. One bearing smeared after 115.3 million revolutions at 500° F, while the other bearing operated for the same life at 484° F without surface stress. Results of endurance testing at 42 800 rpm, completed on three groups of statistically similar 7205 bearings, are also reported. FFR

N65-22212# RAND Corp., Santa Monica, Calif. CORROSION AS A PROBLEM TO THE AIR FORCE Robert C. Drebelbis (USAF) Mar. 1965 7 p. Presented at the

AF Logistics Command Commanders' Conf., San Antonio, 12 Mar. 1965

(P-3080; AD-611877)

The following recommendations are made to the Air Force to insure an effective corrosion control program: (1) recognition of corrosion as a major problem at "top side" in DOD and USAF, (2) trained engineers to insure compliance with existing design, procurement, production, modification and maintenance directives at all levels, (3) eliminate the small economics in procurement and production that later develop into costly maintenance and modification requirements, (4) provide for and enforce proper cleaning and protection of weapon systems and ground support equipment in the field.

N65-22375# ARO Inc. Arnold Air Force Station, Tenn. TESTS OF DRY COMPOSITE LUBRICATED GEARS FOR USE IN AN AEROSPACE ENVIRONMENTAL CHAMBER T. L. Ridings - Arnold Eng. Develop. Center, Mar. 1965 - 55 p

(Contract AF 40(600)-1000) (AEDC-TR-65-45; AD-460502)

The results are reported of a test program set up to determine the operational characteristics of dry composite lubricated gears. Two diametral pitch sizes, 7 and 12, and two gear materials, nitralloy steel and nodular iron, were tested. Three dry composite lubricants and one low vapor pressure grease were tested. All three dry composite lubricants provided adequate lubrication for periods of up to 300 hr at 100 rpm with very little wear of either load gears or lubricating idlers. The MoS2fortified, grease-lubricated gears failed after 40 hr of opera-Author tion

N65-22385# Naval Ordnance Test Station, China Lake, Calif THE EFFECT OF ADDITIVES ON FLUID FRICTION J W Hoyt and A G Fabula Dec 1964 34 p refs

(NAVWEPS-8636, NOTS-TP-3670, AD-612056)

A brief review is given of the literature on turbulent flow of high-polymer solutions. Laboratory experiments using rotating disks and turbulent pipe flow have led to generalizations as to characteristics of friction-reducing high polymers Linear, high-molecular-weight, soluble polymers are shown to be most effective. The maximum drag reduction achievable by polymer addition appears to be a function of the Reynolds number of the flow

N65-22403# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

LUBRICATION FOR THE HOT ROLLING OF STEEL PIPE P. I. Chuyko, M. S. Goncharevskiy, and Ye. I. Tsyganck 18 Mar. 1965 4 p. Transl. into ENGLISH from Russian Patent no. 161857 (Appl. no. 834359/23-4), 3 May 1963

(FTD-TT-64-1086/1; AD-613159)

A lubricant for the hot rolling of steel pipe consisting of an aqueous solution of graphite and Chile saltpeter with a calcium hydroxide additive for improving the quality and eliminating manual operation is described. The composition of the proposed lubricant and procedures used in its preparation are discussed. The lubricant can be used on pipes ranging in temperature between 300° to 500° C and can be applied by using S.C.W a crane to dip batches

N65-22421# General Dynamics/Fort Worth, Tex. Nuclear Aerospace Research Facility

EFFECTS OF REACTOR RADIATION ON FIVE HIGH-TEM-PERATURE SOLID-FILM LUBRICANTS

R. H. Mc Daniel Kirtland AFB, N. Mex., AF Weapons Lab., Feb. 1965 128 p. refs.

(Contract AF 29(601)-6213)

(FZK-212; WL-TR-64-158; AD-613561)

Nuclear reactor irradiation and laboratory testing were performed on five high-temperature solid-film lubricants. The specimens were exposed to an average gamma dose of 2.2 \times 10¹¹ ergs/gm(C) and associated neutrons of 5.2 \times 10¹⁶ n/cm² (E > 2.9 MeV). Several test temperatures were investigated for each lubricant. Weibull plots and a ranking method were employed for data analysis. Reactor radiation had no significant effect on the wear life of the PbS + MoS2 + B2O3 or the CaF₂ lubricants. However, detectable decreases in wear life were noted at 80°F for Dynalube and at 900°F for Almasol SFD-810. The wear life of MoS₂ + graphite + sodium silicate suffered a decrease at 80° F but improved at 600° and Author 1200° F

N65-22440* # Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METHOD OF OBTAINING MULTIFUNCTIONAL ADDITIVES TO LUBRICATING OILS

A. I. Kartashevskiy and E. S. Tetel'baum 18 Mar. 1965 51 p. Transl. into ENGLISH from Russian Patent no. 160251 (Appl no. 811718/23-4), 2 Jan. 1963 1 p (FTD-TT-64-1087/1; AD-613175)

The object of the invention is a method of obtaining multifunctional additives for lubricating oils. Products of the oxidation of paraffine were treated with pentasulfide of phosphorus with subsequent neutralization of the product obtained in the presence of alkylphenol compounds

N65-22441# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div

SOLID MOLYBDENUM DISULFIDE LUBRICANT

Ye. I. Berniker 18 Mar 1965 6 p. Transl into ENGLISH from Mashinostr (Kiev), no. 2, 1964 p 25 (FTD-TT-64-1148/1, AD-613178)

The use of solid molybdenum disulfide (MoS₂) as a lubricant for increasing the staying power and capacity of cutting tools as gear wheel cutters, and for the frictional parts of machines such as press fits is reported. Solid MoS2 can be applied by spraying under pressure, smearing, or in the form of pressed pencils. Solid MoS2 can be used in a vacuum, or at temperatures from 70° to 380°C; it is not a conductor of electricity, and does not collect dust. The use of the solid lubricant for bearings showed the possibility of using these lubricants for improving conditions of machining metals by cutting and pressure. The resistance of gear wheel cutters increased from 50% to 100% and the percentage of cutters required for finishing off unevenness was lowered from 50% to 5%. Lubrication of operating files with a colloid solution of MoS₂ in alcohol increased the production of files by 50% S.C.W. to 66%

N65-22484# Aberdeen Proving Ground, Md. Army Coating and Chemical Lab. STORAGE STABILITY OF BRAKE FLUIDS Final Report C. B. Jordan 23 Feb. 1965 10 p refs (CCL-176; AD-458510)

The stability of corrosion inhibiting systems found in brake fluids after extended storage of the fluids in steel and glass containers was investigated. Corrosion and oxidation stability tests were conducted on 22 approved fluids after 2 1/2 years storage in 5-gallon steel containers and on 8 approved fluids after 5 years storage in 1-gallon glass containers. In all tests conducted there was evidence of inhibitor instability or depletion. Sixteen of the 22 fluids stored in cans and 5 of the 8 fluids stored in glass failed to meet minimum Author requirements of specification.

N65-22556*# IIT Research Inst., Chicago, III. Mechanical Engineering Div.

FEASIBILITY STUDY OF TECHNIQUES TO PROTECT MECHANISMS OPERATING IN SPACE FROM MALFUNC-TION. PART I: SURVEY AND ANALYSIS Final Report, 28 Jun. 1963-27 Jun. 1964

W. E. Jamison 30 Nov. 1964 88 p refs (Contract NAS8-11014)

(NASA-CR-62281; K-6055, Pt. I) CFSTI: HC \$3.00/MF \$0.75 A literature survey and analysis of currently available antifriction techniques for space mechanisms were conducted to determine their operational characteristics and limitations in terms of environmental parameters. The techniques are assessed for their underlying theoretical principles and predictions are made of their performance potentials. It is concluded that significant improvements in performance of space mechanisms must be preceded by a better understanding and control of friction and wear properties of interfaces. Specific recommendations are made for research and development to accomplish this.

N65-22557*# IIT Research Inst., Chicago, III. Mechanical Engineering Div.

FEASIBILITY STUDY OF TECHNIQUES TO PROTECT MECHANISMS OPERATING IN SPACE FROM MALFUNCTION. PART II: EXPERIMENTAL RESULTS AND RECOMMENDATIONS Final Report, 8 Jun. 1963–27 Jun. 1964 W. E. Jamison Jan. 1965 50 p. refs

(Contract NAS8-11014)

(NASA-CR-62282; C-6055, Pt. II)

Studies were conducted to establish techniques for providing a composite picture of friction interface as it relates to the friction process. Techniques used were X-ray diffraction, contact potential measurements, and residual gas mass spectrometry. Parameters investigated were (1) interfacial molecular composition: (2) crystal lattice spacing; and (3) surface contact potential as affected by sliding and by adsorption of gaseous species. It was shown that techniques used contributed significantly to the understanding of the fundamental processes involved in friction, and to the development of interfaces with low friction properties. The use of ultra-high vacuums extended the time available for measurements of gas-surface interactions. Contact potential measurements provided a convenient, speedy means for characterizing the electrical state of friction surfaces and for quantitatively defining adsorption processes when used in conjunction with partial pressure measurements. Other techniques being developed for friction studies on a molecular scale are low energy electron diffraction, secondary electron emission, and field emission microscopy S.C.W.

N65-22558*# Aerojet-General Nucleonics, San Ramon, Calif. SNAP-8 MERCURY CORROSION AND MATERIALS RESEARCH, VOLUME III Topical Report, Jun. 1960—Dec. 1962 M. F. Parkman, B. E. Farwell, D. K. Whaley, and R. V. Arabian Sep. 1963–96 p. refs. /ts Rept.-2517 (Contract NAS5-417)

(NASA-CR-62349, AN-TM-192) CFSTI: HC \$3.00/MF \$0.75 Mercury corrosion of Haynes Alloy No. 25, Type 405 stainless steel. AM 350, 9Cr-1Mo and Cb-1Zr thermal convection capsules was investigated between 1000 and 10000 hours at 1025° F and 1100° F and between 500 and 2000 hours at 1175° and 1250° F. Isothermal capsules of Haynes 25 and Type 405 stainless steel were operated for 5000 and 1000 hours. Thermal convection capsules were heated at the bottom and cooled at the top to create a thermal gradient of 85° to 150° F. Penetration of the bottom half of the Haynes 25 thermal convection capsules increased with time and temperature up to $2\ 1/2$ mil maximum at 1175° F. Tensile specimens machined from the Haynes 25 capsules after test were pulled and indicated that the material age hardened after exposure at 1175° and 1250° F. Mass transfer deposits, much smaller than in Haynes 25 capsules, occurred along the top half of the Type 405 stainless steel capsules, increasing in amount with time and tempera-Author

N65-22641* # General Dynamics/Astronautics, San Diego, Calif. Materials Research Group

INVESTIGATION AND ANALYSIS OF THE ELECTRO-POLISHING PROCESS FOR SATURN DUCTING Final Report, 15 Mar. –31 Dec. 1962

E. W. Gross 31 Jan. 1963 82 p refs (Contract NAS8-818)

(NASA-CR-57864; AE63-0013) CFSTI: HC \$3.00/MF \$0.75

Type 321 and Type 302 stainless steels and certain highnickel alloys were electropolished in a series of formulated and vendor baths. After electropolishing, samples were subjected to investigation and analyses including salt spray, salt atmosphere, and seacoast environment corrosion tests, profilometer, and weight-loss measurement tests. The immersion and impingement methods of electropolishing were evaluated for use on propellant ducting and flexible metal hoses and sections of bellows. Electropolishing greatly increases the resistance of stainless steels to corrosion. Nine types of organic coatings were evaluated for protection of propellant ducting at cryogenic temperatures. Air-drying epoxy and acrylic formulations were found satisfactory for large assemblies that cannot be baked, and a heat curing modified silicone resin was found best for small assemblies or parts that can be baked. The impingement method of electropolishing, whereby large parts can be polished, was proven successful. Author

N65-22774# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div. EFFECT OF ADDITIVES ON THE ANTIWEAR PROPERTIES OF FUELS

G. I. Kichkin, I. V. Rozhkov et al. 11 Feb. 1965 15 p. refs Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow), no. 6, 1963 p.60–65 (FTD-TT-64-937/1+2; AD-611531)

Of the investigated jet fuels the best antiwear properties are had by the fuel R-1; the worst by the fuel T-2. With the rise in the temperature within the limits of 20° to 150° C the antiwear properties of the fuel deteriorate considerably. With the addition to the fuel in small concentration (0.01% by weight) of antiwear substances developed for oils the antiwear properties of the fuel are improved almost to the same level as with the addition to the fuel of antioxidants and stabilizer–dispersants. The adding to fuels for jet engines of some types of surface-active substances—phenols, alkylphenols, phenylene-diamines—makes it possible at the same time to improve their stability during storage and improve their antiwear properties. TAB

N65-22886# Air Force Systems Command, Wright-Patterson AFB. Ohio. Foreign Technology Div. EFFECT OF LIQUID SODIUM ON ENDURING STRENGTH OF STRUCTURAL MATERIALS

G. P. Dykova and V. I. Nikitin 15 Feb. 1965 12 p refs Transl. into ENGLISH from Zhidkiye Metally Sb. Statey (USSR), 1963 p 292-299

(FTD-TT-64-1210/1; AD-611424)

The durable strength in liquid sodium and in air of El-851 steel at 700°, El-869 alloy at 750° and El-437 B alloy at 800° was determined. The absence of liquid metal effect on the durable strength and creep of El-851 steel and El-869 alloy was shown. The El-437 B alloy revealed a reduction in durable strength and plasticity and an increase in rate of creep at all periods in a liquid metal medium. It was established that the dependence of time prior to destruction and rate of creep upon the stress applied to El-437 B alloy in liquid metal is gradual, just as it is in air. It was shown, that the effect of liquid sodium on durable strength and creep of El-437 B alloy at 800° is determined by the adsorption properties of the medium, the detected adsorption effect of liquid metal confirmed the mechanism of overcreeping of dislocations under creep conditions.

N65-22928# Naval Air Station, Pensacola, Fla. Materials Engineering Div.

EFFECTIVENESS OF THE SPECTROMETRIC OIL ANALYSIS METHOD FOR MONITORING AIRCRAFT MECHANISMS B. B. Bond 26 Jun. 1964 10 p ref

(OA-20-64; AD-609746)

An investigation of the potentialities of the spectrometric oil analysis method for monitoring aircraft engines and other aircraft mechanisms is reported. The reliability of the method for detecting abnormal wear in oil lubricated aircraft mechanisms, such as metal parts in frictional contact, is discussed. The applicability of the oil analysis technique to turbojet engines was also evaluated. Results of a study on seven discrepant jet engines showed these facts: (1) Oil analysis provided preindications of failure in six of the seven engines. Other evidence of failure was found in only two of the seven. (2) Oil analysis provided warnings in time to avert inflight failures in four of the engines. Delay in transit time of oil samples for two of the remaining three engines prevented a more thorough study. (3) Two of the three inflight failures resulted in total loss of the aircraft. Oil analysis is credited with the detection of two of the discrepant engines that did not fail in flight. SCW

N65-22936# Naval Air Station, Pensacola, Fla. Materials Engineering Div.

INVESTIGATION OF THE FEASIBILITY OF AN AIRCRAFT-OIL ANALYSIS SYSTEM FOR OPERATIONAL USE IN THE FIELD, PHASE II

B. B. Bond 14 Sep. 1964 8 p refs Review of TRECOM TR-63-55

(OA-37-64; TRECOM-TR-63-55; AD-609743)

A critique is presented on a previous statistical study to evaluate oil analysis for wear metals as a method for detecting incipient failure in aircraft engines. It was shown that the sole basis for the statistical study was the segregation of the engines into three groups. Therefore, the validity of the study must depend upon the ability to classify each engine as belonging in one of the three groups. As the basic information that would make such classifications possible was not available, the conclusions of the statistical study are not valid. Therefore, another program for evaluating the oil analysis program is discussed for reciprocating engines. Statistical data are presented for a 4-year period from October 1, 1959 to October 1, 1963, and for the 1-year period from October 1, 1962 to October 1, 1963.

N65-23103# Argonne National Lab., III. Metallurgy Div.
CORROSION OF EXPERIMENTAL THORIUM-BASE ALLOYS
James Y. N. Wang Feb. 1965 13 p refs
(Contract W-31-109-ENG-38)

(ANL-7006) CFSTI: \$1.00

Some 50 high-purity, binary and ternary, thorium-base alloys were prepared and corrosion tested in distilled water between 120° and 260° C. Data indicated that the addition of titanium improved corrosion life of Th-1 wt% C and Th-0.5 wt% C binary alloys at 260° C. Additions of aluminum from 3 to 7 wt% appeared beneficial. At 200° C, a Th-10 wt% Y alloy exhibited a low corrosion rate during a short period of exposure. The corrosion resistance of all thorium-uranium alloys in increments of 5 wt% uranium, to the maximum 40 wt% uranium, was poor. The addition of 4 wt% zirconium to Th-15 wt% U caused an improvement at 200° C. Author

N65-23264# International Lead Zinc Research Organization.
New York.

ILZRO RESEARCH DIGEST NO. 15, OCTOBER 1, 1964 TO APRIL 1, 1965. PART IV: LEAD METALLURGY 1 Apr. 1965 42 p refs

The articles on lead technology reviewed include the following: asbestos pads for vibration attenuation, sound attenuation, plumbing, continuous sheet lead casting, roofing, acoustical use in European building partitions, flame spraying of low-temperature porcelain enamels, concrete coatings, conversion of particulate lead to wrought forms, composite

cable sheathing, metal fiber reinforcement, adhesive joining of lead, plating on steel, power metallurgy, lead acid batteries, joining of particulate lead products, corrosion, fatigue cracking, properties of molten lead and lead alloys, fatigue stress and surface reactions of lead, dynamic properties of lead and lead alloys, and surface reactions of lead. Also, completed programs and articles, and presentations by the staff and contractors are included.

N65-23434 Library of Congress, Washington, D. C. Aerospace Technology Div.

INTENSIFICATION OF COMBUSTION PROCESSES

Paul Vantoch In its Foreign Sci. Bull., Vol. 1, No. 5 May 1965 p 12-20 refs (See N65-23432 13-34)

Soviet studies related to the development of high-performance rocket and ramjet combustors are reviewed, and the following approaches to intensification of combustion processes are discussed, intensification of homogeneous combustion by specially designed flame holders and ignition sources; intensification of heterogeneous combustion by flash vaporization of the boiling fuel or oxidizer; and intensification of diffusion flames by interaction with transverse air jets. The theoretical concept of combustion in the predetonation regime is also discussed. Several studies dealing with the minimization of the combustion zone length in ramjets, particularly at high altitudes, are reviewed, and a comparatively recent source is cited in which for the first time the development of two fuel additives is claimed which considerably improved burning characteristics at low pressures. Author

N65-23708*# Du Pont de Nemours (E. I.) and Co., Aiken, S. C. Sayannah Riyer Lab.

STRESS CORROSION CRACKING OF TITANIUM ALLOYS Progress Report, Apr. 1-Jun. 30, 1964

Sheldon P. Rideout, Mc Intyre R. Louthan, Jr., and Clifford L Selby Aug. 1964, 17 p. refs

(NASA Order R-124; Contract AT(07-2)-1)

(NASA-CR-60194; DP(NASA)-917) CFSTI. HC \$1.00/MF

Results of research work to determine the mechanism of hot-salt stress corrosion cracking of titanium alloys are given. Exploratory tests were started with radiotracer 36CI to determine the role of chloride in the corrosion cracking phenomenon. Direct observations were made of salt reaction with Ti-8AI-1Mo-1V alloy at various temperatures. Electron microscopy studies were started to determine the relationship between alloy structure and crack morphology. Preliminary results indicate that a small amount of HCI gas is given off during dehydration of sea salt heated to 650°F. The HCI gas and/or resultant hydroxides may be involved in initiation of stress corrosion cracking. Crack examinations revealed the following. cracks propagate along alpha phase grain boundaries and alpha-beta phase interfaces; they appear to propagate by chemical attack with no evidence of mechanical rupture. The beta phase is cathodic to the alpha matrix and is contained unattacked within corrosion products in stress corrosion cracks. Author

N65-23819*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

APPARATUS FOR STUDYING BALL SPINNING FRICTION Steven T. Miller, Richard J. Parker, and Erwin V Zaretsky Washington, NASA, May 1965 13 p refs

(NASA-TN-D-2796) CFSTI HC \$1.00/MF \$0.50

An apparatus was designed to study one aspect of spinning friction based on interfacial slip over the entire ball-race contact area. It is capable of measuring spinning moments of less than 0.01 inch-pound at maximum Hertz contact stresses ◆ to over 400 000 psi, speeds to 3500 rpm, and under varying. contact configurations and conditions. From the torque measurement, a coefficient of spinning friction can be calculated. The apparatus comprises a drive assembly, a deadweight load assembly, a spherical upper test specimen, a cylindrically grooved lower test specimen of varying conformity, a lower test specimen housing assembly incorporating a hydrostatic air-bearing assembly, and a torque-measuring system. In operation, the upper test specimen is loaded against the lower test specimen through the drive shaft assembly by the deadweight load assembly. As the drive assembly is rotated, the upper test specimen rotates against the stationary lower test specimen actuating the torque-measuring system. Preliminary tests showed that the coefficient of spinning friction decreased with increasing maximum Hertz stress to an intermediate stress level Author

N65-23867# Societe d'Etudes, de Recherches et d'Applications pour l'Industrie, Brussels (Belgium).

INFLUENCE OF SURFACE TREATMENT ON THE CORROSION OF CARBON STEEL AND STAINLESS STEEL IN HIGH TEMPERATURE WATER AND STEAM. PART I: RESULTS OF AUTOCLAVE TESTS [INFLUENCE DU TRAITEMENT DE SURFACE SUR LA CORROSION D'ACTERS AU CARBONE ET INOXYDABLE DANS L'EAU ET LA VAPEUR A HAUTE TEMPERATURE. PARTIE I: RESULTATS DES ESSAIS EN AUTOCLAVE]

M. Warzee, J. Hennaut, M. Maurice, J. Waty, and Ph. Berge Brussels, EURATOM, 1964–37 p. refs. In FRENCH; ENGLISH summary

(Contract EURATOM-089-62-7 RDB)

(EURAEC-1038, EUR-1735.f) Available from Belg. Am. Bank and Trust Co., New York, Account No. 22.186: 40 Belg. Fr.

Austenitic 18-10 stainless steel with 0.04% carbon (AISI 304) and a low alloy boiler steel grade were basic materials. Four distinctly different states compared were mill-machined. ground, machine-polished up to grade 600, and electrolytically polished in an acetoperchloric solution. The influence of the surface state was investigated by static autoclave tests' in water at 300°C and in steam at 400°C-200 kg/cm², during periods of 300, 1000 and 2000 hours. An influence, significant of the surface state, was revealed in all the examined cases. The major fact relative to this influence is its differentiated character according to the nature of the steel and the oxidation conditions. As concerns the low alloy steel, the surface state has a similar influence in water at 300°C and steam at 400°C. Electrolytic polishing allows lowering the corrosion rate by approximately a factor of two as compared to ground and machine polished states. Tests on an austenitic 18-10 stainless steel provide quite different conclusions. If the fact that electrolytic polishing leads to an important improvement in water at 300° C, it appears on the other hand that this surface treatment is baleful in steam at 400° C Author

N65-24010# Royal Aircraft Establishment, Farnborough (England).

FURTHER EXPERIMENTS ON THE ATMOSPHERIC STRESS-CORROSION OF ALUMINIUM ALLOYS

G. Meikle London, Min. of Aviation [1963] 45 p refs (RAE-MET-PHYS-96)

Further experiments on atmospheric stress corrosion were made using material from large forged blocks, and the effects of heat treatment variations studied. The aluminum-zinc-magnesium type of alloy was shown to respond to heat treatment variations when stressed in the long transverse direction but poor stress-corrosion results were obtained generally in the short transverse direction except with heat treatments that gave relatively poor tensile properties. The most satisfactory treatment to give good resistance to stress corrosion is one involving quenching from the solution temperature into

molten salt at 180° C. The short transverse creep properties determined at room temperature were found to be worse than those in the long transverse direction. The aluminum-copper type of alloy was found to have good stress-corrosion properties, even in the short transverse direction.

N65-24158 Joint Publications Research Service, Washington, D. C.

ON THE PROBLEM OF EVALUATING THE RELIABILITY OF MEASUREMENT

V. P. Kontorovich *In its* Izv. VUZov: Instr. Bldg., Vol. VIII, No. 1, 1965 17 May 1965 p 48-52 refs (See N65-24150 13-09) CFSTI: \$6.00

The aging and wearing out of elements of a measuring device lead to additional errors and, consequently, to a change in the given error of the results of measurements. The magnitude of the increase in the latter may be selected as the quantitative characteristics of reliability. The principal connection between the given error because of wear and aging and the change in the quantity of information arriving from the measuring device is shown.

Author

N65-24215# Rock Island Arsenal Lab., III.
CONTROL OF STRESS CORROSION Second Interim Report
R. H. Wolff 18 Jan. 1965 15 p refs
(RIA-65-152; AD-613652) CFSTI: \$0.50

This study of the control of stress corrosion cracking susceptibility of steels by application of protective coatings was designed to use abrasive blasted specimens to simulate more nearly the surfaces and conditions of a manufacturing operation. Bent beam specimens of 4130, 6150, and 18%-nickel maraging steel were prepared at yield strength levels of 204, 231, and 316 ksi, respectively, for test at 75% of yield strength. Test atmospheres were outdoor, high humidity and salt spray (5%), and cycles of these alternating between salt spray, humidity and air. Cycle tests produced more rapid failure than single environments. Abrasive blasting extended the time to failure as compared to nonblasted uncoated specimens. Coated specimens were electroplated with zinc, zinc phosphatized, or brushed with zinc-filled paint. Specimens of 4130 steel had not failed in over a year in outdoor exposure and 6 months in high humidity. Failures were noted with all the materials in cycle tests with indication of extended time to failure as a result of using zinc-filled paint.

 $\begin{tabular}{ll} \textbf{N65-24285}\# & Siemens-Schuckertwerke A. G., Erlangen (West Germany). \end{tabular}$

RESEARCH ON ZIRCONIUM HYDRIDE IN ZIRCALOY-2 AND ZrNb ALLOYS [UNTERSUCHUNGEN UBER ZIRKON-HYDRID IN ZIRCALOY-2 UND ZrNb-LEGIERUNGEN] Brussels, EURATOM, Feb. 1965 43 p in GERMAN; ENGLISH summary

(Contract EURATOM-024-61-10 RDA)

(EURAEC-1161; EUR-2013.d) Available from Belg. Am. Bank and Trust Co., N. Y., Account No. 22.186: 60 Belg. Fr.

Test bars of alloys of Zircaloy-2, ZrNb1, ZrNb2.5, ZrNb1Cu1 and ZrCu0.5Mo0.5 were prepared by vacuum melting, electron beam melting or argon melting and tested in different states: 25% cold-worked, annealed in α -phase and annealed in β -phase with slow cooling. The corrosion tests were carried out in water vapor at 500° C, 1 atm and in water under pressure at 350° C, 168 atm. Measurements were carried out to determine the corrosion speed and the relative and absolute hydrogen pickup in these alloys. A comparative micrographic study was conducted on the oxide film and the structure of the hydrides formed both on the samples corroded in water and steam and on those artificially charged with hydrogen up to contents of around 2000 ppm. The influence of the hydrogen content on the mechanical properties was determined in the

case of the artificially charged samples. The results confirm the satisfactory behavior of Zircaloy-2 in water at 350°C and the superiority of ZrNb alloys and particularly ZrNb2.5 and ZrCu0.5Mo0.5 in steam at 500°C.

N65-24415# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div

RESULTS OF AZNII NP OPERATION IN THE FIELD OF SYNTHESIZING, STUDYING AND APPLICATION OF AD-MIXTURES TO LUBRICATING OILS

A M Kuliyev 28 Jan 1965 13 p Transl into ENGLISH from Tr Tret'tey Vsesoyuznoy Konf. po Treniyu i Iznosu V Mashinakh (USSR), v 3, 1960 p 366–373

(FTD-TT-64-860/1+2, AD-610651)

An analysis of research focuses on the technological development of additives for improving the quality of lubricating oils is presented. Data are included on the synthesis of depressant additives for reducing the freezing point of oils, the synthesis of multifunctional additives including sulfonate, alkylphenyl, combined, and complex action additives, the synthesis of additives which increase the strength of oily films and improve their lubricating qualities, the synthesis of stabilizing additives, and the susceptibility of oils and individual groups of hydrocarbons to various additives.

N65-24445# Battelle Memorial Inst., Columbus, Ohio. Defense Metals Information Center

STRESS-CORROSION CRACKING OF ALUMINUM ALLOYS
James D. Jackson and Walter K. Boyd. 15 Feb. 1965. 19 p. refs
(Contract AF 33(615)-1121)
(DMIC-MEMO-202; AD-613957)

Aluminum alloys most often associated with stress-corrosion cracking in actual service are 2014, 2024, 2219, 7075. 7079, and 7178 alloys, and cast alloys of Ternalloy 7, 40E. 195, and 220 compositions. The tensile stresses necessary to initiate stress-corrosion cracking may be either applied (as through static loads, press fits, or fasteners), or residual (such as from heat treatment or machining). The prevention of failure requires a basic knowledge of the phenomenon and of the relative resistance of the various alloys, and of the effect of grain structure on cracking susceptibility. Application of this knowledge and use of good practices in heat treatment. working, forming, machining, and design can reduce the incidence of stress corrosion. The application of compressive stresses such as by shot peening or the use of coatings offers an effective means of minimizing or at least delaying stresscorrosion cracking. Laboratory investigations of stress-corrosion cracking often involve C-ring or tensile specimens exposed by alternate immersion in 3 1/2% NaCl solution. Author

N65-24640# Pisa Univ. (Italy). Inst. of Applied Mechanics and Aeronautics

ON THE ELASTIC SLIPPING IN THE ROLLING OF SHAPES OF VARIOUS MATERIALS [SULLO SLITTAMENTO ELASTICO NEL ROTOLAMENTO DI CORPI DI MATERIALI DIVERSI]

Marino Marini 1964 19 p refs. In ITALIAN /ts 21st Ser., No. 1044

Elastic slipping and friction couplings between rollers or drums made of rubber and steel, perspex and steel, and aluminum and steel are examined.

Transl. by P.F.E.

N65-24709# Argonne National Lab . III Chemical Engineering Div

ENGINEERING DEVELOPMENT OF FLUID-BED FLUORIDE VOLATILITY PROCESSES. PART 7: THE CORROSION OF NICKEL IN PROCESS ENVIRONMENTS

A. A. Chilenskas and G. E. Gunderson Mar. 1965 18 p refs * (Contract W-31-109-ENG-38) (ANI-6979) CFSTI \$1.00

Corrosion studies in support of the fluoride volatility program are in progress using small-scale laboratory tests conducted in tube furnaces, and inplant exposure tests. Results of both types of tests show the following. (1) Under conditions of low gas flow rates, where protective films easily form, corrosion rate of nickel by fluorine alternated with hydrogen chloride and fluorine alternated with oxygen is low (1-4 mils/yr) and in agreement with that of nickel for fluorine alone (2) Where films form less readily or can be removed upon being formed, corrosion rate is significantly higher than under static conditions, but less than would occur if no protective film formed. Corrosion rate of nickel is shown to increase due to the presence of a fluidized bed. (3) Under static conditions for long-term exposure, welds made with nickel-200 metal filler were shown superior to those made with nickel-61 filler metal and corrosion rates of welds made with nickel-200 range from 1 to 5 mils/yr (comparing closely with corrosion rate for nickel plate, while welds made with nickel 61 filler metal ranged from 67 to 1315 mils/yr. Some evidence indicates a small amount of titanium in nickel filler metal-61 causes high corrosion rates (4) Specimens examined metallographically exhibited little or no evidence of intergranular attack. Several specimens from inplant tests showed a few areas where apparent intergranular attack of 1 to 2 mils occurred (5) Thermal cycling of a specimen exposed to process environments had little or no effect upon corrosion rate, neither did exposure of specimen to air after each process cycle

N65-25409* # Oak Ridge National Lab , Tenn

SNAP-8 CORROSION PROGRÀM Quarterly Progress Report, Period Ending 28 Feb. 1965

H. W. Savage, E. L. Compere, R. E. Mac Pherson, W. R. Huntley, and A. Taboada. Jun. 1965. 44 p. refs.

Hydrogen solubilities in NaK-78 were determined for a temperature range of 572° to 1300°F as a function of hydrogen pressure from a few millimeters to 1 atm. and Sievert's law was found to hold for this system. Evidence of solid hydride precipitation was observed below 752° F. For estimated hydrogen pressures in the SNAP-8 primary coolant, these data indicate a hydrogen concentration in the NaK of 1 ppm and precipitations of solid hydrides at about 300° F. Also, the ratio of permeability of deuterium and hydrogen through type 316 stainless steel was found to be 0.68 at 1100° F and 0.74 at 1300° F. Further, studies of the phase equilibria of the Na-K-Li-H system at 1100° F indicate that in all cases the addition of lithium greatly lowers the partial pressure of the hydrogen at equivalent hydrogen concentrations. This is apparently due to the hydrogen combining with the alkali metals in proportion to their concentration and affinity for hydrogen. The limited solubility of lithium hydride results in precipitation, which inhibits the pressure changes until available lithium is ex-EEB hausted

N65-25472# Battelle-Northwest, Richland, Wash Pacific Northwest Lab.

STATIC TESTS OF CORROSION INHIBITORS FOR ALUMINUM AND CARBON STEEL

R. B. Richman Feb. 1965 28 p refs (Contract AT(45-1)-1830) (BNWL-29) CFSTI \$2.00

Uniform corrosion losses and pitting tendencies were measured for carbon steel and aluminum samples exposed for as long as 9 1/2 months at ambient temperature in static, non-refreshed solutions of 38 different inhibitor mixtures. Results

from these tests indicate that two inhibitors, (1) sodium hexameta-phosphate, and (2) sodium nitrite plus sodium silicate, are possible candidates to replace sodium dichromate in dynamic or static systems that contain both carbon steel and aluminum. Three additional inhibitors reduced the uniform corrosion of carbon steel. Limited measurements of inhibitor depletion were obtained, but the effects of this depletion on corrosion were not defined. Candidate mixtures should be tested in dynamic systems at temperatures typical of Hanford reactor operation, to confirm the indications of satisfactory corrosion inhibition shown by these static tests.

N65-25517# Oak Ridge National Lab., Tenn. TYPE 316 STAINLESS STEEL, INCONEL, AND HAYNES ALLOY NO. 25 NATURAL-CIRCULATION BOILING-POTASSIUM CORROSION TEST LOOPS

D. H. Jansen and E. E. Hoffman Jun. 1965 102 p refs (Contract W-7405-ENG-26) (ORNL-3790) CFSTI: \$4.00

An investigation was undertaken to determine the compatibility of conventional nickel- iron-, and cobalt-base hightemperature alloys with boiling potassium. The tests were designed to obtain quantitative information on the dissolution of the container alloys by condensing potassium and the subsequent deposition of solute in a subcooled liquid region of the test device. Studies were conducted in natural-circulation loops, two of which were fabricated from type 316 stainless steel, two from Haynes alloy No. 25, and one from Inconel. Each of the alloys was operated at a maximum boiler-condenser temperature of 870° C for 1500 to 3000 hr, and the Haynes alloy No. 25 was also tested for 3000 hr at 980°C. The potassium condensing rates at the two temperatures were 170 to 180 and 300 g/min. respectively. At 870°C, type 316 stainless steel and Haynes alloy No. 25 exhibited comparable resistance to attack by boiling potassium, while Inconel showed greater deterioration. Carbon was transferred from the condensing region to the subcooled liquid region in all the loop tests. Attendant with this, the elongation of the material decreased and the tensile strength increased. No evidence of preferential leaching of major metallic constituents of these alloys was detected by electron microprobe analysis of the condenser surfaces. However, limited mass transfer from the hot region to the cold region was noted

N65-25522# Martin Co., Baltimore, Md. Nuclear Div. SNAP 19 PROGRAM. EJECT MECHANISM COLD WELD-ING EVALUATION

S. Podlaseck May 1965 12 p refs (Contract AT(30-1)-3169) (MND-3169-66)

The potential cold welding at metal contacting surfaces of the SNAP-19 eject mechanism and the use of lubrication in eliminating this problem are discussed. The prime areas of concern are the backup nut piston, assembly interface, the piston cylinder interface, the guide pin-guide pin slot interface, and the release bolt-upper spring interface. A molybdenum disulfide solid film lubricant, its application techniques, expected lifetime, and frictional characteristics in a space environment are examined. Weight losses through sublimation and dissociation are immeasurably small for the expected lifetime at temperatures below 200° F. The lubricant's behavior is more desirable and more predictable in a vacuum than under normal atmospheric conditions. A dry film coating applied to the piston assembly and upper spring assembly will eliminate all interfacial contact problems in the eject assembly. R.N.A.

N65-25889# Bureau of Mines, Pittsburgh, Pa. Explosives Research Center IGNITION CHARACTERISTICS OF FUELS AND LUBRICANTS Summary Report, 1 Jan.—31 Dec. 1964

Joseph M. Kuchta and Ralph J. Cato Mar. 1965 57 p. refs. (Contract DO-33(657)-63-376) (AFAPL-TR-65-18; AD-613050)

Hot surface ignition temperature data are presented for n-hexane, n-octane, n-decane, JP-6 jet fuel and aircraft engine oils M1L-L-7808 (0-60-18) and H-1026 in various oxygennitrogen atmospheres (2.5 to 100 volume percent oxygen) under stagnant or near-stagnant flow conditions. Minimum ignition temperatures were found to increase with decreasing oxygen concentration. In vessel ignitions, these temperatures increased with decrease in fuel contact time and with increase in surface area/volume ratio. In wire ignitions, the minimum ignition temperatures increased with decrease in wire diameter, length/diameter ratio, and initial mixture temperature. Expressions have been developed to define the ignition temperatures as a function of the above pertinent variables. Hot gas ignition temperatures of the above combustibles were also found to vary with the heat source diameter, for 1/8, 3/8 and 1/2-inch diameter jets. Furthermore, they do not differ greatly from hot surface ignition temperatures for comparable heat source diameters. The hot gas jet temperatures required to produce "hot" flames and pseudo or "cool" flames varied noticeably more than did the corresponding heat flux values. In oxidation studies with n-octane vapor air-mixtures, rates of pressure rise were found to vary as the 0.38 power of the fuel concentration (5 to 30 volume percent) and as the 1.4 power of the initial total pressure (0.6 to 13 psia) at temperatures between 428° and $536^{\circ}\,F$. The temperature dependency of the rates in these studies was similar to that obtained in the Author ignition temperature experiments

N65-26040# Bureau of Mines, Albany, Oreg. Metallurgy Research Center

STAINLESS STEEL-GADOLINIUM ALLOYS

M. Copeland, W. Barstow, C. Armantrout, and H. Kato Sep. 1964-34 p. refs

(Contract AT(11-1)-599) (BM-RI-6636)

Phase relations of gadolinium alloyed, up to 40 weightpercent (wt pct), with AISI 304-type stainless steel were established Body- and face-centered cubic iron-rich solid solution phases and several intermetallic gadolinium-containing compounds of variable composition that approximated the formulas FegGd, Ni₇Gd₂, Ni₃Gd, Fe₂Gd, NiGd, and NiGd₃ were identified. The intermetallic phases Fe₉Gd and Ni₇Gd₂ were noted to melt at about 1.080° C at about 0 to 2 wt pct gadolinium. The melting temperature of FegGd increased with increasing gadolinium content to a plateau at about 1,230° C and 30 wt pct gadolinium and the melting point of Ni₇Gd₂ decreased to a plateau at 900° C and 30 wt pct gadolinium where Ni₃Gd, NiGd, and Fe₂Gd coexist. Body-centered cubic iron solid solution was stable from 1 to 2 wt pct gadolinium to higher contents, 30 wt pct gadolinium or possibly more, and face-centered cubic iron up to 12 wt pct gadolinium below 1,200° C. The stability of these phases above 1,200° C was not resolved except for the melting points. A limited number of fabrication variables as well as mechanical and corrosion properties of alloys containing up to 5 wt pct gadolinium were studied. Equilibrating and forming operations were best conducted at about 940° to 1,080° C. Some variability in the yield and tensile strengths of alloys was noted; however, there was a continual decrease in ductility and impact resistance with increasing gadolinium contents. The resistance of gadolinium alloys to corrosion in water at 354° C was about the same as Author stainless steel.

N65-26072# Midwest Research Inst., Kansas City, Mo. FRICTION AND WEAR BEHAVIOR OF SOLID FILMS Summary Technical Report, 1 Dec. 1963–1-Dec. 1964

Paul J. Bryant Wright-Patterson AFB, Ohio, AF Mater Lab., Dec 1964-27 p. refs (Contract AF 33(657)-10122) (AFML-TR-65-5; AD-614242)

Two current phases of research and the initiation of a third phase are described below. The phases consist of: (1) a study of cleavage energies and stress-relaxation effects for graphite in air, vacuum, and pure environments of relevance to lubrication phenomena: (2) measurements of the shear strength of graphite and the physical mode of failure under shearing motion; and (3) a detailed study of friction and wear process, including wear particle size measurements, in the pure relevant environments for graphite lubrication. The first phase has shown, from both theory and experiment, an unusually high binding energy for graphite. This high energy has been identified as the real reason for graphite's failure to exhibit intrinsic lubrication. The second phase has confirmed the conclusions drawn from the first study by showing a high shear strongth for graphite. The third phase promises to give correlations between the basic properties of graphite, such as binding energy, and effects which are observed during actual frictional tests. Thus, all of the results from cleavage measurements, stress relaxation in various environments, and shear strength measurements will be correlated with the friction and wear studies to give a better understanding of lamellar solid lubrication Author

N65-26112# General Motors Corp., Milwaukee, Wis. IMU Gimbal Group

INERTIAL GUIDANCE SYSTEM, WEAPON SYSTEM 107A-2. TITAN II MISSILE GUIDANCE SET, IMU AND MGC GUIDANCE CORROSION PROOFING

Thomas C. O'Connell 3 Aug. 1964 234 p refs (Contract AF 04(694)-177) (EP64-241; AD-460981)

Nonpolar coatings that cure only by the evaporation of a solvent are softened by exposure to N2O4. This softening allows N2O4 permeation and substrate attack. Two coatings were shown to withstand exposure to N2O4 fumes for 16 hrs at both high and low humidity levels; however, high-temperature curing is required for both coatings. Several air-dry coatings were cured at low-temperatures and exhibited good compatibility with N2O4; however, these coatings softened during exposure to N2O4, and their value as a barrier coating over magnesium was lost. Also, anhydrous N2O4 fumes soften organic films and cause substrate attack much more rapidly than when moisture is present. Successful resistance of an organic coating to N2O4 is dependent upon a minimal coating thickness. In heat exchanger tests, no apparent degradation was noted in the heat exchange between the hot side and cold side after operating with dust-contaminated air. The net heat exchange increased as the test with dust-contaminated air progressed. The amount of dust introduced into the cold air inlet stream was equivalent to operating the heat exchanger for three years at a concentrations of 0.04 mg/lb EEB

N65-26208 Joint Publications Research Service, Washington, D. C.

ALL-UNION SCIENTIFIC AND TECHNICAL CONFERENCE ON PROTECTING CHEMICAL EQUIPMENT FROM CORROSION

L. M. Kamionskiy *In its* Soviet Conf. on Met. Probl. 8 Jun. 1965 p 11-19 Transl into ENGLISH from Zashchita Metal. (Moscow), v. 1, no. 2, Mar.-Apr. 1965 p 249-253 (See N65-26205 15-15) CFSTI: \$3.00

A brief summary on the development of highly corrosive resistant steels, ceramic plates, cement and concrete linings, glass heat-resistant pipes, polymeric coating materials, and protective coatings made of liquid nairits is given, and their application to improve corrosion control in chemical production lines is discussed.

G.G.

N65-26280# Oklahoma Univ. Research Inst., Norman.
BEARING AND LUBRICANT PROBLEMS Final Report,
1 Sep. 1962-31 Aug. 1963
Darrel G. Harden 3 Feb. 1964 68 p
(Contract AF 34(601)-14089)
(AD-429247)

Three general and eight specific problems are presented in the development of bearings and lubricants. The general problems include the development of a petroleum base lubricant for KC-97 and B-50 aircraft superchargers with improved viscosity-volatility and viscosity-temperature characteristics. development of improved turbosuperchargers storage preservatives, and testing of a synthetic lubricant used in a constant speed drive system. The specific problems discussed are the suitability of grade 1100 aviation oil after contamination with aviation gasoline, determination of a suitable lubricant for use in ram air turbines and for lead screws of missile attitude stands, inspection of J79/F104 Teleflex box bearings, engineering study of ballbearings P/N VI-224248, inspection of bearings from air turbine assembly P/N 202280 and 202290. investigation of pour point of refrigerator compressor oils. freezing prevention in an evaporative heat exchanger by using constant boiling mixtures, and determination of a suitable high temperature lubricant for swivel joints in the hot air bleed line of KC-97 superchargers.

N65-26290# Naval Research Lab., Washington, D. C. Chemistry Div.

REDUCTION OF POLYMERIC FRICTION BY MINOR CON-CENTRATIONS OF PARTIALLY FLUORINATED COM-POUNDS

 $R,\ C,\ Bowers,\ N.\ L.\ Jarvis,\ and\ W.\ A.\ Zisman - 1,\ Mar.\ 1965, 19 p.\ refs$

(NRL-6227; AD-614059) CFSTI: \$0.50

A new approach to the reduction of boundary friction in solid polymers has been studied. Dry frictional properties of several classes of polymeric solids have been reduced significantly by the addition of small proportions of a suitably designed surface-active compound. Appropriate fluorocarbon derivatives have been prepared and found effective in polymethyl methacrylate, polyvinyl chloride, and in several polyvinylidene chloride copolymers. These addition agents are effective both in polymer films prepared by evaporation from a solvent and in thick disks prepared from the melt. The lowenergy surfaces formed by the fluorinated additives may also be self-healing, that is, any surface-active molecule lost from the film may be replaced by the diffusion of additional material to the interface. The decrease in friction caused by the addition agent is accompanied by an increase in the equilibrium contact angle of each of several liquids on the polymer surface The small proportion of addition agent used causes only a small decrease in the hardness of the polymers. There are many promising applications of this technique to specific problems in lubrication and adhesion.

N65-26345# Bureau of Reclamation, Denver, Colo Chemical Engineering Branch

CORROSION INVESTIGATIONS, TRACY-RED BLUFF, CALIFORNIA. EHV DIRECT-CURRENT TESTS

T. E. Backstrom 15 Sep. 1964 32 p (ChE-34; AD-609766)

One important test in a series of EHV d-c transmission tests using a ground return system performed between Tracy and Red Bluff, California, was the evaluation of the effect of introduction of direct current into the ground on the corrosion of buried metalwork. Test measurements were made to determine the maximum distance from the two types of electrodes at which corrosion prevention procedures would be necessary for protecting buried metallic structures. It was concluded that

₹ests would: 1/ promote serious corrosion of buried metalwork in Area 1 (within approximately 1/2-mile radius of the electrode) if a ground mat electrode were used and mild corrosion if a deep-well electrode were used: 2/ promote negligible to serious corrosion of buried pipelines in Area 2 (1/2-3 mile radius of either a ground mat or deep-well electrode) depending upon (1) the distance of the pipelines from the electrode (2) the geometry of the two electrode-pipeline systems and (3) the horizontal extent of the pipelines; 3/ impress no significant stray currents on buried pipeline in Area 3 beyond approximately a 3-mile radius of the electrode. Normal corrosion prevention techniques are fully adequate to prevent stray current corrosion of buried metalwork if proper location of the electrode is made. These conclusions must be modified to reflect the anticipated time-current product.

N65-26564# Fairchild Hiller Corp., Bay Shore, N. Y. Stratos Div

DEVELOPMENT OF GAS-ENTRAINED POWDER LUBRI-CANTS FOR HIGH-SPEED AND HIGH-TEMPERATURE OPERATION OF SPUR GEARS Technical Report, Jun. 1962-

S Wallerstein Wright-Patterson AFB, Ohio, AF Aero Propulsion Lab., May 1965 143 p refs (Contract AF 33(657)-8625)

(AFAPL-TR-65-24; AD-464626)

The feasibility of adapting powder lubricants to the operation of gears during relatively long periods of time under extreme environmental conditions was established. In addition to the lubricant study, parallel investigations were conducted on gear materials and methods of dispensing powder lubricants. Significant achievements of this program are listed below. 1. A pair of 5 DP spur gears, manufactured from M-50 tool steel, had operated for 98-1/2 hours at a speed of 7400 rpm, load of 1000 pounds per linear inch of tooth face, and temperature cycled from room temperature to 900° F. 2. Evaluations of fine-pitch (12/14 DP) superalloy and tool-alloy steel gears were conducted at speeds to 15,500 rpm, temperatures in excess of 1000° F, and loads to 1000 pounds per linear inch of tooth face. 3. All high-temperature evaluations performed during this program used a graphite plus cadmium oxide powder mixture as the gear lubricant. An air carrier was used to deliver the powder to the gear set. Author

Fabriques d' Assortiments Reunies, Le Locle (Switzerland). Laboratoire de Recherches Appliquées. ACTUAL STATE OF OUR RESEARCH EFFORTS FOR AN

IMPROVED LEVER ESCAPEMENT [ETAT ACTUEL DE NOS RECHERCHES POUR L'AMELIORATION DE L'ECHAP-PEMENT A ANCRE

E. Favre and A. Simon-Vermot In Soc. Suisse de Chronométrie Intern. Conf. on Chronometry, Vol. 2 [1964] p 701-712 In FRENCH; ENGLISH and GERMAN summaries (See N65-26708 16-14)

After a few remarks on the difficulties and disadvantages of the present escapement lubrication method, we shall mention two directions taken by the research done in this field. New materials will be discussed, which promise to overcome some of the present drawbacks of show other interesting properties. Among others, ceramic materials will be considered and their composition and properties compared to those of ruby and spinel. A new method of lubrication will be shown, which, as borne out by the results of several experiments, is directly adaptable to the classic materials, steel-ruby and brass-spinel. Author

N65-26724 Societe Suisse de Chronométrie, Neuchâtel (Switzerland)

MATERIALS [MATERIAUX]

J. P. Renaud In its Intern. Conf. on Chronometry, Vol. 2 [1964] p 857-880 refs In FRENCH; ENGLISH and GERMAN summaries (See N65-26708 16-14)

The progress achieved during the five or six years concerning the choice of basic materials used in the manufacture of movements and assembly processes is reviewed. Only spirals, spring-boxes and springs are ignored, since they are the subject of a paper by Dr. S. Steinemann. A first part of the paper is devoted to basic materials used in the manufacture of the movement, of the watch-face, and of the glass. A second part touches on the problem of decorative and anticorrosive coatings, rust-proof treatment and passivation films. Finally, a third part establishes the progress achieved in the field of lubrification, oils, greases, solid lubricants, self lubricating materials, and anti-wear coatings. In each case, the industrial application is first discussed, then certain possible developments at a laboratory level which have a potential application to watch manufacture. It concludes with certain indications on the direction of new scientific and technical developments, as well as on problems not yet solved.

N65-27111# Naval Research Lab., Washington, D. C. Metallurgy Div

MARINE CORROSION STUDIES: DEEP OCEAN TECH-NOLOGY. STRESS CORROSION CRACKING. CATHODIC PROTECTION Second Interim Progress Report

B. F. Brown, T. J. Lennox, Jr., ed., R. L. Newbegin, M. H. Peterson, J. A. Smith et al. Nov. 1964-51 p. ref (NRL-1574; AD-610551)

Precracked cantilever stress-corrosion cracking tests on notched and fatigued specimens of high strength steels showed an increase of stress intensity from about 15% of the breaking strength of a dry precracked bar of steel having a yield strength of 200 ksi to about 65% for the same steel after heat treatment to a yield strength of 125 ksi. Corrosion caused by sea-water was found on stainless steel heat exchangers and on bare 5086-H32 aluminum alloy. The alloy corrosion was accelerated by coupling with noble metals. Also reported are studies on the effect of: cathodic protection on crevice and pitting corrosion of stainless steel; current distribution along a wire rope cathode; cathodic protection of wire rope; pressure on a steel cathode in a sodium chloride solution; and an aluminum anode cathodic protection for a Coast Guard vessel. G.G.

N65-27271*# General Electric Co., Cincinnati, Ohio. Missile and Space Div.

STUDIES OF ALKALI METAL CORROSION ON MATE-RIALS FOR ADVANCED SPACE POWER SYSTEMS. terly Progress Report No. 3, Dec. 26, 1964-Mar. 26, 1965 R.W. Harrison [1965] 30 p refs

(Contract NAS3-6012)

(NASA-CR-54390) CFSTI: HC \$2.00/MF \$0.50 CSCL 20F

The influence of stress on the corrosion behavior of an advanced refractory alloy in potassium, and the corrosion mass transfer effects in a stainless steel-columbium alloy potassium system are investigated. The potassium was transferred directly to an alloy reflux capsule from the final hot trapping container, and the capsule was sealed by electron beam welding in a vacuum of 7 × 10⁻⁶ torr. The results showed the oxygen in the potassium taken from the fill tube to be 5 ppm, and the oxygen in the potassium taken from the chamber samples to be 8 ppm. The stainless steel capsules were opened in an argon atmosphere and drained of potassium. After removal of the Cb-1Zr alloy sheet specimens, the capsules and specimens were cleaned and examined. No appreciable differences in appearance of the internal surfaces of any of the capsules were noted from visual observation. R.W.H.

N65-27392*# National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio

EFFECT OF SPEED, LOAD, AND TEMPERATURE ON MINIMUM-OIL-FLOW REQUIREMENTS OF 30- AND 75-MILLIMETER-BORE BALL BEARINGS

Zolton N. Nemeth and William J. Anderson. Washington, NASA, Jul. 1965 17 p refs

(NASA-TN-D-2908) CFSTI: HC \$1.00/MF \$0.50 CSCL 131

Minimum-oil-flow tests were conducted with 30-millimeterbore, deep-groove ball bearings over a DN range (product of bearing bore in mm and shaft speed in rpm) of 0.825×10^6 to 0.975×10^6 and a temperature range of 170° to 400° F at a thrust load of 265 pounds with naphthenic-mineral-oil-air mist lubrication. Minimum required oil flow for continuous operation increased with increasing DN and bearing temperature. This increase agreed with previously published data for 75-millimeter-bore bearings. A generalized correlation of the data obtained herein and with the 75-millimeter-bore bearing indicates that minimum required oil flow can be expressed as a single function of bore size, load, DN, and bearing temperature The correlation was developed for 30- and 75-millimeterbore bearings at thrust loads of 265 to 3000 pounds. DN values of 0.6×10^8 to 0.975×10^6 , and temperatures of 225° to 500° F. Airflow, which was controlled independently of oil flow, was found to affect the minimum required oil flow at specific operating conditions. Airflow apparently affects the efficiency with which the bearing can utilize the oil droplets fed to it, and there appears to be an optimum mist velocity for a given DN Author or rotative speed

N65-27394* # Thompson Ramo Wooldridge, Inc., Cleveland,

OPERATION OF A FORCED CIRCULATION, HAYNES ALLOY NO. 25, MERCURY LOOP TO STUDY CORROSION PRODUCT SEPARATION TECHNIQUES

David B. Cooper Washington, NASA, Jul. 1965-73 p. refs (Contract NAS5-462)

(NASA-CR-241) CFSTI: HC \$3.00/MF \$0.75 CSCL 18G

A Haynes alloy No. 25, forced circulation, mercury loop was designed and operated for a total of 5218 hours at an average boiling temperature of 1097 F. Corrosion product separators were included in both the vapor and liquid sections of the system and were evaluated for their effectiveness in reducing problems associated with mass transfer in mercury systems. The vapor corrosion product separator was approximately 51 percent efficient in removing corrosion products carried over from the boiler. Operation of this loop for 5218 hours has demonstrated the feasibility of long-term operation of a Haynes alloy No. 25 mercury system. Author

Boeing Scientific Research Labs., Seattle, Wash. N65-27510 **BOUNDARY LAYERS**

F. D. Hains In its Rev. of Magnetofluiddyn. Appl. Apr. 1965 p 117-130 refs (See N65-27505 16-25)

A discussion is given on the use of magnetofluiddynamic boundary layers in liquid metal bearings. A review of the various types of magnetofluiddynamic bearings is presented. The possible use of magnetic fields to reduce the convective heat transfer at the nose of reentry bodies is discussed and a review of the reentry problem is given. NEA

N65-27786# Southwest Research Inst., San Antonio, Tex. Dept. of Aerospace Propulsion Research

FUNDAMENTAL INVESTIGATION OF LIQUID-METAL LUB-RICATED JOURNAL BEARINGS Topical Report, Apr. 1, 1964-through Mar. 31, 1965

R. A. Burton, H. J. Carper, and Y. C. Hsu. 16 Apr. 1965. 110 p. refs

(Contract AT(11-1)-1228) (SwRI-1228-60)

A program is reported with the objective of providing basic + information for liquid-metal lubricated bearings with emphasis on turbulence and film-inertia effects. The experiments make use of a large-scale bearing model, with 6-foot diameter and 0.5 in film thickness. The working fluid is air, and Reynolds numbers comparable to those in liquid-metal lubricated bearings may be simulated. Data on velocity profiles, friction coefficients, and turbulence intensity are reported for concentric and eccentric operation. Data are also reported for extremely distorted flows produced by placing a blockage in the film. An analytical approach is reported, which exploits experimentally measured (or theoretically computed) profile parameters to predict pressures in bearing configurations. Data are given which show that inertial effects at the boundaries of the bearing film may at times be of primary importance in bearing cal-

N65-27803# Du Pont de Nemours (E.I) and Co., Wilmington, Del. Engineering Materials Lab. THE SLIDING OF PTFE ON PTFE Technical Documentary

Report, Feb. 15-Aug. 15, 1964 R. P. Steijn Wright-Patterson AFB, Ohio, AF Mater Lab., Dec. 1964 32 p refs

(Contract AF 33(615)-1201)

(ML-TDR-64-303; AD-610585)

In sliding tests, a weighted sled with PTFE runners was pulled over a PTFE track. The sliding velocity was measured as a function of tangential load and ambient temperature for two normal loads. The results have led to treating the sliding phenomenon as an activated viscous-flow process relating sliding speed to force of friction and absolute temperature. An activation energy of about 7 kcal/mole was found. The size of the kinetic unit was estimated. Electron microscopy was used to examine the sliding surfaces; very thin films of PTFE were extracted during replication. We hold shear in these films and their deformation responsible for the viscous sliding behavior. The effect of the crystalline transitions at 19° and 30°C was investigated. Time effects were noted throughout the entire test program and documented.

N65-27856# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SYNTHETIC OILS FOR TURBINE ENGINES

Boleslawa Mielnikowa 8 Dec. 1964 18 p. refs. Transl. into ENGLISH from Tech. Lotnicza (Poland), no. 2, 1963 p 37-42 (FTD-TT-64-117/1+2; AD-455605)

The requirement for better lubricants by high-speed aircraft is discussed and the synthetic lubricants used by various countries are briefly reviewed. Among the synthetic lubricants discussed are the esters of the mono and polybasic alcohols and organic dicarboxylic acids, esters of silicic acid and higher monobasic alcohols, and the silicones. It is observed that dicarboxylic acid esters are the most suitable lubricants for turbo engines. Data are given for commercial lubricants available for turbine engine and aviation lubrication.

N65-27911# Monsanto Research Corp., Dayton, Ohio. DEVELOPMENT OF FIRE-RESISTANT WATER BASE HY-DRAULIC FLUID Bimonthly Report, 1 Dec. 1964-31 Jan.

E. S. Blake, G. F. Deebel, and G. A. Richardson [1965] 17 p. (Contract NObs-90270) (BMR-5; AD-610674)

The broad objective of this contract is the development of a usable, fire-resistant water-base hydraulic fluid for shipboard use, in which the nonaqueous phase is fire-resistant. The alkali alkyl phosphates continue to afford the optimum properties as pour point depressant candidates. Introduction of a phenyl molety into the ethyl group raised the AIT to 900°F. Of the commercially available thickener's tested. Cellosize hydroxyethyl cellulose (WP4400) and WSR 205 were of interest as "thickeners. The low percentages suggest that from a shear stability standpoint they may be suspect. The AIT of phosphates appears unaffected by large amounts of water.

N65-27926# Houghton (E. F.) and Co., Philadelphia, Pa. DEVELOPMENT OF FIRE RESISTANT WATER BASED **HYDRAULIC FLUIDS Bimonthly Report**

Philip Rakoff, G. John Colucci, and Robert K. Smith. 27 Jan. 1965 18 p

(Contract NObs-90269)

(BMR-5; AD-610379)

Improving the corrosion properties of fire resistant, water based hydraulic fluid, a series of hydroxy alkylene carboxylates have been prepared as potential corrosion inhibitors. In addition, a continuing study has been made of the correlation existing between corrosion of control panels in hydraulic systems and bench corrosion tests. Several aromatic ether derivatives are concurrently being evaluated as autoignition improvers. An attempt has also been made to alter the structure of the glycol portion of fluid so that a higher autoignition temperature is attained in the finished formula.

N65-28052 Joint Publications Research Service, Washington D C

ON THE STABILITY OF THE MOTION OF A GYROSCOPE ON A HORIZONTAL PLANE UNDER THE ACTION OF DRY SLIDING FRICTION

I. M. Mindlin In its Eng. J. 29 Jun. 1965 p 12-20 refs (See N65-28050 17-23) CFSTI: \$6.00

Presented is a theoretical study on the stability of the stationary motion of a symmetric heavy gyro on a fixed horizontal plane in which its axis remains spinning. It is assumed that sliding is possible at the point of contact of the gyro with the plane, and that a dry friction force is developed. Considered is the action of viscous friction, and the motion of a top with the appearance of dry sliding friction which slightly deflects the top from the stationary motion present with movement over a smooth surface. Using expressions for the energy of two integrals known for the spherical surface, the validity of the stability condition is demonstrated. S.C.W.

N65-28108# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div PETROLEUM SPECIALIST Selected Articles

19 Jan. 1965 5 p. Transl. into ENGLISH from Neftyanik (USSR). v. 4, no. 12, 1959 p 27

(FTD-TT-64-778/1: AD-610794)

CONTENTS

- 1. ADDITIVE TO HEAVY HIGHLY SULFUROUS ENGINE FUELS T. Skichko p 1
- 2. ANTICORROSION ADDITIVE TO LUBRICANTS T. Skichko p 2

N65-28141# Oak Ridge National Lab., Tenn.

THE EFFECT OF OXYGEN ON THE CORROSION OF NIO-BIUM BY LIQUID POTASSIUM

Arnold Powell Litman (M.S. Thesis-Tennessee Univ.) Jul. 1965 121 p refs

(Contract W-7405-ENG-26)

(ORNL-3751) CFSTI: \$4.00

The behavior of niobium in liquid potassium at 200°, 600°, and 815 C was influenced by oxygen, temperature, and time. The corrosion manifestations include the production of surface and subsurface corrosion products and the mass transfer of oxygen, niobium, and potassium. Analysis of the surface scales indicated they were predominantly niobium dioxide, but that niobium metal, niobium oxide, and potassium metaniobate were present. Hardness profiles of the specimens as a function of time confirmed that a loss of oxygen from the niobium occurred by solid state diffusion at 600° and 815° C but that no loss occurred at 200° C. Oxygen migrated out of niobium even when niobium dioxide was found in the surface and subsurface scales. Niobium dioxide was found to be unstable in excess potassium. These observations led to the proposal that one or more ternary compounds provide the driving force for system corrosion. These compounds have sufficient thermodynamic stability to reduce the chemical potential of the oxygen in solution below that which exists for equilibrium with binary oxides. R.N.A.

N65-28191# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

MECHANISM OF THE ACTION OF VISCOUS ADDITIVES Ye. G. Semenido 27 Apr. 1965 9 p refs Transl. into ENG-LISH from Neftyanoye Khozyaystvo (USSR), v. 32, no. 3, 1954 p 38-41

(FTD-TT-64-1274/1+2; AD-615247)

The viscosity index v₅₀/v₁₀₀ for evaluating the viscotemperature properties of thickened oils is shown to be useful in the temperature interval range of -30° to 50° C, in addition to its usefulness in the interval from 50° - 100° C. Viscotemperature data show that (1) of two oils with identical viscosity at 100° C, the oil with the lower index for v_{50}/v_{100} has the better viscotemperature properties; and (2) of two oils with the same index of v_{50}/v_{100} , the oil with less viscosity has the better viscotemperature properties. Thus the thickening action of polymers, the index v_{50}/v_{100} of the oil base, and the viscotemperature properties of thickened oils are interdependent, even in the negative temperature region. The mechanisms of polymers added as viscous additives to oils are also considered, by analyzing how the relationship of the viscosity of oil thickened by polymers (v) to the viscosity of an oil base (vo) changes with identical temperatures over a broad range. From tabulated data on values of v/v_{o} for oils thickened with polyisobutylene, it appears that in mixing oils with polymers, the viscosity level is raised, and the character of the temperature change remains the same, or deteriorates somewhat with increased polymer content.

N65-28201*# Southern Research Inst., Birmingham, Ala. EFFECT OF PROTECTIVE COATINGS ON THE STRESS-CORROSION PROPERTIES OF SUPERSONIC-TRANSPORT SKIN MATERIALS Tenth Quarterly Status Report, 1 Mar.-31 May 1963

J. O. Honeycutt and A. C. Willhelm 15 June 1965 27 p refs (Contract NASr-117)

(NASA-CR-63784) CSCL 11F

Steel, superalloy, and titanium alloy substrates, coated with aluminum-modified silicone, catalytically cured silicone, zinc in silicate vehicle, electrophoretically deposited aluminum, and flame-sprayed aluminum, were visually examined after undergoing exposures to dry 550° and humid 95° F atmospheres for 1000 hours. Four exposure conditions were used for each substrate coating combination: undamaged with no salt, and with salt; and damaged with no salt, and with salt. The specimens were then subjected to compressive loading for bendductility evaluations, with compression continued until fracture occurred, or complete compression was attained. The inherent ductility of a substrate was determined by measuring the shortening that occurred during compression of a bare, unexposed specimen. Results, which showed wide variation for the several specimens, are presented in tabular form and interpreted graphically. M.G.J

N65-28269 Joint Publications Research Service, Washington, D. C.

INVESTIGATION OF ONE METHOD OF COMPENSATING FOR FRICTION IN SUPPORTS OF INSTRUMENT SHAFTS B. A. Komashinskiy *In its* Izv VUZov: Instr. Bldg. 9 Jul. 1965 p 134–139 refs (See N65-28250 17-10) CFSTI: \$5.00

Described is a method for reducing mechanical losses in instrument supports caused by friction, which focuses on the use of forced rotation on the outer races of ball bearings in the supports of instrument shafts. The selection of a speed of rotation is substantiated, and examples are cited which illustrate the effectiveness of the method.

N65-28276# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

PLASTICS AND RUBBER Selected Articles

29 Apr. 1965 25 p. refs. Transl. into ENGLISH from Plastics und Kautschuk (Leipzig), v. 11, no. 1, 1964 p. 36–42 (FTD-TT-64-1324/1+2; AD-463087)

CONTENTS:

- 1. THE INFLUENCE OF THE THERMAL AFTER-TREAT-MENT ON THE PROPERTIES OF POLYAMIDE COATINGS Z. Kowalski p 1-12 refs (See N65-28277 17-18)
- 2. PLASTICS FOR FLAME SPRAYING AND THEIR CHARACTERISTICS H. Schwarz p 13-26 refs (See N65-28278 17-18)

N65-28277 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.
THE INFLUENCE OF THE THERMAL AFTER-TREATMENT ON THE PROPERTIES OF POLYAMIDE COATINGS

Z. Kowalski In its Plastics and Rubber 29 Apr. 1965 p 1-12 refs Presented at the Intern. Metal, Plastic, and Ceramic Spray Conf., Halle (Saale), 10-12 Sep. 1963 (See N65-28276 17-18)

Poly undecanamide (polyamide 11) and poly caprolactum (polyamide 6) coating materials were applied to test specimens. which were then subjected to various after-treatments for determining the influence of each treatment on the structural properties of the coatings. Some of the after-treatments used were soaking and tempering in paraffin oil or water baths at differing temperature levels. Specimens were also subjected to infrared radiation, and oxygen. Various bending strength and impact resistance tests were applied after the treatments. It was shown that the characteristics of polyamide coatings can be materially changed by the influence of heat (positively and negatively), and do afford some protection from the influence of oxygen at high temperatures. The method of coating the specimen is also important, and coatings applied by turbulent sintering are more resistant to impact-type stresses than those that are flame sprayed. Polyamide 11 coatings were found superior to polyamide 6 coatings not only with regard to their natural properties, but also with regard to their impact resistance. Test data and physical property data of test materials L.S. are included

N65-28351# Frankford Arsenal, Philadelphia, Pa. Pitman-Dunn Research Labs.

STRESS-CORROSION TESTS ON COMMERCIAL AND HIGH PURITY GRADE 7075-T6 ALUMINUM ALLOY

Helen R. Pritchard May 1965 14 p refs (M65-17-1; AD-615566)

Alternate immersion stress-corrosion tests were conducted on commercial and high purity 7075-T6 aluminum alloy stressed in the short transverse direction at levels of 8000 psi to yield strength. No failures occurred in the commercial grade at stress levels of 20,000 psi or less. In the high purity grade, the highest stress which did not produce failures was 10,000 psi At levels of 30,000 psi or less, the commercial grade specimens had a life of three or more times that of the high purity specimens.

N65-28354*# General Electric Co., Cincinnati, Ohio. Space Power and Propulsion Section.

MATERIALS FOR POTASSIUM LUBRICATED JOURNAL BEARINGS Quarterly Progress Report No. 7, 22 Oct. 1964–22 Jan. 1965

R. G. Frank, ed. [1965] 139 p refs

(Contract NAS3-2534)

(NASA-CR-54345) CFSTI: HC \$4.00/MF \$1.00 CSCL 11F

Approximately 25 pounds of potassium were purified by hot trapping for 24 hours at 1200° to 1350° F in a titanium-lined zirconium-gettered hot trap after being purified by vacuum distillation. The vacuum distillation facility for the cleaning of the tested corrosion specimens was completed Cb-1Zr alloy corrosion capsules were measured dimensionally and weighed Lucalox and Zircoa 1027 exhibited the largest change in dimensions. To evaluate dimensional stability, duplicate specimens of candidate materials were tested at 800° , 1200° , and 1600° F. Zircoa 1027 showed a change of +0.03% at 800° F and the Star J alloy showed a change of +0.06% at 1600° F The mean coefficient of thermal expansion was determined as a function of temperature from room temperature to 1600° F. for K601, TiC TiC+10%Cb, TiC+10%Mo, TiC+5%W, TiB2. and Star J. Excellent agreement of the data was observed between duplicate specimens and between heating and cooling cycles of the same material. The compression load train was checked out successfully at room temperature with Mo-TZM alloy specimens and the compressive 0.2% yield strength was 113 300 psi. RNA

N65-28504# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div

FRICTION COEFFICIENTS OF MATERIALS FOR GUIDE MACHINES

G. B. Lur'ye 19 Apr. 1965 10 p. Transl into ENGLISH from Stanki i Instrument (USSR), v. 30, no. 3, 1959 p. 17-19 (FTD-TT-64-1179/1+2, AD-615229)

Experiments were conducted to determine friction in slide guides, operating at feeding rates. A comparative evaluation was made of the antifriction properties of numerous materials used for strap guides. Values were derived of friction coefficients in dependence upon the duration of the stationary contact and sliding speed. Materials tested during friction along the cast iron included: metals (cast iron SCH 2.-40, bronze Br. OTSS 6-6-3, babbit B16, zinc alloys TSAM 30-4 and TSAM 10-5); plastics (metallurgical Textolite B, polyamide resin 68 of Nylon type, textolite PT, cordovoloknite 1-G, vinyl plastics, fluoro plastic-4) and graphite coated materials (ferrographite, anticorrosion heat conductive ATM material, bronzegraphite, graphite coated material type D, lead saturated)

Author

N65-28624# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METHOD OF IMPROVING THE ANTIWEAR PROPERTIES OF LUBRICATING OILS

V. S. Demchenko, Ye. N. Gur'yanova, and O. I. Bogdanova 19 Apr. 1965 4 p Transl. into ENGLISH from Russian Patent No. 158038 (Appl. No. 783882/23-4, 23 Jun. 1962) 2 p (FTD-TT-64-1287/1; AD-615250)

The object of the invention is a method improving the antiwear properties of lubricating oils which is distinguished by the fact that as additives one introduces derivatives of 2-mercaptobenzthiazole, for example, benzthiazole-2-cyclohexylsulfenamid. Author

N65-28697# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

AT THE TECHNICAL-ECONOMICAL COUNCIL OF THE LENINGRAD SOVNARKHOZ

Ya. K. Terent'yev. 23 Apr. 1965 5 p. Transl. into ENGLISH from Byull. Tekh.-Ekon. Informatsii (Moscow), no. 2, 1964 p.76-77

(FTD-TT-64-1242/1: AD-615288)

Information regarding the use of molybdenum disulfide as an antifriction coating was reported to the technological section of machine construction of the technical-economical soviet of the Leningrad Sovnarkhoz (Council of National Economy). The use of molybdenum disulfide is reported to increase, by an average of 2 to 3 times, the stability of cutting tools and dies.

N65-28723# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METHOD OF PRODUCING NONFLAMMABLE LUBRICANTS FOR TURBINES

K. I. Ivanov, Ye D. Vilyanskaya, and L. N. Kirichenko. 28 Apr. 1965. 5 p. Transl. into ENGLISH from Soviet Patent No. 159922 (Appl. No. 807683/23-4, 13 Dec. 1962). 2 p. (FTD-TT-64-1291/1; AD-615297).

The object of the invention is a method of obtaining a fire-resistant liquid for turbines on the basis of compounds containing phosphorus with additives. To improve the quality of the product and reduce its cost, trixylinylphosphate is used as the phosphorus compound, perfluorinated transformer oil as an antifoaming additive and 4.4(1)-diamino-diphenyl-disulfide as an antioxidant.

Author

N65-28845# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

NATURE OF POLYSILOXANES AND ITS EFFECT ON THEIR ACTION AS ADMIXTURES TO HYDROCARBON LUBRICATING AGENTS

G.V. Vinogradov, N. S. Nametkin, and M. I. Nosov. 26 Apr. 1965. 10 p. refs. Transl. into ENGLISH from Neftekhimiya (USSR), v. 4, no. 2, 1964. p. 345–350.

(FTD-TT-64-1268//1+2; AD-615245)

To explain the effect of the nature of polysiloxanes on the improvement of the lubricating effect of hydrocarbons during their addition into same, the antiwear and antifriction properties of mixtures of 1,1-di(o-xylyl)-ethane with polyethylsiloxane, polymethylsiloxane and two polymethylphenylsiloxane liquids were investigated. Mutual strengthening of the lubricating effect of polysiloxanes and hydrocarbons depends to a large degree upon the nature of polysiloxanes, which by degree of reducing their activity as admixtures, improving the lubricating qualities of hydrocarbons, are arranged in the following series: Polyethylsiloxane > polymethylsiloxane > polymer 1 > polymer 2. An assumption was made that this is connected with a rise in thermooxidizing stability during the change in polysiloxane chanins of ethyl side groups into methyl and phenyl. Mutual strengthening of the lubricating effect of hydrocarbons and polysiloxanes may appear not only then when they are soluble in each other but also when they are emulsified in hydrocarbon media.

Author

N65-29112# Aluminum Co. of America, New Kensington, Pa. Chemical Metallurgy Div.

INVESTIGATION OF THE MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS Final Report, Dec. 6, 1963–Feb. 6, 1965

G. C. English [1965] 105 p refs (Contract NOw-64-0170-c) (AD-615789)

The cathodic protection of 7075 alloy in a corrosive, acid chloride solution was investigated. Subsize tensile specimens for protection were taken in the short-transverse direction from 2-inch thick plate in two tempers, one (-T6) susceptible to stress corrosion and one (-T73) not susceptible to this type

of corrosion. In the solution used a susceptible specimen stressed to 75% of its yield strength failed by stress corrosion in an hour while a stresses nonsuceptible specimen failed by general corrosion within two days. At a potential 0.57 volts negative to the free corrosion potential, a stressed susceptible specimen could be protected for an indefinitely long period; one susceptible specimen stressed to 75% of its yield strength and held at this potential for 400 hours showed no evidence of stress corrosion. This potential of cathodic protection appeared to be independent of the stress applied to a specimen. Considerable evidence indicates that the potential reflected metallurgical structure rather than extraneous conditions such as the alkalinity produced by cathodic reactions.

N65-29121# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

EFFECT OF TEMPERATURE ON FRICTION AND WEAR OF FILLED FLUORINATED PLASTIC MATERIALS

V. D. Parkhomenko and S. N. Gants 19 Apr. 1965 6 p. refs Transl. into ENGLISH from Izv. Vysshikh Uchebn. Zavedenii, Mashinostro. (Moscow), no. 9, 1963 p. 130–133 (FTD TT 64 1176/1+2: AD-614957)

An examination was made of the effect of temperature and the nature of the filler (molybdenum disulfide, boron nitride, barium sulfate, ground coke, talic, soot, or colloidal graphite) on the coefficient of friction and wear of 'Fluoroplast' (poly-chlorotrifluoro ethylene)) while undergoing a witer-lubricated friction process. In general: (1) wear decreases with increasing filler content (up to a limit); (2) wear increases with increasing water temperature; (3) the coefficient of friction (mu) increases as temperature increases; (4) mu decreases with increasing specific pressure; and (5) mu decreases with increasing speed of sliding. Under the test conditions MoS2, BN, BaSO4, and coke improved the wear resistance to a greater extent than the other fillers.

N65-29234# Du Pont de Nemours (E. I.) and Co., Aiken, S. C. Savannah River Lab.

CORROSION OF EQUIPMENT IN THE HEAVY WATER COMPONENTS TEST REACTOR

J. Malvyn Mc Kibben Jun. 1965 32 p refs (Contract AT(07-2)-1) (DP-964) CFSTI: \$2.00

The corrosion experience at the Heavy Water Components Test Reactor (HWCTR) is evaluated after three years of service. Within the moderator-coolant system, corrosion caused no operating problems or equipment failures. Adherent black oxide covered all mild steel surfaces in the moderator-coolant system, and no significant pitting was observed.

Author

N65-29446*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CORROSION IN LIQUID METAL SYSTEMS

D. H. Gurinsky, J. R. Weeks, C. J. Klamut (Brookhaven Natl. Lab.), L. Rosenblum, and J. H. De Van (Oak Ridge Natl. Lab.) [1964] 15 p refs

(NASA-TM-X-54722) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F

Current theories of liquid metal corrosion, methods employed in liquid metal testing and analysis, and the state of the art of each of the alkali metals, Hg, and liquid alloys containing Pu are reviewed. Liquid metal materials were developed and tested for higher temperature applications. Engineering tests to determine the long term behavior of containment alloys for sodium components show that the 650°C temperature range is feasible. In nuclear auxiliary power systems, refractory alloys show promise for the containment of liquid Li and are also suitable for power conversion systems using boiling K, Na, Rb, Cs, and Hg. Confirmation of the importance of impurities in the liquid metals and the containment alloys on

the corrosion process resulted in advances in testing and analytical techniques. Although the precision of impurity analyses and the monitoring techniques of the liquid metals have been improved, accuracy remains uncertain because of the lack of calibration standards. The use of X-ray fluorescence and microprobe techniques has delineated the subtle surface effects due to corrosion.

N65-29643# Royal Aircraft Establishment, Farnborough (England).

THE REDUCTION OF FRICTION IN PISTON TYPE HYDRAULIC SERVO VALVES

A. G. Earl London, Min. of Supply, May 1954 14 p refs (RAE-TN-GW-312)

This note describes experiments that have been made to investigate the effectiveness of two methods of reducing friction in piston type hydraulic servo valves. The methods tried were very fine filtration of the oil supply and tapering the sealing lands of the servo piston. The first of these gave a reduction in valve friction of about 80% and the second method a reduction of about 60%. A combination of the two resulted in a decrease in friction of over 90%.

N65-29738*# National Aeronautics and Space Administration, Washington, D. C.

SPONTANEOUS TRANSITION OF SLIDING FRICTION TO ROLLING FRICTION IN THE HIGH-TEMPERATURE TESTING OF REFRACTORY CARBIDES [SPONTANNYY PEREKHOD TRENIYA SKOL'ZHENIYA V TRENIYE KACHENIYA PRI VYSOKOTEMPERATURNYKH ISPYTANIYAKH TUGO-PLAVIKH KARBIDOV]

A. P. Semenov and V. V. Pozdnyakov Jul. 1965 9 p ref Transl. into ENGLISH from Dokl. Akad. Nauk SSSR (Moscow), v. 160, no. 5, 1965 p 1057-1060

(NASA-TT-F-9499) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F.

Two specimens, both of vanadium or molybdenum carbide, were friction tested by being made to rub together in vacuum with simultaneous heating and subsequent cooling. When heated, the specimens manifested a decrease in mean friction coefficient, in one case from 0.6 to 0.3, then the onset of oscillations in the friction coefficient with a sharp rise in friction coefficient (to 0.85), and, finally, the spontaneous transition from sliding to rolling friction with a concomitant drop in the mean friction coefficient to 0.05. The effect is explained by a surface-geometric mechanism, whereby the surfaces in contact crumble at high temperature, ejecting balls of the tested material, which fit into pits or grooves and act as roller bearings.

N65-29845* # National Aeronautics and Space Administration, Washington, D. C.

LUBRICATION, CORROSION AND WEAR A Continuing Bibliography, Jan. 1962–Mar. 1965

[1965] 167 p refs

(NASA-SP-7020) CFSTI: HC \$1.75/MF \$1.00 CSCL 11H An annotated bibliography is presented on lubrication,

An annotated bibliography is presented on lubrication, corrosion, and wear. Included are topics such as lubricating systems, design and performance of bearings, special applications of lubricants, stress corrosion and fatigue cracking in metals and alloys, friction and wear characteristics of materials, and types of corrosion and techniques for corrosion prevention. A few references describing the instrumentation and methods of testing lubricants are also included.

N65-29914# Battelle Memorial Inst., Columbus, Ohio. Defense Metals Information Center.

CORROSION OF MATERIALS BY ETHYLENE GLYCOL-WATER

J. D. Jackson, P. D. Miller, F. W. Fink, and W. K. Boyd 10 May $_{\star}$ 1965–25 p. refs

(Contract AF 33(615)-1121)

(DMIC-216; AD-466284)

Solutions of ethylene glycol are being considered as heat-transfer media for radiators in manned space capsules. This report was prepared to summarize the available corrosion data on uninhibited and inhibited ethylene glycol solutions. Much of the corrosion data are based on automotive and diesel engine coolant systems. Several factors considered are: time dependence, effect of pH, concentration, temperature, aeration, chloride ion, velocity, heat-transfer rate, and galvanic couples. Inhibitors for which corrosion data are presented include: borax, sodium benzoate, sodium nitrite, triethanolamine, sodium mercaptobenzothiazole, soluble oil, chromates, as well as miscellaneous inhibitors. A number of patented inhibitors based on borax are discussed. Descriptions of test procedures including automobile service tests are Author presented.

N65-29941# Naval Postgraduate School, Monterey, Calif.
AN INVESTIGATION OF THE WEAR AND FRICTION CHARACTERISTICS OF A HIGH TEMPERATURE SOLID FILM LUBRICANT IN HIGH VACUUM AND IN AIR

Donald W. Flage (M.S. Thesis) 1964 128 p refs

With a specially designed machine, the wear and friction characteristics of high temperature SFL #1000 were investigated. The lower wear specimen, coated at the factory to a thickness of 0.0003 to 0.0005 in., was the rotating member. The upper non-rotating specimen, identical to the lower, was uncoated. These mating wear and friction annular surfaces were tested under controlled variables. The SFL #1000 ceramic bonded high temperature solid film lubricant was found to have: (1) unacceptably high dynamic coefficient of friction in high vacuum as well as in air. Typical values ranged from 0.30 to 0.40; (2) undesirable stick-slip phenomenon, occurring when the static friction coefficient exceeds the dynamic coefficient: (3) excessively high wear rates (typical rates ranged from 10 to 50µin./min.); and (4) low lives. Film failure occurred usually between 1 and 10 minutes. The results of these tests clearly indicated that this lubricant would make a poor candidate for any practical engineering application where moderate speed and running time were needed.

N65-30004# Air Force System's Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

NEW ADDITIVES TO FUELS AND LUBRICANTS

Ya. B. Chertkov 14 May 1965-10 p. refs. Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow), v. 7, no. 3, 1962-p 64-66

(FTD-TT-65-62/1; AD-616312)

A review of Western literature dealing with fuel and lubricant additive developments is presented. Antioxidants for gasolines and other petroleum products, multifunctional additives, polymerization, and copolymer additives are among the topics considered; and the characteristics for a fuel-oil additive, are given.

M.W.R.

N65-30014# Rock Island Arsenal Lab., III.
CORROSION RESISTANCE OF BLACK OXIDE COATINGS
ON MILD AND CORROSION RESISTANT STEELS

Linden H. Wagner 21 Dec. 1964 23 p refs (RIA-64-3580; AD-615941)

In the revision of Military Specification MIL-C-13924A, dated 29 December 1956, the various processes were reviewed and evaluated for their effectiveness in blackening mild steel, 300 and 400 corrosion resistant steels. The corrosion resistance of these coatings were also investigated. A low temperature Class 4 proprietary alkaline-oxidizing process was

proposed for blackening only the 300 series stainless steels in lieu of the fuzed salt oxidizing process which operates at 760° F.

Author

N65-30048# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.
SYNTHESIS OF ANTICORROSION PIGMENT-CHROMIUM

M. A. Shtern, N. Ye. Danyushevskaya, and O. V. Alekseyeva 14 May 1965 9 p refs Transl. into ENGLISH from Lakokrasochnyye Materialy i Ikh Primeneniye (Leningrad), no. 1, 1964 p 32-34

(FTD-TT-65-55/1+2; AD-616308)

PHOSPHATE

Optimum conditions for synthesizing chromium phosphate for use as an anticorrosion pigment in phosphatization priming and single packing bases were investigated. The effect of chemical composition of chromium phosphate on its protective qualities was studied and the results tabulated. Tests also showed that the dispersion composition of the pigment exerted practically no effect on the anticorrosion properties of the sealer. The kinetics of the process of chromium reduction with sodium sulfite, and deposition of phosphate were investigated in the pH range from 1.0 to 4.5. It was found that the rate of chromium reduction and precipitation of chromium phosphate is affected by the temperature conditions of the synthesis. The optimum conditions are listed, and the investigations show that chromium phosphate, synthesized under these conditions appears to be a highly effective anticorrosion pigment which can be used for pigmentation of single packing sealers of VL-02 type. M.R.W.

N65-30505# Battelle Memorial Inst.. Columbus, Ohio.
A STUDY OF THE INFLUENCE OF LUBRICANTS ON HIGH-SPEED ROLLING-CONTACT BEARING PERFORMANCE. PART V: RESEARCH ON ELASTO-HYDRODYNAMIC LUBRICATION ON HIGH-SPEED ROLLING CONTACTS Final Report

Jerrold Kannel, J. Clarence Bell, J. A. Walowit, O. A. Ullrich, and C. M. Allen Wright-Patterson AFB, Ohio, AF Aero Propulsion Lab., Jul. 1965 89 p. refs (Contract AF 33(615)-1311)

(ASD-TDR-61-643, Pt. V; AD-467173)

The effects of lubricants on the performance of heavily loaded rolling-contact elements have been studied experimentally and theoretically. Measurements of the deformations of lubricated rolling elements have been made using an X-ray technique for a range of loadings, temperatures, rolling speeds, and lubricants. A qualitative agreement appears to exist between variations in deformation profiles with lubricant types and variations in existing fatigue life with lubricant type. Efforts have been made to infer film pressures from the deformation measurements. Film pressures have been measured between steel as well as quartz disks using a manganin pressure transducer. For the heavily loaded conditions, a slight pressure spike appears in the measurements of pressures between steel disks. Stresses in the rolling elements have been inferred from the pressure measurements. The magnitudes of the maximum stresses do not deviate significantly from the Hertzian stresses although the location of the maximum shearing stress is much closer to the surface. The temperature on the surface of a pair of quartz disks has beer. measured using an evaporated resistance thermometer type transducer. The magnitude of the measured apparent temperature appears to be higher than anticipated resembling the peak temperature predicted assuming no heat loss from the lubricant to the disk for the pass of each fluid element through contact. Author

N65-30545*# IIT Research Inst., Chicago, III. Technology Center.

INVESTIGATION OF SLIP-RING ASSEMBLIES
Report No. 7, 5 Nov. 1964-5 Feb. 1965
J. L. Radnik [1965] 13 p

J. L. Hadnik [1965] 13 p (Contract NAS8-5251)

Run-in tests were performed with experimental and commercial capsules to determine the effects of surface lubrication by a heavy layer of P-38 synthetic oil. Lubrication with a graphite oil mixture was also evaluated. Experimental capsules were fabricated to simulate the constructional features of commercial assemblies and to achieve the thermal isolation that exists between rings in an actual assembly. The effects of palladium additions to a gold plating bath were evaluated and a drive system for operation in a vacuum chamber was designed. Run-in tests demonstrated that destructive galling and erosion effects occur primarily in unlubricated systems which permit high localized temperatures. All unlubricated capsules containing isolated rings exhibited severe seizing or high friction effects leading to permanent damage of the rings and brushes. Surface lubrication with P-38 oil was effective in minimizing wear and noise levels in experimental and commercial capsules. Electrodeposits from rhodium and palladium modified gold baths did not exhibit any significant increase in plate hardness. In the case of rhodium, an actual decrease was obtained. R.N.A.

N65-30626# Massachusetts Inst. of Tech., Cambridge. Dept. of Civil Engineering.

ADSORPTION AND FRICTION BEHAVIOR OF MINERALS IN VACUUM Research in Earth Physics Phase Report No. 2 Leslie G. Bromwell Mar. 1965 96 p refs

(Contract DA-22-079-ENG-330; ARPA Order 400) (R64-42; AD-616737)

This report presents theoretical considerations on the adsorption and friction behavior of soils under high vacuum and extreme temperature conditions. It includes an extensive literature survey, particularly in the fields of surface chemistry and physics, adsorption, and friction. The importance of using clean, reproducible surfaces for surface studies is demonstrated. The necessity of clean ultrahigh vacuum test conditions for producing and maintaining clean surfaces is emphasized. The relationship between atomic forces and surface energy and the friction and adhesion between solid surfaces is discussed. A theoretical relationship between adsorption energy and the temperature and pressure required to remove adsorbed layers is derived. The frictional behavior of quartz is considered in detail.

N65-30860# Aerospace Medical Div. Aerospace Medical Research Labs. (6570th), Wright-Patterson AFB, Ohio. Biomedical Lab.

MICROBIAL ACTIVITY IN AIR FORCE JET FUEL SYSTEMS Technical Report, Feb. 1963-Apr. 1964

Sheldon A. London, Viola H. Finefrock, and Lawrence N. Killian (Systems Res. Labs.) Apr. 1965 31 p refs Prepared jointly with Systems Res. Labs., Inc.

(Contract AF 33(657)-11733)

(AMRL-TR-65-30; AD-616648)

Malfunctions and changes occurring in JP-4 fuel systems have been attributed to the presence of microorganisms. The known capability of microbial entities to utilize hydrocarbon products as a carbon source has been considered as a priori evidence of a direct cause-effect relationship in the deterioration of jet fuel systems. The direct implication of microbes in the deterioration of Air Force jet fuel systems has not been proved unequivocally. The U.S. Air Force, as well as the Navy and Army, have instituted research programs to determine the

specific changes caused by bacterial and fungal growth in JP-4 and the contributory factors which promote or retard their activities. The presence of contaminating microbes was shown to occur only in association with free water. Microbial corrosion of various aluminum alloys has been demonstrated in the laboratory, but poor reproducibility attests to the lack of understanding of this phenomenon. The efficacy of the anti-icing additive, ethylene glycol monomethyl ether (EGME), as a microbial inhibitor has been well documented. Although a low level of viable microorganisms continues to be observed in Air Force fuel systems, the application of good housekeeping and the effect of EGME appear to have controlled their activity.

N65-30867# Koppers Co., Inc., Monroeville, Pa.
DEVELOPMENT OF HIGH TEMPERATURE SEAL-LUBRICANT DEPOSIT EVALUATION TECHNIQUES Technical
Report, 1 Jan.-30 Nov. 1964

Billy D. Pfoutz, William G. Knox, and Frank Gannon Wright-Patterson AFB, Ohio, Aero Propulsion Lab., 3 May 1965 21 p (Contract AF 33 (615)-1112) (AFAPL-TR-65-3; AD-617072)

Testing techniques for evaluating experimental gas turbine lubricants in face-riding main shaft jet engine seals at temperatures representative of high mach aircraft have been under development. Using the ASD Seal Rig, repeatable evaluation techniques were developed for MIL-L-9236 type lubricants that were indicative of performance in engines. The present phase of the program is directed towards refining evaluation equipment and preparing the rig for more advanced research work. During the period covered by this report, internal seal head air heating to 1160° F, preliminary evaluation studies using 0-60-19 and 0-60-18 lubricants and engineering features of a new seal head design were investigated. An adaptor to permit the use of the seal head with Erdco test equipment is being designed. Author

N65-30915# United States Steel Corp., Monroeville, Pa. Applied Research Lab.

STRESS-CORROSION BEHAVIOR OF 12 PERCENT NICKEL MARAGING-STEEL WELDMENTS

A. W. Loginow 31 Dec. 1964 20 p (Contract NObs-88540) (S-23309; AD-616982)

As part of the Applied Research Laboratory's program to determine the feasibility of developing an HY-180/210 weldment, studies were conducted to determine the stress-corrosion properties of 12Ni-5Cr-3Mo maraging-steel weldments in marine environments. Stress-corrosion tests were conducted with welded U-bend specimens in quiescent and flowing sea water, in the tidal zone, and in a marine atmosphere. Stresscorrosion cracking was observed in specimens exposed in the three seawater environments in 6 to 17 days; no significant difference in cracking time was observed among the environments. In the marine atmosphere the specimens showed an appreciably higher resistance to stress-corrosion cracking; the shortest cracking time in this environment was 62 days. Metallographic examination showed that, generally, the cracks initiated in the weld metal and propagated in the weld metal and in the heat-affected zone. The absence of base-metal cracking (away from welds) in some specimens exposed for 170 days is regarded as evidence that the base metal may be resistant to cracking in marine environments. It also appears that carbon steel can prevent cracking by cathodically protecting 12Ni-5Cr-3Mo weldments.

N65-30930# Automation Industries, Inc., Danbury, Conn.
ULTRASONIC TECHNIQUES FOR FUEL TANK CORROSION
EVALUATION Technical Report, Jun. 1964–Mar. 1965

Emerson V. Briggs Wright-Patterson AFB, Ohio, Res. and Technol. Div., Apr. 1965–20 p (Contract AF 33(615)-1664)

(RTD-TDR-63-4193, Pt. II; AD-467006)

This program provided for minor modifications to the Ultrasonic Inspection System to provide an improved capability to detect corrosion in the bottoms of integral fuel tanks on more types and sizes of aircraft than the equipment was originally intended for. The equipment was tested under actual service conditions in the field to determine its capabilities.

N65-31051*# SKF Industries, Inc., King of Prussia. Pa Research Lab.

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND HIGH TEMPERATURES Progress Report No. 11, 1 Apr.-30 Jun. 1965

G. Chiccarine, R. H. Pilkington, R. B. Evan, and C. J. Wachendorfer 20 Jul 1965-63 p. refs. Revised (Contract NASw-492)

(NASA-CR-64183, AL65T056) CFSTI HC \$3 00/MF \$0 75

A bearing-lubricant combination consisting of a hydrocarbon lubricant with a proprietary lubricity additive, and M1 tool steel bearings having a smoother surface finish on the inner ring than on the outer ring was tested. Ten bearings tested at 600° F and 42 800 rpm ran for bearing lives of 300 to 700 million revs, without any sign of failure, indicating an experimental L₁₀ in excess of twice the AFBMA computed L₁₀ life under the load and speed conditions used. Two modified polyphenyl ether lubricants, and a more viscous version have somewhat improved performance at temperatures of 500° to 600° F in a nitrogen atmosphere over the more conventional 5-ring polypnenyl ether, Skylube 600. The modified polyphenyl ethers tested in nitrogen atmosphere have about comparable performance to Skylube 600 tested in the air Surface distress, cage failure, and smearing or gross metal transfer were identified as the three failure modes encountered in high-speed, high temperature, thrust-loaded bearings R W H

N65-31073# Eidgenossische Technische Hochschule Zurich (Switzerland)

THE GRAPHITIZATION OF CAST IRON [DIE GRAPHITIER-UNG VON GUSSEISEN]

Edward Fot (Ph D Thesis) 1964 36 p refs (Prom -3549)

Electrochemical corrosion and softening of cast iron in watery solutions of sodium and potassium sulfates and chlorides was investigated. It was found that (1) Corrosion speed is constant (2) Perlitic and ferritic cast iron corrode in water or dissociating electrolytic solutions. (3) The pH value of the corroding medium determines the corrosion speed. (4) A high oxygen content of the corroding medium increases the deposition of corrosion products. (5) Corrosion starts with the graphite components of cast iron. (6) A high carbon content in cast iron increases the speed of graphitization. (7) The forming of a porous surface corrosion layer slows corrosion attack somewhat. Experiments proved that a slightly graphitized, moist cast iron surface, that had been exposed to air for a few hours, formed a potent, corrosion curbing surface layer. Transl. by G.G.

N65-31078# General Motors Corp., Bristol, Conn. New Departure Div. INVESTIGATION OF HIGH TEMPERATURE BEARING ELEMENTS Progress Report, 1 Jul. – 30 Sep. 1964

C. J. Zupkus, H. R. Ludwig, and A. R. Leveille [1964] 59 p refs

(Contract AF 33(615)-1208) (PR-3; AD-613676) The Phase I. Part A requirement of screening eight materials has been completed. Test results have been analyzed for both the rolling and sliding specimen configurations and for the oxidation testing. This screening has reduced the number of test materials to three in the Phase I. Part B testing. The testing program for Phase II has been established.

Author

N65-31079# General Motors Corp., Bristol, Conn. New Departure Div.

INVESTIGATION OF HIGH TEMPERATURE BEARING ELEMENTS Progress Report, 1 Apr.—30 Jun. 1964

C. J. Zupkus, H. R. Ludwig, and A. R. Leveille 1 Jul. 1964 35 p refs

(Contract AF 33(615)-1208)

(PR-2; AD-613675)

The 2500° F testrig has been assembled and checked out for reliability. A technique of calibration has been established which eliminates the need for individual calibration curves of strain beam reading versus force. Studies hazve been conducted to determine the basis of interpreting oxidation behavior and rolling friction forces. The design of the sliding friction test specimen has been established.

N65-31417 European Atomic Energy Community. Brussels (Belgium)

SOME APPLICATIONS OF THE MICROPROBE IN CORROSION STUDIES

H. W. Schleicher In its On Electron Microprobe Analysis—Quant. and Structural Analysis of Nucl. Mater. Jun. 1964 p. 197–204 refs (See N65-31404 20-06) Available from Belg. Am. Bank and Trust Co., New York, Account No. 22.186: 250 Belg. Fr.

Possibilities and limitations are briefly described for the efficient application of the X-ray microanalysator to the study of corrosion problems. Examples are given concerning the corrosion of sintered aluminum powder in terphenyls and water, fouling deposits in organic liquids, and the corrosion of uranium carbide in liquid lead.

R.N.A.

N65-31634# Air Force Systems Command, Wright-Patterson AFB. Ohio. Air Force Materials Lab.

INVESTIGATION OF BASIC FACTORS INVOLVED IN THE FORMULATION AND CHARACTERIZATION OF ALUMINUM COMPLEX IMIDO ACIDS AS HIGH TEMPERATURE GREASE THICKENERS

Ernest L. Plummer Oct. 1964 28 p refs (AFML-TR-64-324; AD-610248)

This report covers recent studies of aluminum salts of substituted benzoic acids for use as high temperature grease thickeners. It has been shown that although aluminum tribenzoate can be prepared by the reaction of aluminum isopropoxide with benzoic acid, it is hydrolytically unstable and, on exposure to moisture, hydrolyzes to aluminum dibenzoate monohydroxide. A literature survey on aluminum salts is included in addition to infrared and thermal gravimetric analysis data on the aluminum salts which have been prepared.

Author

N65-31637# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

POLYORGANOSILOXANES—LIQUID BASE OF HIGH TEMPERATURE CONSISTENT OILS

Ye. M. Oparina, G. S. Tubyanskaya, and R. I. Kobzova 30 Jun. 1965–15 p. refs. Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow), no. 1, 1964–p 32–38 (FTD-TT-65-322/1+2+4; AD-617947)

Comparison is made of various polyorganosiloxane liquids for use as bases in high temperature consistent oils. Temperatures at freezing and boiling points, viscosity at various temperatures, and molecular weights are given:

molecular weights having been determined cryoscopically with a specially developed thermistor. Evaporability of the liquids in a 0.1 mm layer at temperatures between 200° and 350° C and the thermo-oxidation stability of the liquids are given. Polymethylsiloxane liquids, intended for operation at 200° C, have better physico-chemical properties, thermo-oxidation stability, and anti-wear properties than the polyethylsiloxane liquids. With regard to viscosity-temperature and anti-wear properties, the polymethylsiloxanes are better than the polymethylphenylsiloxane liquids. For use as liquid bases at temperatures above 200° C, the polymethylphenylsiloxanes and polymethylchlorophenylsiloxanes are recommended.

N65-31656 Joint Publications Research Service, Washington, D. C.

THE EFFECT OF FRICTION ON THE DYNAMICS OF SERVO SYSTEMS

G. S. Chernorutskiy *In its* Izv. VUZov: Instr. Building, Vol VIII. No. 3, 1965 p 51-58 refs (See N65-31650 20-14) CFSTI: \$5.00

This article presents a method of accounting for the effect of friction on the dynamics of servo systems with random selection of the magnitude of the mechanical resistance. It is shown that in this case all the dynamic indices of the system have a random nature. The concept is introduced of the probability of the realization of given dynamic properties of a system which can be treated as the reliability of the dynamic indices.

N65-31718# Air Force Systems Command, Wright-Patterson AFB. Ohio. Foreign Technology Div.

DETERMINING WEAR RESISTANCE OF FRICTION COUPLINGS BY THE METHOD OF CONSUMING WORKING MEDIUM THROUGH THE SLOTS BETWEEN THE FRICTION SURFACES

F. Ya. Zagavura 18 May 1965 10 p refs Transl. into ENGLISH from Dopovidi Akad. Nauk Ukr. RSR (Kiev), no. 5, 1964 p 603-606

(FTD-TT-65-69/1+2; AD-617322)

A method is presented for the determination of wear resistance of friction couplings by the measurement of the consumption of the working medium through the gaps between the friction surfaces. The working medium can be gas or liquid. The change in mass per unit time or per unit volume of the working medium or the change in working pressure per unit time allows the automatic measurement and recording of data on the wear resistance of the friction couplings during testing. The method has high sensitivity and does not require costly equipment.

E.E.B.

N65-31797# General Electric Co., San Jose, Calif. Vallecitos Atomic Lab.

GENERAL CORROSION OF MATERIALS FOR NUCLEAR SUPERHEAT APPLICATIONS

W. L. Pearl, E. G. Brush, G. G. Gaul, and G. P. Wozadlo Washington, AEC, Mar. 1965–129 p. refs (Contract AT(04-3)-189)

(GEAP-4760) CFSTI: \$4.00

The general corrosion properties of several commercially available materials have been investigated for application as fuel cladding in superheat reactor systems. Each datum point obtained under heat-transfer conditions represented an integrated corrosion response over a temperature gradient along the length of the electrically heated test specimen. An analytical model is developed by which these data may be treated to yield corrosion behavior at a given, specific temperature. Results are reported for a 10 000-hour study of several nickel and stainless steel alloys that were exposed isothermally to 1050° and 1150° F

superheated steam. Hastelloy-X, Incoloy-825, Inconel-625, and Incoloy-800 had low initial and long-time linear corrosion rates and formed good protective and tenacious oxides up to 1150° F. Type-406 stainless steel had a high initial but low long-time linear corrosion rate and formed a protective and tenacious oxide up to 1150° F. Inconel-600 had adequate corrosion resistance to 1050° F but formed a nonprotective oxide film with a significant portion lost to the system at 1150° F. Type-304 stainless steel had a significant corrosion rate at 1050° and 1150° F but formed a relatively tenacious oxide at both temperatures that eventually reached a limiting thickness with subsequent spalling.

N65-31865# Battelle Memorial Inst., Columbus, Ohio.
STRUCTURAL CHANGES IN HIGH-STRENGTH STEEL ASSOCIATED WITH STRESS CORROSION AND ITS RELATIONSHIP TO DELAYED FAILURE Summary Report, 29 Jun. 1964—
29 Jun. 1965

D. I. Phalen, D. A. Vaughan, A. B. Tripler, Jr., W. K. Boyd, and C. M. Schwartz. 21 Jul. 1965. 21 p. refs. (Contract NOw-64-0267-c)

(AD-468171)

Studies of the structural changes associated with stress corrosion and delayed failure in AISI 4340 steel have shown that significant changes take place in both the internal structure and the fracture-surface morphology as a result of specific treatments, particularly the cathodic portion of the corrosion reaction. The incipient stage of stress cracking may be the result of stress corrosion, hydrogen embrittlement, or both, inasmuch as either corrosion or cathodic charging regenerates visible stacking faults in martensite. The regeneration of these stacking faults is believed to be the cause of transgranular fracture in the initial stages of stress-corrosion cracking. Examination of the fracturesurface morphology of stress-corrosion cracked and hydrogencracked alloys indicates that, after the initial reaction, hydrogen diffuses to and along prior-austenite grain boundaries and causes intergranular failure. The most likely mechanism for intergranular failure appears to be reduction of prior-austenite grain boundary energy as a result of adsorbed hydrogen. The analysis of fracture morphology of stress-corrosion failures is compared with that of a hydrogen-cracked fracture surface modified by a subsequent anodic treatment in the corrosion medium. Author

N65-31877# Battelle-Northwest, Richland, Wash. CORROSION IN SIMULATED PRTR FUEL ELEMENT SUR-FACE CREVICES

W. K. Winegardner Jul. 1965 26 p refs (Contract AT(45-1)-1830)

(BNWL-83) Available from AEC, Oak Ridge, Tenn.: \$2.00

Two out-of-reactor tests were conducted to study corrosion of Zircaloy-2 in crevices with geometries similar to those existing on heat transfer surfaces of Plutonium Recycle Test Reactor fuel elements. The tests were conducted in high temperature (293°C), lithiated water at a pH of about 10 and used electrically heated, Zircaloy-2 clad test assemblies. Heat flux associated with heated crevices was about 1100 W/in². Examination after 70 days of loop exposure revealed test assembly cladding penetration, up to 0.007 in., in heated crevices. It is felt that the accelerated attack was the result of the concentration of lithium hydroxide by local boiling.

N65-31884# Franklin Inst., Philadelphia, Pa. Franklin Inst. Research Labs.

PRELIMINARY STUDY OF THE ELASTIC ORIFICE AS A FLOW CONTROL DEVICE IN GAS-LUBRICATED BEARINGS Interim Report

P. Koch Jun. 1965 18 p (Contract Nonr-2342(00)) (NASA-CR-64587; I-A2049-23; AD-618210)

The feasibility of using elastic orifices as flow control devices in externally pressurized, gas-lubricated bearings was studied. The configuration used in the study is shown. The configuration was chosen because it showed promise of fulfilling the main criterion for the success of the control device, substantial increase in throat area as the load pressure increased from zero load to a value approaching full bearing load. No attempt was made to design an orifice-only to determine whether it was possible to find values of the parameters such that the criterion was fulfilled for reasonable values of the supply pressure. The major effort was in the solution of the equations for the elastic deformation of the orifice. This was done through the development of a computer program based on a finite difference approximation to the equations of linear elasticity. It was concluded that it is possible to find values of the parameters such that the throat area of the nozzle changes E.E.B. substantially with the load on the bearing.

N65-32146# Societe d'Etudes, de Recherches et d'Applications pour l'industrie, Brussels (Belgium).

DESCRIPTION OF A LOOP FOR DYNAMIC CORROSION TESTS IN WATER OF HIGH TEMPERATURE [DESCRIPTION D'UNE BOUCLE POUR ESSAIS DYNAMIQUES DE CORROSION DANS L'EAU A HAUTE TEMPERATURE] W. Vanmol, R. Hennaut, J. Waty, and W. R. Ruston EU. TOM, 1965 26 p. In FRENCH; ENGLISH summary

(Contract EURATOM-089-62-7 RDB)

(EUR-1744.f; EURAEC-1061) Available from Belg. Am. Bank and Trust Co., New York, Account No. 22.186: 40 Belg. Fr.

The loop is specially designed for dynamic corrosion tests at high temperature in high-purity water or water containing additives. The maximum values for the test parameters are 335°C for the temperature. 170 kg/cm² for the total pressure. 25 m³/h for the flow-rate and 10 m/sec for the water circulation rate on the samples in the present geometry of the test sections. The principle on which operation of the rig is based is described in detail. The material and equipment used in the main and secondary circuits are all of stainless steel. This equipment and that of the auxiliary circuits are described, as well as the extent to which they are interdependent. The account of the characteristics of the unit is completed by a description of the electric control equipment and the automatic alarm and safety devices. Operation of the loop is illustrated by a description of a brief running procedure.

N65-32254* # National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala. STRESS CORROSION STUDIES OF AM-355 STAINLESS STEEL

J. G. Williamson 9 Aug. 1965 22 p

(NASA-TM-X-53317) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F

The stress corrosion cracking susceptibility of AM-355 stainless steel alloy was studied. This alloy is used extensively for sleeves in flared tube fittings in the S-I and S-IC stages of the Saturn I and Saturn V vehicles, respectively. Various heat treated conditions were investigated and relative stress corrosion cracking susceptibility determined. Of the generally used heat treatments, the fully hardened SCT 1000 treatment was found to be superior in stress corrosion resistance.

N65-32319# Brussels Univ. (Belgium)

A STUDY OF SOME METAL OXIDATION PROBLEMS AND APPLICATION OF IMPEDANCE MEASUREMENT METHODS TO THE STUDY OF RESISTANCE TO CORROSION IN AN AQUEOUS MEDIUM Final Report No. 1, Part 2

[1964] 21 p refs Transl into ENGLISH from FRENCH (Contract EURATOM-081-62-5 RDB) (EURAEC-1129, Pt. 2)

For platinum as for gold, the anodal process was found to be accompained by an immediate and important growth of the electrode capacitance followed by a slow increase with time. This behavior is just the opposite of that shown by metals such as aluminum and zirconium for which the thickening of the oxide diminishes the value of the dynamic capacity. In the case of gold it appears that the increase of capacitance with time can be explained only by the formation of a surface compound endowed with good electronic conductivity and offering a porous structure. In the case of platinum it is difficult to provide positive proof of an oxide film. The fact that the capacity grows has led some authors to reject the theory of the formation of oxide in favor of the concept of chemisorbed oxygen. However, the data presented appears to favor the formation of oxide. Coulometric measurements confirm that the variation of the differential capacitance observed during the anodal oxidation of the gold is accompanied by a growth of the quantity of oxygen formed

N65-32322# Virginia Polytechnic Inst., Blacksburg. Dept. of Metallurgical Engineering.

THE RELATIONSHIP OF NITROGEN CONTENT OF AUSTENITIC STAINLESS STEELS TO STRESS CORROSION Quarterly Report No. 1, 1 Jun.-30 Sep. 1964

Brownell N. Ferry 30 Sep. 1964 12 p. refs. Co-Sponsored by EURATOM /ts Rept. 438-1

(Contract AT(40-1)-3208)

(EURAEC-1216)

Progress is reported on an investigation to determine the mechanism by which nitrogen affects the susceptibility of austenitic stainless steels to stress corrosion. Emphasis was placed on the following: (1) design and construction of a new nitriding facility. (2) design and construction of chromium and nickel plating apparatus. (3) formulation of procedures for plating nickel and chromium on iron wires, and (4) refinement of the torsional pendulum to facilitate operation.

N65-32351# Battelle Memorial Inst., Columbus, Ohio. STRUCTURAL CHANGES IN HIGH-STRENGTH STEEL ASSOCIATED WITH STRESS CORROSION AND ITS RELATIONSHIP TO DELAYED FAILURE Quarterly Progress Report, Jun. 29–Sep. 28, 1964

D. A. Vaughan, D. i. Phalen, A. B. Tripler, and C. M. Schwartz 23 Oct. 1964, 9 p.

(Contract NOw-64-0267-c)

(QPR-1: AD-617785)

The investigation of structural characteristics of AISI 4340 steel, quenched and tempered to produce three strength levels, has been initiated as a basis for the planned studies of these materials under conditions of stress-corrosion attack. Due to problems in contract negotiation, this program was delayed in starting. However, the experimental work, plus a literature study, has been initiated. Preliminary electron metallographic studies of the steel have been carried out in the process of developing techniques. Electron diffraction and X-ray diffraction results are being correlated with the microstructure.

N65-32693# Army Biological Labs., Fort Detrick, Md. GRAPHITIZATION OF CAST IRON AS AN ELECTRO-BIOCHEMICAL PROCESS IN ANAEROBIC SOILS

C. A. H. von Wolzogen Kühr and L. S. van der Vlugt 3 Mar. 1964 50 p refs Transl. into ENGLISH from Water (The Hague), v. 18, no. 16, 3 Aug. 1934 p 147–165 /ts Transl. No. 1021 (FD3-3957(T-166); AD-617552)

Corrosion of cast iron in the ground was classified as to rust formation or graphitization; iron oxide being the corrosion product of the rust and iron sulfide of graphitization. The fact that extensive corrosion of iron has been observed in

soils with only weak sulfate reduction, even though cast iron pipes in such soils may have a high layer of high iron sulfide content, leads to the conclusion that graphitization is not a purely chemical sulfur corrosion. Sulfate reduction in the ground was considered as a natural accumulation process, and it was concluded that this reduction serves as a depolarizer in the corrosion cell and the iron goes into the solution anodically. This anaerobic corrosion of iron was, therefore, regarded as an electro-biochemical process. Iron pipes are considered unsuitable for soils which are considered to possess chemical sulfate agressiveness.

N65-32849# Union Carbide Nuclear Co., Paducah, Ky. Paducah Gaseous Diffusion Plant.

A CHROMATOGRAPH FOR THE ANALYSIS OF HIGHLY REACTIVE AND CORROSIVE COMPOUNDS

E. L. Williamson, C. M. Johnson, T. J. Mayo, and W. R. Ross-massler 8 Jul. 1965–23 p. refs

(Contract W-7405-ENG-26)

(KY-485) CFSTI: \$1.00

A chromatograph for the analysis of corrosive gases was designed, built, and tested. The instrument features a unique sample valve and a bleed to the carrier system to improve the analysis for hydrofluoric acid. Data on several individual and mixed gases are tabulated.

Author

N65-32852# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ON CERTAIN CHARACTERISTICS OF IRRADIATING LUBRICANTS WHEN STUDYING THEIR RADIATION RESISTANCE Yu. S. Zaslavskiy, A. D. Stukin, and G. I. Shor 6 Jul. 1965 14 p refs Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow), no. 10. 1964 p 44–48 (FTD-TT-65-325/1+2+4; AD-618011)

The radiation resistance of lubricants, which depends on their chemical make-up and the intensity and type of ionizing radiation to which they are subjected, is discussed. Both reactors and gamma sources are used to irradiate samples of various lubricants, and the use of a dosimeter which measures absorbed dosages in a homogeneous field of radiation is proposed. This dosimeter, using constant specific heat and the linear increase of the rate of sample heating, is dependent on the absorbed radiation dose measured directly in radians. A sample container dosimeter made of aluminum, a polyethylene sensing element, and thermocouples is described. W.M.R.

N65-32968*# National Aeronautics and Space Administration, Washington, D. C.

ON THE DISSOLUTION OF ZINC IN ALKALIS [O RAST-VORENII TSINKA V SHCHELOCHAKH]

V. I. Rodionova Sep. 1965–13 p. refs. Transl. into ENGLISH from Uch. Zap. Mosk. Gos. Ped. Inst. (Moscow), v. 99, 1957 p.221-226

(NASA-TT-F-252) CFSTI: HC \$1.00/MF \$0.50 CSCL 07D The relationship between the dissolution of zinc and the nature of the alkalis and the concentration of their solutions was investigated. The corrosion rate of zinc depends on the nature of the alkali cation. In all the alkalis investigated, the dependence of the corrosion rate of zinc on the alkali concentration is almost identical. In dilute solutions of alkalis, the corrosion rate of zinc increases with increasing concentration of the aggressive medium, reaching a maximum in one normal solution of potassium hydroxide and lithium hydroxide and in a 3N solution of sodium hydroxide. In medium concentrations of alkalis, the corrosion rate of zinc remains constant and does not depend on the ion concentration of the aggressive medium. In concentrated solutions of most alkalis, the corrosion rate decreases somewhat. The described dependence of the corrosion rate of zinc on the alkali concentration is explained by

the character of the surface compounds that arise during the reaction of zinc with alkali, their composition, structure, properties, and ability to persist on the surface of the metal. The coating film passivating action is confirmed by experiments on the mixing of the alkali solutions.

N65-32983# Commissariat a l'Energie Atomique, Saclay (France), Centre d'Etudes Nucleaire.

THE COMPATIBILITY OF VARIOUS AUSTENITIC STEELS WITH MOLTEN SODIUM [COMPATIBILITE DE DIVERS ACIERS AUSTENITIQUES AVEC LE SODIUM FONDU]
L. Champeix, J. Sannier, R. Darras, W. Graff, and P. Juste 1963 28 p refs In FRENCH; ENGLISH summary (CEA-2371) CFSTI: HC \$2.00/MF \$0.50

Various techniques for studying corrosion by molten sodium have been developed and applied to the case of 18/10 austenitic steels. The results obtained are discussed as a function of various parameters: type of steel, temperature, oxygen content of the sodium, surface treatment, welds, mechanical strain. In general, these steels have an excellent resistance to sodium when the latters oxygen content is limited by a simple purification system of the "cold trap" type, and when an attempt is made to avoid cavitation phenomena which are particularly dangerous, as is shown by the example given. Author

N65-33005# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

WEAR RESISTANCE OF POLYFORMALDEHYDE IN SLEEVE BEARINGS

V. N. Kestel'man, D. I. Fel'dman, and N. Ya. Kestel'man 9 Jul. 1965 10 p refs Transl. into ENGLISH from Plasticheskiye Massy (Moscow), no. 7, 1964 p 65-66 (FTD-TT-65-329/1+2+4; AD-618058)

Described is a new polymerpolyformaldehyde (PFA) possessing a dense crystalline lattice, which defines its high physico-mechanical properties. The indices of its basic properties are shown. Tests found that sleeve bearings made of PFA are 3 to 4 times more wear resistant than caprone bearings, and 1.5 to 2 times more than ceramet bushings and bearings. The PFA bearings retained stability of dimensions and reliable friction under various conditions of load, lubrication, sliding rate, etc., with a magnitude of wear directly proportional to the friction path.

N65-33475# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

LUBRICANT FOR PROCESSES OF UPSETTING AND DRAWING OF METALS

L. L. Baybakova, Z. G. Smolkotina et al. 14 Apr. 1965 5 p. Transl. into ENGLISH from Russian Patent No. 161856 (Appl. No. 821339/23-4, 23 Feb. 1963) 1 p. (FTD-TT-64-1197/1; AD-614960)

The use of calcium soaps of synthetic fatty acid fraction C_5-C_6 as a lubricant for drawing metals is proposed. The lubricant increases the steadiness of the working tool by a factor of three in the drawing of nonferrous metals (brass and the alloy AMT-5). Good results are also obtained in cold upsetting of wood screw blanks made of brass wire. The technology of the preparation of the lubricant is outlined. W.M.R.

N65-33491# Rocketdyne, Canoga Park, Calif.
RESEARCH IN THE FIELD OF LIQUID-METAL-LUBRICATED BEARINGS Quarterly Progress Report, Period Ending 15 Jun. 1965

25 Jun. 1965 60 p refs (Contract AF 33(657)-10553) (R-5086-7; AD-465546) A program designed to investigate potassium lubricated bearings has been continued. Performance tests of special hybrid bearings in the simulated system test rig using water were concluded and data were reduced. Analyses were performed to predict bearing performance. Correlation between analysis and test data is excellent and typical results are presented. Preparations are now under way for potassium lubricated simulated system tests at temperatures up to 1200° F.

Author

N65-33652# Joint Publications Research Service, Washington, D. C.

CORROSION OF URANIUM AND ITS ALLOYS

V. V. Gerasimov 26 Aug. 1965 53 p refs Transl. into ENGLISH of 2 Chapters from the book, "Korroziya Urana i Yego Splavov" Moscow, Atomic Publishing House, 1965 p 40-95

(JPRS-31728; TT-65-3223) CFSTI: \$3.00

CONTENTS:

1. CORROSION OF URANIUM ALLOYS IN AQUEOUS
MEDIA V. V. Gerasimov p 1-24 refs (See N65-33653 22-17)

2 CORROSION OF URANIUM AND ITS ALLOYS IN NON-AQUEOUS MEDIA AND PROTECTIVE COATINGS V. V. Gerasimov p 25-48 refs (See N65-33654 22-17)

N65-33653 Joint Publications Research Service, Washington, D. C.
CORROSION OF URANIUM ALLOYS IN AQUEOUS MEDIA
V. V. Gerasimov In its Corrosion of Uranium and Its Alloys

V. V. Gerasimov *In its* Corrosion of Uranium and Its Alloys 26 Aug. 1965 p 1-24 refs (See N65-33652 22-17) CFSTI: \$3.00

Various methods of increasing the corrosion resistance of uranium in water and steam are discussed, with particular emphasis on alloying and heat treatment. It was pointed out that the highest resistance was exhibited by alloys of uranium with hafnium, nickel, niobium, titanium, zirconium, molybdenum, and silicon. Effects of different combinations of these alloys on the corrosion resistance are described, in relation to heat treatment and exposure to aqueous media. Tabular data on uranium alloys are included for corrosion rates in boiling distilled water; corrosion resistance in water, and in water and steam. Corrosion rates after various heat treatments are also tabulated.

N65-33654 Joint Publications Research Service, Washington, D. C.

CORROSION OF URANIUM AND ITS ALLOYS IN NON-AQUEOUS MEDIA AND PROTECTIVE COATINGS

V. V. Gerasimov *In its* Corrosion of Uranium and its Alloys 26 Aug. 1965 p 25-48 refs (See N65-33652 22-17) CFSTI: \$3.00

Mechanisms of atmospheric corrosion of pure uranium and uranium alloys are described in relation to the effects of temperature and humidity on the corrosion rates. The influence of the electric field on the oxidation rate of metals, and uranium oxidation according to the linear law are also discussed. Various alloy combinations are considered, and data are given for their resistance under different test conditions. Methods of coating uranium are also described, and test results on the corrosion resistance properties of nickel and silver are tabulated according to method of production, media, temperature, and length of test. The effect of temperature on the oxidation rate of uranium in the steam phase, and the conflagration curve of uranium tempered in oxygen from the eta-region are plotted. Tables list the corrosion rates of uranium in water steam, in argon, and in saturated steam; and the free energy of formation of uranium compounds.

N65-33771# Naval Research Lab., Washington, D. C. Surface Chemistry Branch.

SURFACE CHEMICAL METHODS OF DISPLACING WATER AND/OR OILS AND SALVAGING FLOODED EQUIPMENT. PART 4: AGGRESSIVE CLEANER FORMULATIONS FOR USE ON CORRODED EQUIPMENT

H. R. Baker and P. B. Leach 15 Jun. 1965 17 p refs (NRL-6291; AD-618956) CFSTI: \$1.00

The surface chemical techniques previously reported from this Laboratory for the removal of oily contamination, sea water, and fresh water from electronic and electrical equipment after flooding are not designed to remove the corrosion products which often form on some parts of equipment after salt water exposure. Thickened "paint-on" spot-cleaning compositions have been developed for the removal of such corrosion from aluminum, copper, brass, steel, cadmium plate, and zinc plate. The formulations employ solid chemicals to the maximum extent possible, the solids being combined with water or commercially available mineral acids just before use. The use of such aggressive cleaners may advantageously precede the surface chemical treatment described previously.

N65-33871*# Southern Research Inst., Birmingham, Ala. EFFECT OF PROTECTIVE COATINGS ON THE STRESS-CORROSION PROPERTIES OF SUPERSONIC-TRANSPORT SKIN MATERIALS Eleventh Quarterly Status Report, 1 Jun.-31 Aug. 1965

J. O. Honeycutt and A. C. Willhelm 24 Sep. 1965 34 p refs (Contract NASr-117)

(NASA-CR-67014) CFSTI: HC \$2.00/MF \$0.50 CSCL 11F Investigation of selected coatings to protect metal substrates of supersonic transport skin materials from stress corrosion continued. Results from the 3000 hr exposures to hot salt at 550° F, and humid salt at 95° F showed that the AM 350 SCT stainless steel substrate will require protection from stress corrosion in salt-laden humid environments, and duplex annealed Ti-8AI-1Mo-1V alloy will require protection from stress corrosion when exposed to dry salt at 550° F. Aluminum-modified silicone provides excellent protection for at least 3000 hr in either hot salt environments at 550° F, or in humid salt environments at 95° F. However, catalytically cured silicone provides protection only at 95° F, and quickly shredded from each substrate in the hot salt environment at 550° F. W.M.R.

N65-33887# Joint Publications Research Service, Washington, D. C.

CLAD STAINLESS STEELS

S. A. Gladyrevskaya, L. V. Meandrov, S. A. Golovanenko, and A. A. Bykov 21 Sep. 1965 69 p refs Transl, into ENGLISH of 3 Chapters from the book, "Dvukhslovnyye Stali v Khimicheskom Mashinostroyenii," Moscow, "Mashinostroyeniye" Publishing House, 1965 p 81–147

(JPRS-32087; TT-65-32580) CFSTI: \$3.00

A study is presented on corrosion resistance, fatigue strength, and engineering processes in the manufacturing of clad stainless steels. Discussions are included on clad steel passivity, heat treatment effects on clad steel corrosion resistance, intercrystalline corrosion, overall corrosion resistance in different corrosive media, point corrosion, welding behavior in a corrosive medium, corrosion under stress, fatigue strength in the absence and presence of stress concentrators, engineering properties of bimetals when pressure worked, characteristics of billeting and assembly operations involving bimetals, manual arc and automatic welding, and different articles made of clad steel.

N65-33907# Shell Oil Co.. Wood River, III. Research Lab. STUDY OF HELICOPTER GEAR LUBRICATION Quarterly Progress Report, Mar.—May 1965

D. R. Bailey and S. J. Beaubien [1965] 16 p refs (Contract NOw-65-0323-c) (QPR-1; AD-618522)

The effect of several gear surface precoatings on gear performance, and the gear performance of a typical synthetic, tetraester, five-centistoke base oil are investigated. It was found that precoating gears by heating in atmospheres of air, or a diester base oil, had little effect on the score load of a MIL-L-23699 test oil, while gears treated in a nitrogen atmosphere gave an increase in score load. Fatigue life as measured by the time to pitting failure, on the other hand, was considerably affected by the precoatings, particularly at high speed. In constant load tests at 6400 rpm it was found that the diester oil precoating extended gear life by a factor greater than seven, while the air precoating increased life three times. Under these same conditions the nitrogen treatment had no effect on gear life. While the coating techniques investigated represent only an initial attempt in this field, the improvement in performance is sufficient to warrant further study From tests with the synthetic base oil, it was found that this oil is rather insensitive to break-in, and that fatigue failures occurred by fatigue-scoring rather than by pitting.

N65-33966*# General Electric Co., Cincinnati, Ohio. Space Power and Propulsion Section.

ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM Quarterly Progress Report No. 1, Quarter Ending Jul. 15, 1965

R. W. Harrison and E. E. Hoffman 21 Jul. 1965 15 p. (Contract NAS3-6474)

(NASA-CR-54477) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F

During the first quarter of the program, work proceeded on the topics abstracted below: Material vendors have been contacted, and the ordering of loop construction materials can commence promptly upon notification of the alloy selection by the NASA Project Manager. A lithium shipping container has been designed and constructed. High purity lithium will be purchased from Lithium Corporation of America. Mini-Flex Corporation, Lawndale, California, has demonstrated their capability to fabricate refractory alloy bellows, and an order for Cb-1Zr and T-111 bellows has been placed with this firm.

N65-34121# Dynamic Science Corp., South Pasadena, Calif. RHEOLOGY OF SILICONE FLUIDS THICKENED WITH BORON NITRIDE Quarterly Report No. 6, 15 Dec. 1963–15 Mar. 1964

15 Mar. 1964 24 p

(Contract AF 33(657)-9155)

(P-51a, QR-6; AD-463719)

The rheological properties of a grease thickened by boron nitride can be improved substantially if the thickener is composed of submicron size particles instead of relatively coarse grains characteristic of commercial grade material. The submicron material is being prepared by gas phase reaction of ammonia and boron trichloride under high nitrogen dilution at a temperature of 900° C. Purification is being effected by vacuum sublimation of the by-product ammonium chloride. Two boron nitrides have been used to thicken QF-6-7039 fluid, and measurements of consistency as a function of solid/fluid ratio have been carried out. Two or three additional fluids, including MLO-60-231 6 \$\Phi\$ ether, will also be thickened. Rheological tests will be conducted on all greases at 77° and 600° F, shear rates will range from 2 to 10000 reciprocal seconds.

N65-34221*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

VAPOR-DEPOSITED THIN GOLD FILMS AS LUBRICANTS IN VACUUM ($10^{-11}\,$ mm Hg)

Talivaldis Spalvins and Donald H. Buckley Washington, NASA, Oct. 1965–15 p. refs

(NASA-TN-D-3040) CFSTI: HC \$1.00/MF \$0.50 CSCL 13H

Thin gold films were vapor-deposited on nickel, nickelchromium, and nickel rhenium surfaces to be used for lubrication purposes. The durability of the film was determined by friction characteristics. Durability and strong bonding (adhesion) between the film and the substrate are essential when thin films are used as lubricants. Two methods of substrate preparation for vapor deposition were investigated: mechanical polishing and electron bombardment. Friction experiments were conducted with a hemispherical niobium rider sliding on the deposited gold film on a rotating disk. Results of this investigation indicated that the film endurance life during friction experiments was increased when the substrate was electron bombarded and thermally etched prior to vapor deposition on the etched surface at an elevated temperature of 800° F. A diffusion-type interface was believed to be formed between the film and the substrate.

N65-34252*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

CORROSION OF REFRACTORY ALLOYS BY REFLUXING POTASSIUM

C. M. Scheuermann Washington, NASA, 1965–18 p. refs Presented at the 4th Symp. on Refractory Metals, Inst. of Metals Div., AIME, French Lick, Ind., 3-5 Oct. 1965

(NASA-TM-X-52136) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F A summary of corrosion capsule studies to test the resistance of niobium- and tantalum-base tubing alloys to refluxing potassium over the temperature range 1800° to 2400° F. and for times up to 4000 hours, is presented. The various capsules, containing about 1.1/4 cc of potassium, were tested in high-vacuum chambers at pressures of 10^{-7} to 10^{-8} torr. Metallographic examinations were made of all specimens. It was observed that most alloys exhibited surface roughening, or etching. Ungettered alloys were more severly attacked and exhibited solution and intergranular penetration. Gettered alloys, with the exception of Cb-1Zr, showed only relatively slight effects of potassium corrosion. After 2000 hrs at 1800° F. Cb-1Zr capsule walls exhibited up to 7.0 mils of intergranular attack and grain removal at the liquid-vapor interface. Vacuum fusion analyses for oxygen showed a greater concentration of oxygen in the bottom sections of several capsules than in the top sections.

N65-34319# Ohio State Univ. Research Foundation, Columbus. A STUDY OF THE MECHANISM OF STRESS CORROSION CRACKING IN THE IRON-NICKEL-CHROMIUM ALLOY SYSTEM Quarterly Report, 17 Dec. 1964–16 Mar. 1965 R.W. Staehle, F. H. Beck, M. G. Fontana, and J. P. Hirth 5 Apr. 1965 18 p

(Contract AT(11-1)-1319)

(COO-1319-24)

A model for cracking is developed from stress corrosion experiments with iron-nickel-chromium alloys, and studies have been made of the tensile properties of the materials used in these experiments. Conditions resulting in specimens subjected to stress are compared to nonstressed conditions for various alloys; and it is found that, except in the case of very low alloy materials, there is very little oxidation, pitting, or other chemical attack in the absence of stress. The presence of stress promotes oxidation, cracking, and pitting, and these attacks vary with the alloy used. Cracking is found to be both intergranular and transgranular. Scoping studies were initiated to determine the effects of water-oxygen-chloride-environment

on the alloys, and it is shown that there is generally very little attack on the stressed specimens in a water environment. Other environments appear to play an important role according to preliminary studies. Tensile stress, yield stress, and percentage elongation are tabulated at room temperature for the various alloys.

M.W.R.

N65-34370# Douglas Aircraft Co., Inc., Newport Beach, Calif. Astropower Lab.

STRESS CORROSION IN MARTENSITIC HIGH STRENGTH STEELS Quarterly Report, Nov. 1964—Jan. 1965

C. B. Gilpin, S. M. Toy, and N. A. Tiner Feb. 1965 43 p refs (Contract AF 33(657)-10744) (Rept.-132-Q7; AD-463766)

Electron microautoradiographic experiments have indicated that cathodically charged hydrogen in the form of tritium) segregated to prior austenite grain boundaries in 4340 steel. After aging at room temperature for two weeks, the tritium was no longer segregated at boundaries but was distributed throughout the material. It was not possible to determine if the tritium concentration was decreased or if the tritium was just redistributed. Metallographic studies of cracks indicate that cracks initiate below the surface at inclusion site outcroppings on the surface. The crack front in the intergranular region of propagation appears to be relatively smooth, whereas in the transition portion it is quite jagged. The prinpal electrochemical processes taking place during the stress corrosion test are attributed to two cathodic reactions, hydrogen reduction and oxygen ion reduction, which cathodically control the anodic iron oxidation reaction. It is based on the analysis of the effect of oxygen content, pH and tempering on the polarization curves determined for marquenched 4340 steel. These results also form the basis for deriving the electrochemical aspects of stress corrosion cracking by coupling the most active redox reactions. A polarization curve on EF 18% nickel maraging steel in oxygenated 3% NaCl pH 1.5 was determined. Author

N65-35021# Battelle-Northwest, Richland, Wash. Metallurgy Research Section.

HIGH TEMPERATURE CORROSION OF CANDIDATE ATR STRUCTURAL MATERIALS

L. A. Charlot and R. E. Westerman Sep. 1965 72 p refs (Contract AT(45-1)-1830) (BNWL-100)

Research data in support of the Advanced Test Reactor program of compatibility between structural material and gas are presented. The investigations were primarily concerned with the behavior of Hastelloy X-280, a nickel base alloy, and Haynes Alloy 25, a cobalt base alloy, in static atmospheres of oxygen, methane, carbon monoxide, carbon dioxide, nitrogen, flowing helium, and water vapor at temperatures of 2048° and 2192° F. Evaporation rates of the alloys, and corrosion of weldments in contaminated helium were also studied. Kinetic analyses of the gas-metal reactions were based on continuous weight change determinations. Metallography was employed to evaluate the microstructure of the corroded samples.

N65-35203*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

DEGRADATION OF POLYMERIC COMPOSITIONS IN VACUUM TO $10^{-9}\ \text{mm}$ Hg in Evaporation and SLIDING FRICTION EXPERIMENTS

Donald H. Buckley and Robert L. Johnson [1964] 30 p. refs Presented at the 20th Ann. Tech. Conf., Soc. of Plastics Engr., Atlantic City, 28-31 Jan. 1964.

(NASA-TM-X-54549) CFSTI: HC \$2.00/MF \$0.50 CSCL 111 Solid compositions studied included PTFE, PCFE, polyimides, both filled and unfilled, and fluorocarbon telomers.

Evaporation experiments were conducted at ambient temperatures to 1100° F and pressures to 10⁻⁸ mm Hg. Various molecular weights of different polymers were examined. Results indicate that evaporation rates in vacuum for polymers vary with molecular weight. Friction and wear experiments were conducted with a 3/16-inch-radius rider hemisphere (usually polymer) sliding on a flat disk (various materials) at speeds to 1480 feet per minute with a 1000-gram load on the rider specimen and at an ambient pressure of 10⁻⁹ mm Hg. Fillers were found to influence markedly the wear of PTFE and PCFE in vacuum as a result of changes in heat dissipation properties. but they showed little or no influence on friction. Unfilled polyimide was found superior to unfilled PTFE and PCFE in friction, in wear, and in degradation characteristics. With the aid of a mass spectrometer, the decomposition mechanism for various PTFE compositions was observed during sliding. Author

N65-35287# Martin Co., Denver, Colo. Aerospace Div. EVALUATION OF THE MECHANISM OF CORROSION IN CAPILLARIES Final Report

P. J. Pizzolato, B. K. Larkin, and C. C. Fatino 22 Jun. 1964-33 p. refs

(Contract AF 04(647)-576)

(DSR-S-11077; CR-64-144; ME-627; AD-602782)

Corrosion mechanisms in a capillary of 2014 aluminum were studied. The corrosive media were products of the reaction between water and a fuel mixture of hydrazine and dimethyl hydrazine, and water and the oxidizer nitrogen tetroxide. Two displacement systems were used with these media. In one the capillary was first filled with water and later displaced by propellant, and in the other the capillary was first filled with propellant and later displaced by water. Two capillary configurations were used: a uniform cylindrical hole and a large cavity connected to a propellant tank by a narrow hole. No evidence of corrosion was found in specimens exposed to fuel and water. Of 89 specimens exposed to oxidizer and water, 60 showed no significant corrosion. The oxidizer corrosion process formed localized pits ranging in depth from 0.0004 to 0.012 inches. No intergranular corrosion was found. The oxidizer corrosion was more severe in the large cavity than in the uniform hole. Diffusion theory shows that corrosive media will not remain in capillaries more than two weeks. Experimental verification was obtained by both corrosion data and liquid analysis. R.N.A.

N65-35437# Aluminum Co. of America, New Kensington, Pa. ALCOA Research Labs.

INVESTIGATION OF THE MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS Final Report, 6 Dec. 1963-6 Feb. 1965

G. C. English [1965] 109 p (Contract NOw-64-0170-c) (AD-615789)

The cathodic protection of 7075 alloy in a corrosive, acid chloride solution was investigated. Subsize tensile specimens for protection were taken in the short-transverse direction from 2-inch thick plate in two tempers, one susceptible to stress corrosion and one not susceptible to this type of corrosion. Considerable evidence indicates that the potential protection reflected metallurgical structure rather than extraneous conditions such as the alkalinity produced by cathodic reactions. For all specimens, general corrosion decreased as cathodic protection was increased, first rapidly, and then gradually. Pitting on a microscopic scale ceased by the time a potential 0.20 to 0.25 volts negative to the free corrosion potential was reached. The results suggest strain induced depolarization of the anodic reaction. Electron microscopic examination of prepolished surfaces of cathodically protected specimens shows promise for relating the depolarization to microstructural R.W.H.

N65-35473# Lund Inst. of Tech. (Sweden).

ON HYDRODYNAMIC LUBRICATION WITH SPECIAL REFERENCE TO SUB-CAVITY PRESSURES AND NUMBER OF STREAMERS IN CAVITATION REGIONS

Leif Floberg Stockholm, Royal Swed. Acad. of Eng. Sci., 1965 37 p. refs. Its Acta Polytechnica Scandinavica, Mech. Eng. Ser. No. 19

(UDC-621.89.032) CFSTI: HC \$2.00/MF \$0.50

Hydrodynamic lubrication of two lightly loaded rotating circular cylinders is studied. Special reference is here given to subcavity pressures and number of oil streamers in cavitation regions. It is shown both theoretically and experimentally how the sub-cavity pressure will influence the number of streamers and the other bearing quantities. The agreement between theory and tests is quite satisfactory. It is shown that the influence of the surface tension can be neglected even at extremely light loads. Calculations are made for pressure distributions, load capacities, and oil flows. Tests are carried out for pressure distributions, load capacities and meniscus locations. Photos are taken showing the cavitation boundaries.

N65-35475*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

STUDIES OF LUBRICATING MATERIALS IN VACUUM Robert L. Johnson, Donald H. Buckley, and Max A. Swikert [1964] 32 p Presented by the USAF-Southwest Res. Inst. Aerospace Bearing Conf., San Antonio, 25–27 Mar. 1964 (NASA-TM-X-54555) CFSTI: HC \$2.00/MF \$0.50 CSCL 11H

Evaporation rate, friction, and wear investigations were conducted for studying the properties of lubricating materials in vacuum conditions. Evaporation rates for three polytetrafluoroethylene (PTFE) compositions were determined. The materials examined were an extruded PTFE composition and two molded materials. Results indicate that all three components exhibited lower evaporation rates at the higher temperatures than did a commercial PTFE composition. The extruded composition exhibited a higher evaporation rate than the two molded compositions. It is indicated that if minimum evaporation rate is required, the molded compositions may be more desirable. The evaporation rates for two epoxy compositions were also determined. Friction and wear studies in vacuum conditions explored the behavior during sliding contact for a series of polymeric compositions, binary alloys containing soft film-forming phases, complex alloys with film-forming materials, and a burnished MoS2 film. A burnished MoS2 film applied to type 440-C stainless steel in argon with a rotating soft wire brush had good endurance properties but somewhat higher friction than commerically available bonded films.

N65-35856 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ONE OF THE METHODS OF DETERMINATION OF FRICTION AND THERMAL FLOW IN SELF-SIMULATING PROBLEMS OF BOUNDARY LAYER

B. I. Reznikov and Yu. N. Smyslov *In its* J. of Appl. Mech. and Tech. Phys., No. 1, 1964 4 Mar. 1965 p 74–82 refs (See N65-35850 24-23)

A method is expounded for the determination of friction and heat flow which is not related to the numerical integrations carried out for boundary layer equations. Comparisons are made, and show that for complicated systems sufficiently accurate calculations can be made.

C.T.C.

N65-35941# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.
POLYORGANOSILOXANES—LIQUID BASE OF HIGH TEMPERATURE CONSISTENT OILS

Ye. M. Oparina, G. S. Tubyanskaya, and R. I. Kobzova. 30 Jun. 1965. 16 p. refs. Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow), no. 1, 1964. p. 32–38 (FTD-TT-65-322/1+2+4; AD-617947)

A comparative characteristic is given of polyorganosiloxane liquids, offering an interest in the role of liquid bases of high temperature consistent lubs. Polymethylsiloxane liquids as components of lubs, intended for operation at a temperature of 200°C, have the advantage in comparison with polyethylsiloxane liquid (physico-chemical properties, thermo-oxidation stability, antiwear properties) and with polymethylphenylsiloxanes (viscosity-temperature and antiwear properties). For silicon lubs intended for operation at a temperature of above 200°C, polymethylphenyl and polymethyl chlorophenylsiloxanes are recommended.

N65-36192# Southwest Research Inst., San Antonio, Tex.
LOAD-CARRYING CAPACITIES OF GEAR LUBRICANTS
OF DIFFERENT CHEMICAL CLASSES BASED ON RESULTS
OBTAINED WITH WADD HIGH-TEMPERATURE GEAR MACHINE USED WITH INDUCTION-HEATED TEST GEARS
Technical Report, Mar. 1960-May 1964

G. A. Beane, IV (AF Aero Propulsion Lab.) and C. W. Lawler Wright-Patterson AFB, Ohio, AF Aero Propulsion Lab., Apr. 1965 44 p. refs. Prepared jointly AF Aero Propulsion Lab. (Contract AF 33(616)-7223; AF 33(657)-9248; AF 33(657)-11028)

(AFAPL-TR-65-23; AD-620294)

The WADD High-Temperature Gear Machine and its operation are described briefly. The procedures used with the machine are shown to provide a realistic means of evaluating and screening lubricants for use in aircraft turbine engines operating at elevated gear and lubricant temperatures. A cross section of oils representing different chemical classes of lubricants was used with the WADD High-Temperature Gear Machine in conjunction with induction-heated test gears. The influence of gear material on load-carrying capacity of gears was studied by using two different steel compositions. Also, the effect of gear temperature on load-carrying capacity was investigated at temperatures up to 700° F. The data generated on the WADD High-Temperature Gear Machine, when compared with that generated on the Erdco Ryder Gear Machine, indicated that the rates obtained were comparable. When using Standard Ryder gears (AMS 6260) and gears made of a high-temperature gear material (Nitralloy-N steel), the load-carrying capacity of a lubricant could not be predicted adequately by using as test gears those composed of an alloy that was different from the alloy that would be used for the intended application. All of the lubricants evaluated when Nitralloy-N steel test gears were used demonstrated a decrease in load-carrying capacity with increasing gear temperature up to about 400° F. Author (TAB)

N65-36228# Frankford Arsenal, Philadelphia, Pa Pitman-Dunn Research Labs

THE STRESS CORROSION AND ELEVATED TEMPERATURE PROPERTIES OF MAGNESIUM-LITHIUM-SILICON ALLOYS

Anthony Sala and Ralph E Edelman Oct. 1964 15 p. refs. Presented at the 21st Ann. Meeting, Magnesium Assoc., New York, 5-7 Oct. 1964

(FA-A64-31; AD-620329)

Silicon additions improved the stress corrosion resistance of magnesium-lithium alloys in the as-quenched condition. In the stabilized condition, none of the alloys, with or without silicon exhibited any stress corrosion. The silicon-bearing alloys investigated exhibited improved elevated temperature properties over the alloys without silicon.

Author

N65-36246# Martin Co., Baltimore, Md., Research Inst. for Advanced Studies.

ON THE MECHANISM(S) OF STRESS-CORROSION CRACK-ING Technical Report No. 65-7

E. N. Pugh Aug. 1965 66 p refs Submitted for Publication (Contract DA-31-124-ARO(D)-258) (AROD-5023-1; AD-620513)

A critical review has been made of some of the major theories of stress-corrosion cracking, with particular reference to the long-standing question of whether a single, generalized mechanism exists. It is concluded, largely on the basis of recent studies of α -brass and of aged aluminum alloys that several different mechanisms are in fact operative in different systems, so that stress-corrosion cracking must be regarded as a generic term. Consideration is given to areas which require further study.

N65-36286# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METHODS OF TESTING COMPONENTS AND MATERIALS OF MACHINES AND INSTRUMENTS, ISSUE I

28 Jan. 1965 35 p refs Transl into ENGLISH of selected articles from the book "Methods of Testing Components and Materials of Machines and Instruments, Issue I" Moscow, Gosatomizdat, 1961 p 17–46 (FTD-MT-64-247; AD-612763)

CONTENTS:

1. QUESTION ABOUT SELECTION OF MATERIALS FOR OPEN-TOOTHED TRANSMISSIONS WORKING WITH-OUT LUBRICANT IN AGGRESSIVE MEDIA T. T. Belousova and S. F. Fonarev p 1–13 refs (See N65-36287 24-15)

2. EXPERIMENTAL INVESTIGATION OF ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE BASE MATERIALS WORKING IN CONDITIONS OF DRY FRICTION S.F. Fonarev, A. A. Kul'bakh, and V. A. Dzhonson p. 14-20 (See N65-36288 24-15)

3. INVESTIGATION OF ANTIFRICTION PROPERTIES OF MATERIALS BASED ON GRAPHITE OF BRANDS AG1500-B83 AND AG1500-CU, WORKING IN CONDITIONS OF DRY FRICTION S. F. Fonarev, A. A. Kul'bakh, and V. A. Dzhonson p 21–31 ref (See N65-36289 24-15)

N65-36288 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div

EXPERIMENTAL INVESTIGATION OF ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE BASE MATERIALS WORKING IN CONDITIONS OF DRY FRICTION

S. F. Fonarev, A. A. Kul'bakh, and V. A. Dzhonson *Inits* Methods of Testing Components and Mater. of Machines and Instr. 28 Jan. 1965 p. 14-20 (See N65-36286 24-15)

Selection of materials for low-speed open gear transmissions operating without lubrication in aggressive media is considered. When comparative tests were made of cylindrical rollers from various stainless steels and a chrome cast iron, the best combination was a steel on steel (designated as Kh 18) with hardness of working surfaces of teeth equal to 55-60. Allowed pressure per unit length of tooth at peripheral wheel velocity v ≤ 0.3 m/sec was ≈ 70 kg/cm. Other steel combinations are recommended for short periods of service at this velocity, for these, hardnesses of working surfaces of teeth are found to be about 48 and 50 and allowable pressures are 40 kg/cm and 50 kg/cm. Chrome cast iron on steel or on chrome cast iron as well as another combination steel were not recommended for open gear transmissions working without lubricant.

N65-36289 Air Force Systems Command, Wright-Patterson AFB. Ohio Foreign Technology Div

INVESTIGATION OF ANTIFRICTION PROPERTIES OF MATERIALS BASED ON GRAPHITE OF BRANDS AG1500—... B83 AND AG1500-CU, WORKING IN CONDITIONS OF DRY FRICTION

S.F. Fonarev, A. A. Kul'bakh, and V. A. Dzhonson *Inits* Methods of Testing Components and Mater. of Machines and Instr. 28 Jan. 1965. p. 21–31. ref. (See N65-36286.24-15).

Carbon-graphite materials in the form of semirings were tested at normal and forced operating conditions for resistance to wear, establishment of temperature rates, and determination of coefficient and moment of friction. A graphitized material (designated brand 15E) without lead impregnation was found to be satisfactory in pair with stainless steel at specific pressures up to 20 kg/cm², coefficient of friction did not exceed 0.27 (slip speed v = 0.3 m/sec). Antifriction properties are improved significantly by impregnation with lead, and the wear of inserts does not change and does not exceed 0.66 mg/cm²/hr. Preliminary fitting of inserts must be at specific pressures of 15 to 20 kg/cm²; but the lead impregnated graphitized material can be used at specific pressures of more than 30 kg/cm². Impregnation of a brand 150 carbon does not materially improve its antifriction properties. During work of a pair with carbon-graphite inserts, wear of steel rollers is minute and has practically no effect on efficiency. M.W.F.

N65-36319# Naval Research Lab., Washington, D. C. Or ganic and Biological Chemistry Branch.

STUDIES TO IMPROVE THE WEAR DURABILITY OF POLYTETRAFLUOROETHYLENE (TEFLON) COATINGS ON ELASTOMERIC VULCANIZATES

A. G. Sands and E. J. Kohn. 30 Jul. 1965. 20 p. refs (NRL-6298; AD-620355). CFSTI: \$1.00

Methods for improving the wear durability of polytetrafluoroethylene (TFE) coatings on vulcanized elastomeric substrates have been investigated. A high-temperature flame-sintering technique has been developed which substantially improves the abrasion resistance of the TFE coatings, even in contact with rough surfaces such as 12-oz duck canvas. The flame-sintered TFE coatings exhibited a high order of durability in contact with smooth steel and anodized aluminum surfaces. Nonanodized aluminum surfaces were severely abraded by the TFE coatings. The flame-sintering treatment did not appreciably degrade the physical properties of most of the elastomers studied, nor did it adversely affect the frictional properties of the TFE coatings. Stabilizers utilized in gum neoprene and acrylonitrile elastomers tended to interfere in the adhesion of the TFE coating, but cleaning the surface of the vulcanizate with an aromatic solvent prior to application of the coating improved the adhesion. The addition of colloidal boehmite alumina to the aqueous TFE dispersion significantly improved the abrasion resistance of sintered TFE coatings on elastomeric vulcanizates. Self-healing of cracks characterizes these coatings, which accounts in part for the improved wear resistance. Where cracks were present in coatings not containing this additive, peeling of the coating from the substrate was initiated at the edges of the cracks by abrasive wear. The TFE and sintered TFE coatings were comparable in frictional properties but greatly superior in abrasion resistance to a proprietary TFE-filled-resin dry lubricant developed especially for application to rubber items.

N65-36466# Los Alamos Scientific Lab., N. Mex.
ULTRA HIGH TEMPERATURE REACTOR EXPERIMENT
(UHTREX) Quarterly Status Report, Period Ending 20 Jun.
1964

22 Jul. 1964 23 p (Contract W-7405-ENG-36) (LA(MS)-3112) CFSTI: \$0.50 Continued research conducted under the Ultra High Temperature Reactor Experiment (UHTREX) is reported. Presented are data on inherent problems associated with unsatisfactory leakage rates which inhibited completion of the UHTREX facility construction: a computer program used to produce wiring lists for UHTREX circuits; reactor components (design, fabrication, and testing), the helium cooling system; systems analyses; neutronic calculations; and graphite corrosion. S.C.W.

N65-36540# General Electric Co., Schenectady, N. Y. Knolls Atomic Power Lab.

CORROSION RESISTANCE OF CONSOLIDATED ZIRCALOY-2 POWDER CONTAINING OXYGEN AND NITROGEN

A. E. Bibb, A. P. Beard, and J. F. Fascia Jun. 1964 13 p refs (Contract W-31-109-ENG-52) (KAPL-3060)

This report covers work on the corrosion characteristics of consolidated Zircaloy-2 powder containing additions of oxygen and nitrogen. Oxygen (>2700 ppm) and nitrogen (>100 ppm) additions reduced the time to transition in 680 F water and had a deleterious effect on both the 680 F water and 750 F steam corrosion resistance of consolidated Zircaloy-2 powder. Linear relationships for invitrogen weight gains were a function of oxygen weight gains irrespective of whether the data were obtained pre- or post-transition. The data suggest that the hydrogen uptake characteristics are an inherent property of the alloy and depend only on the magnitude of corrosion. Nitrogen reduced the tendency for the Zircaloy-2 to pick up the hydrogen generated in the aqueous corrosion reaction.

N65-36569# Thompson Ramo Wooldridge, Inc., Cleveland, Ohio. Electromechanical Div.

SNAP 2 POWER CONVERSION SYSTEM. MERCURY MATERIALS EVALUATION AND SELECTION GFY-1963 Topical Report No. 24

James F. Nejedlik 30 Mar. 1964 150 p refs Prepared for Atomics Intern.

(Contract AT(11-1)-GEN-8)

(TRW-ER-5643; NAA-SR-6316) Available from AEC, Oak Ridge. Tenn.: \$3.45 (Declassified)

SNAP 2 is the designation for a 3 kilowatt nuclear auxiliary power unit to be used in a satellite vehicle. It is a Rankine power system consisting of a reactor heat source, a boiler, a condenser, a mercury turbine, and an alternator. Corrosion of the system by the working fluid, mercury, results in two undesirable effects: (1) wall penetration and (2) mass transport of corrosion products. Judicious choice of materials can only be made with a knowledge of corrosion behavior. Furthermore, to make use of conventional materials of construction corrosion product removal is desirable to reduce fouling tendencies of the power system. Consequently, corrosion, mass transfer, and corrosion product removal were investigated and the results are presented. This report covers the materials investigation for the Fiscal Year 1963.

N65-36739# Rock Island Arsenal Lab., III. Research and Engineering Div.

ANODIC PASSIVATION OF STAINLESS STEEL

Linden H. Wagner May 1965 48 p refs (RIA-65-1190; AD-619152)

Cathodic activation, anodic and immersion passivation treatments on types 310, 321, 410 stainless steel panels, and M1 gas cylinders were investigated in 5% solutions of Na₂SO₄. Na₂Cr₂O₇. Passivation in 20% HNO₃ containing 2% Na₂Cr₂O₇ was conducted as described in M1L-STD-171A. A Sargent Recorder, Model MR, an automatic self-balancing potentiometer, was used to measure potentials with reference to a normal Calomel-cell and a salt

bridge in contact with a stainless steel panel in an auxiliary vessel containing 0.001N NaCl. Potential vs. time measurements were plotted graphically to show the effects of the treatments on the stainless steels. Passivation treatments increased the positive potential; activation increased the negative potential; half-cell potential measurements showed a decay in panel potential vs. time in air exposure. Passivated panels in salt spray exposure afforded slightly better protection than the control panels. Passivated panels in outdoor exposure showed no appreciable difference between the types of stainless steels in the prevention of corrosion.

N65-36775* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

VAPOR DEPOSITED GOLD THIN FILMS AS LUBRICANTS IN VACUUM ($10^{-11}\,$ mm Hg)

T. Spalvins and D. H. Buckley Washington, NASA, 1965–23 p. refs. Presented at 12th Ann. Vacuum Symp., Am. Vacuum Soc., New York, 29 Sep.-1 Oct. 1965

(NASA-TM-X-52125) CFSTI: HC \$1.00/MF \$0.50 CSCL 13H Gold thin films of 1800 Å to be used as lubricants were vapor deposited on Ni, Ni-Cr and Ni-Re substrates. Strong bonding (adhesion) and durability between the film and substrate were found to be essential when thin films are used as a lubricant. Factors which were investigated included the selection of the film and substrate material. Strong durability of the thin film is directly related to the type and structure of the interfacial region. Two methods of substrate preparation prior to vapor deposition were investigated: (1) mechanically polished surface and (2) electron bombarded surface. Gold was vapor deposited on the mechanically polished surface at room temperature and on the thermally etched surface at an elevated temperature approximately (800° F). Strength and durability of the films were investigated in sliding friction experiments with a hemispherical niobium rider sliding on the films at a velocity of 5 feet per minute. Results obtained in these friction experiments indicated that the film endurance life was considerably better on the thermally etched surface. This increased film durability with the thermally etched surface is believed to be due to the formation of a diffusion type interface between the film and the substrate

1966 STAR ENTRIES

N66-10098# Bureau of Mines, College Park, Md. College Park Metallurgy Research Center. STRESS CORROSION CRACKING OF VANADIUM, MO-

LYBDENUM, AND A TITANIUM-VANADIUM ALLOY J. P. Carter, C. B. Kenahan, and David Schlain 1965 21 p refs (BM-RI-6680)

Vanadium, molybdenum, and a titanium-10 percent vanadium alloy were evaluated for their susceptibility to stress corrosion cracking in a number of corrodents. Tests were conducted utilizing conventional U-bend techniques with subsequent evaluation in a pneumatic constant-load apparatus. Vanadium and molybdenum were generally resistant to stress corrosion

cracking in the media studied. U-bend specimens of vanadium showed evidence of stress corrosion cracking in 6 N hydrochloric and 18 N sulfuric acids; however, tensile stress specimens exposed to these solutions did not exhibit stress cracking. Similar results were obtained when U-bend specimens of molybdenum were immersed in 10 percent formic acid. Titanium-10 percent vanadium alloy was susceptible to stress corrosion cracking in 10-percent (2.85 N) hydrochloric acid solution. Heat treating the alloy greatly reduced its corrosion rate and its susceptibility to stress corrosion cracking in this medium.

N66-10295* National Aeronautics and Space Administration, Washington, D. C.

CORROSION OF TITANIUM ALLOYS OF SERIES VT AND AT IN SOLUTIONS OF SULFURIC ACID CONTAINING NICKEL SULFATE

S. A. Nikolayeva and V. A. Zinov'yev *In its* Phys. Met. of Titanium Nov. 1965 p 175–180 refs (See N66-10276 01-17) CFSTI: HC \$7.00/MF \$1.75

A study was made to determine the influence of nickel and copper sulfate additions on the corrosion properties of titanium in sulfuric acid. Also investigated was the corrosion behavior of titanium alloys of series VT and AT. The corrosion resistance of sheet, rod, and forged titanium was determined. The obtained corrosion rates for the VT and AT alloys are tabulated, and conclusions are reached from this table. Various curves representing the corrosion rate versus sulfuric acid concentration in the presence and absence of nickel sulfate were examined, and the conclusions are given. A series of experiments devoted to the study of the influence of copper sulfate additions are included.

C.T.C.

N66-10297* National Aeronautics and Space Administration, Washington, D. C.

CHEMICAL STABILITY OF TITANIUM IN HYDROHALIC ACIDS AND HALOGENS

Kh. L. Tseytlin, L. L. Fayngol'd, and V. A. Strunkin *In its* Phys. Met. of Titanium Nov. 1965 p 188-201 refs (See N66-10276 01-17) CFSTI: HC \$7.00/MF \$1.75

A study was conducted to determine the effect of halogens on the corrosion of titanium by hydrohalic acids; the chemical stability of titanium toward chlorine, bromine, and iodine; and the effect of aromatic nitro compounds on the corrosion of titanium by hydrochloric acid. It was found that free halogens markedly inhibit the corrosion of titanium by hydrochloric, hydrobromic, and hydriodic acid. Also, titanium ignites at room temperature in dry gaseous chlorine (from a cylinder) in 24 hours, in liquid bromine in 10 min, and in dry crystalline iodine at 100°C in 15 min. Water inhibits the reaction of titanium with liquid bromine, but does not exclude a strong localized attack. The use of titanium equipment was found to be inadmissible in cases where the separation of bromine as a separate phase is possible. A tabulation of the effect of aromatic nitro compounds on the rate of titanium corrosion is included.

N66-10298* National Aeronautics and Space Administration, Washington, D. C.

EFFECT OF SODIUM NITRATE ON THE CORROSION OF TITANIUM BY HYDROCHLORIC AND SULFURIC ACID

Ya. I. Sorokin and Kh. L. Tseytlin *In its* Phys. Met. of Titanium Nov. 1965 p 202-210 refs (See N66-10276 01-17) CFSTI: HC \$7.00/MF \$1.75

A study was conducted to determine the influence of sodium nitrite on the corrosion of titanium by hydrochloric and sulfuric acid. The experimental methods are given, and graphs showing corrosion rates versus testing times are included.

. It was found that titanium VT1-1 displays a satisfactory stability in 20 percent hydrochloric and sulfuric acid at temperatures up to 10°C, and corrodes substantially at temperatures above 20° C. Additions of certain sodium nitrite concentrations to hydrochloric and sulfuric acid impart a positive electrode potential sufficient for chemical passivation to the surface of titanium. Sodium nitrite markedly decreases the corrosion of titanium by acids only under certain testing conditions. In order to provide for a satisfactory stability in 20 percent hydrochloric and sulfuric acid, it is necessary to add 0.01 percent NaNO2 at 20°C and 0.1 percent NaNO2 at 60°C. C.T.C.

N66-10428* # Thompson Ramo Wooldridge. Inc., Cleveland, Ohio TRW Equipment Labs

THE CORROSION OF SUPERALLOYS BY LITHIUM FLUO-RIDE IN A CYCLIC HIGH TEMPERATURE ENVIRONMENT Engineering Report, Jul. 1963-Jul. 1965

R C Schulze 21 Jun 1965 149 p refs (Contract NAS3-2779)

(NASA-CR-54781 TRW-FR-6561) CESTI-HC \$4.00/MF \$1 00 CSCL 11F

Eleven superalloys were evaluated to determine their resistance to corrosion by lithium fluoride in a cyclic temperature environment. The tests were operated under simulated NASA Brayton Cycle system conditions (maximum lithium fluoride temperature - 1850° F, minimum lithium fluoride temperature - 1500° F) to determine the best material for fabrication of the heat receiver. The results of the program indicated Haynes alloy No 25 to be the best alloy Author

N66-10521# Deutsche Versuchsanstalt für Luft- und Raumfahrt, Munich (West Germany). Institut für Flugtreib und Schmierstoffe

LUBRICATION AT SPACE CONDITIONS UNTER WELTRAUMBEDINGUNGEN]

G. Spengler and F. Wunsch Aug. 1965 118 p refs In GERMAN; **ENGLISH** summary

(DVL-434; DLR-Mitt-65-07) CFSTI; HC \$4.00/MF \$0.75

Operation of equipment in space vehicles has created new requirements on lubricants. The lubricants are subject to additional influences, such as zero gravity, meteorites, various forms of radiation energy, temperature extremes, and ultrahigh vacuum. The paper critically reviews the literature on the development and testing of suitable lubricants. Author

N66-10669*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, Ala.

INVESTIGATION OF THE COEFFICIENT OF FRICTION OF VARIOUS GREASES AND DRY FILM LUBRICANTS AT ULTRA HIGH LOADS FOR THE SATURN HOLD DOWN **ARMS**

K. E. Demorest and A. F. Whitaker 14 Sep. 1965 34 p refs (NASA-TM-X-53331) CFSTI: HC \$2.00/MF \$0.50 CSCL 11H

A series of high load, low speed sliding friction tests was made on 8 fluid lubricants and 18 dry lubricants at normal unit loads from 10,000 psi to 150,000 psi. Four different substrate materials having a range of hardnesses from Rockwell C 18 to Rockwell C 55 were used. The ultimate load capability of both fluids and dry films is a function of substrate hardness with the best ultimate load capability being provided by inorganically bonded molybdenum disulfide films with small amounts of graphite added. The coefficient of friction of the

fluid lubricants appears to be an inverse function of substrate hardness and a direct function of the normal load. The coefficient of friction of the dry lubricants is an inverse function of the normal load, but it does not appear to be related to the substrate hardness. Author

N66-10698# Oak Ridge National Lab., Tenn. LABORATORY CORROSION STUDIES FOR THE HIGH FLUX ISOTOPE REACTOR

J. L. English and J. C. Griess Jun. 1965 23 p refs (Contract W-7405-ENG-26) (ORNL-TM-1029)

Studies conducted under a corrosion test program designed to examine the behavior of several materials considered for permanent or semipermanent installation in the High Flux Isotope Reactor (HFIR) system, are reported. Both static tests and dynamic tests were performed. Presented are results obtained in the static tests. Major emphasis was placed on the procurement of long term data, however, short term data were also obtained. Reported are experimental data on the following materials: aluminum aluminum in contact with metallic materials, aluminum in contact with nonmetallic materials, stainless steels and related materials, plastics, and miscellaneous S.C.W. materials.

N66-10777# Oklahoma State Univ., Stillwater. FRICTION REDUCTION EFFECTS ON TURBULENT FLOWS OF WATER IN ROUGH PIPES BY DILUTE ADDITIVE OF HIGH MOLECULAR WEIGHT POLYMER

E. Rune Lindgren Jun. 1965 26 p refs (Contract Nonr-2595(05)) (TR-1: AD-621070)

An experimental investigation was made of the reduction of frictional losses in turbulent flows of distilled water through rough tubes by dilute additives of polyethylenoxide of molecular weight 4,000,000. Remarkable reduction of the turbulent energy losses were obtained for 0.002-0.006% concentration of additive in the flow, even to values lower than for smooth turbulent flows. Author (TAB)

N66-10787# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METHOD OF CORROSION RETARDATION FOR STEEL AND IRON IN ACIDS AT HIGH TEMPERATURES

R. N. Volkov, A. Ya. Shatalov, and S. A. Kononovich 26 Aug. 1965 5 p. Transl. into ENGLISH from Soviet Patent No. 162739 (Appl. No. 847640/22-2, 16 Jul. 1963) 1 p (FTD-TT-65-770/1+4; AD-621040)

The object of the invention is a method of corrosion retardation for steel and iron in acids, at high temperatures. Chloride benzyl quinoline is added as an acid inhibitor. Author (TAB)

N66-10873# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

FRICTION BEARING

Yu. A. Sokolov 23 Jul. 1965 3 p. Transl. into ENGLISH from Soviet Patent no. 165042 (Appl. no. 850089 24-6, 27 Jul. 1963 2 p

(FTD-TT-65-517/1+2+4; AD-619468)

A friction (sliding) bearing for rapid-action machines, such as, a turbo compressor is described. The bearings contain a floating bushing with two surfaces of friction. The distinguishing feature for improving the antifriction qualities with great speeds of friction the inner surfaces of the sleeve and seat of the support are designed with V-shaped oil pockets. N66-10876*# Du Pont de Nemours (E. I.) and Co., Aiken, S. C. Savannah River Lab.

STRESS CORROSION CRACKING OF TITANIUM ALLOYS Fourth Quarterly Progress Report, 1 Jan-31 Mar. 1965

Sheldon P. Rideout, Mc Intyre R. Louthan, Jr., and Clifford L. Selby Sep. 1965–24 p. refs

(NASA Order R-124; Contract AT(07-2)-1)

(NASA-CR-67710; DP(NASA)-1005) CFSTi: HC \$1.00/MF \$0.50 CSCL 11F

Research was directed toward determination of the mechanism of hot-salt cracking of Ti-8AI-1Mo-1V. Radiographic evidence showed that $^{3}\mathrm{H}$ and $^{36}\mathrm{Cl}$ are retained on sample surfaces, probably as HCI, after exposure to aqueous salt solutions. Adsorption of HCI appears to be a key factor in causing susceptibility to hot-salt cracking. Exposure to anhydrous HCl gas at 650° F caused abrupt mechanical rupture in stressed samples. Exposure of liquid NaOH at 650° F caused corrosion and preferential attack of aluminum, but no cracking. Aluminum is also preferentially attacked by NaCl during hotsalt cracking. Prior treatments with NaOH, which preferentially remove the aluminum from the sample surfaces, delayed the inception of stress cracking during subsequent exposures to solid NaCl or HCl gas. Results are interpreted to show that hot-salt cracking and HCI-gas cracking are similar and occur by either hydrogen embrittlement or by localized, stressaccelerated corrosion.

N66-11076# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ADDITIVES TO OILS AND FUELS Collection of Articles S. E. Kreyna, P. I. Sanina, V. N. Monastyrskogo, and Ye. A. Eminova, ed. 6 Apr. 1965 669 p. refs Transl. into ENGLISH of the book "Prisadki k Maslam i Toplivam" Moscow, Gos. Nauchno-Tekhn. Izd. Neft. i Gorno-Toplivnoy Lit., 1961 p. 1–395

(FTD-MT-64-213; AD-619383)

A collection of articles on the synthesis of detergent, antioxidant, anticorrosion, antiwear, and other additives to petroleum products is presented. For individual titles see N86-11077-N66-11133.

N66-11077 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

CONTEMPORARY REQUIREMENTS FOR QUALITY OF MOTOR OILS

Ye. N. Firsanova *In its* Additives to Oils and Fuels 6 Apr. 1965 p 4-15 refs (See N66-11076 02-15)

Tests were conducted to determine characteristics of various Soviet and other lubricating oils when used in winter weather to start and maintain internal combustion machines. Good properties were found for SAE-10, SAE-10W/30, SAE-10W/20 and other oils when prepared with thickening additives of polymethacryalates and polyisobutylenes. It is shown that oils with a high index of viscosity give better starting capabilities under the same temperature conditions. During operation of tractor diesel engines under winter and nominal load conditions, least wear resulted with an oil of 7 to 8 cs and a viscosity index near 100. Experiments with sulfur-bearing oils are reported; Soviet samples with 1% sulfur content are found to possess unsatisfactory alkalinity as compared to "foreign" samples. Use of various grades of oil is discussed, and it is pointed out that lack of standardized rating methods for oils makes it difficult to present reliable quality and usage classifications.

N66-11078 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

TECHNICAL REQUIREMENTS FOR QUALITY OF DIESEL FUELS AND OILS AND RESULTS OF TESTS OF SOME ADDITIVES

G. A. Morozov *In its* Additives to Oils and Fuels 6 Apr. 1965 p 16-28 refs (See N66-11076 02-15)

Use of various sulfur-bearing lubricating oils is considered a for different groups of diesel engines. A classification is made according to sulfur-content of the oils and various experimental and industrial additives used. Results are reported for the influences of additives on varnish formation and corrosion capacity of an oil designated DS-11. One additive which is shown to significantly lower engine wear does not have sufficient detergent capability. Another table lists general and piston wear, stuck rings, ash content, and acid number of the various additives to the DS-11, which has 0.8% sulfur content. A listing of oils for use with three types of diesel engines is included; and these groups of engines are classified according to degree of forcing.

N66-11079 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ALKYLPHENOL ADDITIVES OF FORMALDEHYDE CON-DENSATION

A. V. Druzhinia, G. S. Tarmanyan, M. S. Myachina, and I. V. Morozova *In its* Additives to Oils and Fuels 6 Apr. 1965 p 30-39 refs (See N66-11076 02-15)

Two motor oil additives were prepared in both alkaline and acid media, the latter in the presence of alkylphenol sulfa acid. Additive vnii np-370 contained calcium and vnii np-371 barium; the salts are products of alkylformaldehyde condensation and possess high detergent properties. A ratio of 2:4 moles for formaldehyde and alkylphenol, respectively, gives the best physical-chemical characteristics for the vnii np-370. Decrease in alkylphenol content is found to lower ash content and viscosity of this additive, but good solubility in the motor oil is maintained. Studies made of increased ash content in vnii np-371 indicate that an 18 or 25% barium oxide addition produces sufficient capabilities. The barium additive of alkylphenol condensation possesses effective anticorrosive properties and has good color. Both additives passed bench tests on different motors during 100-hour tests with a sulfur-bear-M.W.R. ing automobile oil and a diesel oil.

N66-11081 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SYNTHESIS OF DIESTERDITHIOPHOSPHOROUS ACIDS AND OF THEIR DERIVATIVES ON THE BASIS OF SUBSTITUTED PHENOLS AND APPLICATION OF THEM AS ADDITIVES TO OIL PRODUCTS

V. N. Tishkov, V. I. Isagulyants, Hsiu-Cheng Chang, and N. M. Utsmiyeva *In its* Additives to Oils and Fuels 6 Apr. 1965 p.51-72 refs (See N66-11076 02-15)

Thirty-five multifunctional and antioxidant additives were synthesized in almost pure form from diesterdithiphosphoric (DTP) acid; and a calcium salt designated IP-22k was adopted for industrial usage on the basis of performance tests conducted in the laboratory. A tabulation is made of the characteristics of alkylphenols and their disulfides obtained as initial and intermediate products during the syntheses as well as the various barium, calcium, and zinc salts of DTP acid. Properties of resultant binary compounds of the DTP acid with aliphatic amines and amides, and ash-free additives of triesters of dithiophosphoric acid, esters of diamisothiophosphoric acid, and phenolate-type compounds are also considered.

N66-11082 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SYNTHESIS, RESEARCH, AND APPLICATION OF SULFONATE ADDITIVES TO LUBRICATING OILS

A. M. Kuliyev, K. I. Sadykhov, and M. A. Mamedov In its Additives to Oils and Fuels 6 Apr. 1965 p 73-87 refs (See N66-11076 02-15) Several salts of sulfonic acids of alkyl aromatic hydrocarbons were synthesized; and effectiveness of the resultant compounds on motor and diesel oils was studied in relation to molecular weight, structure, and other characteristics of the metal entering the compound. Results with SB-3 additive indicate improvement in initial detergent and anticorrosive properties of various lubricating oils, but that it is necessary to add antioxidants to this additive when sulfurous fuels are used.

M.W.R

N66-11083 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SYNTHESIS OF ANTIWEAR ADDITIVES TO OILS

I. D. Afanas'yev *In its* Additives to Oils and Fuels 6 Apr. 1965 p 88–101 (See N66-11076 02-15)

Sulfurous antiwear additives have been synthesized on ethylene sulfide and fatty acid bases, and properties of sulfide and disulfide additives are tabulated. Results are given for tests of antiwear properties and thermochemical stability of these additives as well as those of oil additives on a base of xanthogenates of alcohols and of dichloroethane. All of the products synthesized are good inhibitors and have good antiwear properties to both synthetic and petroleum oils. Other type additives considered are crystal xanthogenate, xanthol, and sulfur- and phosphorus-containing. Very effective antiscoring properties are found for xanthogenate-type additives of low-molecular monatomic alcohols and dichloroethane; and both liquid and crystal products can be obtained. Activity of antiwear additives tested on a four-ball machine is shown to increase with decrease in length of hydrocarbon radicals taken for a synthesis of alcohols MWR

N66-11084 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ORGANO-PHOSPHOROUS AND ORGANO-CHLORINE COMPOUNDS AS ADDITIVES, REDUCING WEAR IN CONDITIONS OF THRESHOLD FRICTION

Ye. S. Shepeleva and P. I. Sanin *In its* Additives to Oils and Fuels 6 Apr. 1965 p 102-107 refs (See N66-11076 02-15)

Laboratory procedures are given for obtaining tributylphosphite and Cloreth-40 (dibutyl ester of trichloromethylphosphine acid), additives for use in reducing wear resulting
from friction. Initial tests using Cloreth-40 as an additive to
transmission oil gave encouraging results, so production of
experimental lots of the additive were made by a distillation
process which reduced content of acid chloride and acid ester
impurities.

M.W.R.

N66-11085 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

EFFECTIVENESS OF CERTAIN ORGANO-MOLYBDENUM AND ORGANO-SULFUR COMPOUNDS AS ANTIWEAR ADDITIVES TO LUBRICATING MATERIALS

A. A. Fal'kovskaya, A. Ya. Vavul, Ye. M. Kheyfets, I. B. Rapoport, V. A. Listov et al. *In its* Additives to Oils and Fuels 6 Apr. 1965 p 108–121 refs (See N66-11076 02-15)

A molybdenum-base additive (V-15/30) is found to sharply increase antiwear properties of mineral and synthetic lubricating materials, particularly during joint application with compounds containing sulfur of chlorine. Thermo-oxidizing stability of this additive is, however, unsatisfactory. An organo-molybdenum additive (V-15/1) may be used successfully for preliminary application of noncorroding films on friction surface for high temperature lubrication; there is reduction of wear on metal and no fusing of metallic surfaces under large loads. Organo-sulfur additive (V-15/2A) is found to be a very effective antiscoring additive to high temperature lubricating materials. A copolymer with 1.5% additive V-15/2A insures proper working of roller bearings at a temperature of 350°C.

M.W.R.

N66-11086 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ANTIOXIDANT ADDITIVES TO LUBRICATING OILS ON A BASE OF PRODUCTS OF REACTION OF PHOSPHORUS PENTASULFIDE AND TERPENES

A. M. Ravikovich and I. V. Ladyzhenskaya *In its* Additives to Oils and Fuels 6 Apr. 1965 p 122-132 refs (See N66-11076 02-15)

Organo-phosphorus antioxidant additives are obtained by a reaction of phosphorus pentasulfide with terpenes in the presence of sulfuric acid. The obtained additives have a high phosphorus content and are stable during storage. Reaction of P₂S₅ with terpenes in the presence of AICl₃ produced less high-polymer insoluble substances than is obtained by the usual method without the AICl₃. The presence of AICl₃ produced additives with higher phosphorus and sulfur content, greater stability, and better solubility in lubricating oils. These additives give a higher thermo-oxidizing stability to mineral oils in thin films.

N66-11087 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METAL DIALKYLDITHIOPHOSPHATES AS ANTIOXIDANTS OF LUBRICATING OILS

P. I. Sanin, V. V. Sher, L. F. Chernyavskaya, N. V. Melent'eva, and I. S. Glukhoded *In its* Additives to Oils and Fuels 6 Apr. 1965 p 133-147 refs (See N66-11076 02-15)

Dialkyldithiophosphates containing secondary hydrocarbon radicals are found to be more active antioxidants than those with primary hydrocarbon radicals. Greatest activity is at temperatures below 150°C. Substantial increase in temperature weakens the antioxidant action, apparently because of thermal decomposition of the additive. Oxidation of oils is hindered only slightly by sulfonate-type additives and alkylphenolates. Antioxidant activity increases significantly with the addition of sulfide or diothiophosphate to the alkylphenolates. Ionol and DF-1 are found to be the most active antioxidants. It was found, however, that DF-1 does not delay the oxidation of hydrocarbons of a DS-8 oil which contains natural inhibitors. i.e., aromatic hydrocarbons and sulfurous compounds. In the presence of metals the natural inhibitors are so inactive that the oil becomes unstable; metal dialkyldithiophosphates, such as DF-1, passivate metals and increase stability of the hydrocarbons with respect to oxidation. MWR

N66-11088 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SYNTHESIS OF NEW ANTIOXIDANT ADDITIVES TYPE OF SHIELDED PHENOLS

Y. I. Isagulyants and N. A. Facorskaya *In its* Additives to Oils and Fuels 6 Apr. 1965 p 148–160 refs (See N66-11076 02-15)

Synthesis is described for 2.2'-methylene-bis (6-tertbutyl-4-methylphenol) on a base of n-cresol. The alkylation reaction is described and the condensation reaction of 2-tertbutyl-4-methylphenol with formaldehyde is detailed. Antioxidant effect on ethyl gasoline exceeds that of the additive lonol. Synthesis of two other additives is also outlined: (1) 2.2'-methylene-bis (4.6-di-tert-butyl-3-methylphenol) on a base of dicresols containing 60.7% m-cresol and (2) disulfide of bis-phenol-disulfide (4.6-di-tert-butyl-3-methylphenol). Both of these are effective as a 0.005% antioxidant additive to synthol and are equivalent to lonol. In transformer oil, the effectiveness of the latter is also equivalent to that of lonol, but the former gives negative results in a 3% concentration. Synthesis of these two additives permits the use of a byproduct obtained in the production of lonol, 4.6 di-tert-butyl-3-methylphenol, which up to this point was an unused waste.

N66-11092 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SYNTHESIS AND INVESTIGATION OF ADDITIVES IN-CREASING LUBRICATING PROPERTIES OF OILS

A. M. Kuliev and A. A. Atal'yan *In its* Additives to Oils and Fuels 6 Apr. 1965 p 191-197 (See N66-11076 02-15)

The synthesis of chlorine and sulfur aromatic hydrocarbons was conducted and the properties of these additives for the improvement of lubricants were investigated. The results of tests of oils with and without additives are tabulated. It was found that the wear of gear teeth when operated on an oil with additive was about half that when operated on an oil without additive. With an increase of the additive concentration, antiwear properties of the oils increase and attain a maximum with an addition of 7 to 10% additive. Also, the synthesis of complex esters from naphthenic and stearic acids and ethylene glycol or phenol was investigated. Ir was found that esters obtained from unchlorinated acids do not increase antiwear properties of oils. E.E.B.

N66-11093 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ADDITIVES ENSURING UNIFORMITY OF SLOW MOVE-MENT OF UNITS OF METAL-CUTTING MACHINES

R. N. Osher *In its* Additives to Oils and Fuels 6 Apr. 1965 p 198-202 (See N66-11076 02-15)

Salts of high-molecular fatty acids, stearates and oleostearates of aluminum in concentrations of 1.6% to 2.7%, were found to give optimum results as anti-skip additives to industrial oils. Being easily adsorbed on metallic surfaces, these soaps decrease the influence of surface defects and change the form of the sliding surface. Aluminum stearate also improves the antiwear and anticorrosive properties of oil by the high viscosity promotion of the formation of lubricating layers of sufficient thickness to reduce wear and lowering of the pour point of the lubricant. In distinction from other soaps, in particular calcium base soaps, stearate and oleostearates of aluminum readily dissolve in mineral oils in all concentrations.

N86-11094 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SYNTHESIS AND TECHNOLOGY OF PRODUCTION OF MULTICOMPONENT ADDITIVE VNII NP-360 TO MOTOR LUBRICATING OILS

V. N. Monastyrskiy, A. A. Fufayev, and M. S. Perel'miter *In its* Additives to Oils and Fuels 6 Apr. 1965 p 204–212 refs (See N66-11076 02-15)

The synthesis and technology for the production of multicomponent additives for motor lubricants are discussed for barium alkylphenolate, zinc dialkylphenyldithiophosphate, and dialkylphenyldithiophosphoric acid. The barium alkylphenolate possesses good washing properties and the zinc dialkylphenyldithiophosphate has good anticorrosive and antioxidant properties. A combination of these two additives was recommended for further test on full-scale engines as a result of preliminary testing. The combination of the two additives passed shorterm and prolonged stand tests on different engines and operational tests on diesel locomotive engines and tractor motors. Results showed higher effectiveness of this combination over additives presently used.

N66-11104 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

PHOSPHOROUS-ORGANIC COMPOUNDS REDUCING WEAR DURING FRICTION. MECHANISM OF THEIR ACTION

P. I. Sanin and A. V. Ul'yanova *In its* Additives to Oils and Fuels 6 Apr. 1965 p 313-327 refs (See N66-11076 02-15)

The thermal decomposition of trioctadecylphosphite (C18H37O)3P, tributylphosphite (C4H9O)3P, and tributyltrithiophosphite (C4H9S)3P were investigated. A diagram of the apparatus used for the decomposition is given, and the experimental procedure is described, including the procedures for quantitatively determining the decomposition products. These were phosphorous acid, phosphine, and octadecylene in the case of trioctadecylphosphite; phosphorous acid, phosphine, and butylene in the case of tributylphosphite; and phosphorous acid, phosphine, butylene, and hydrogen sulfide in the case of tributyltrithiophosphite. The percentage of recovery of all of these decomposition products in relation to theoretical recoveries from the reaction equations are given. Some experiments conducted in the presence of metals showed that metals can catalytically affect the decomposition initiating it at lower temperatures, and making the reaction proceed with greater speed once started. In addition the phosphine formed may react with some of catalyst forming L.S. metal phosphides.

N66-11105 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

NEW METHODS AND RESULTS OF INVESTIGATION OF ANTIWEAR AND ANTIFRICTION PROPERTIES OF LUBRICATING MATERIALS

G. V. Vinogradov. *In its* Additives to Oils and Fuels. 6 Apr. 1965 p. 328–344 (See N66-11076 02-15)

Friction experiments with steel ball bearings were conducted in a vacuum friction machine for investigating the anti-wear and antifriction properties of various lubricating materials. Gas media of different compositions can be blown through a chamber filled with lubricant in which the bearings are tested. A diagram of the apparatus is shown. Air, oxygen, and inert gases are blown through the lubricants, and frictional forces are determined at various loads. It is shown that in the absence of oxygen and oxygen-containing compounds hydrocarbon oils constitute an ineffective or little effective lubricating media for the boundary conditions defined. Oxygen dissolved in petroleum oils and products of their oxidation appear to play the most important role as a natural additive to lubricating oil, preventing the seizing of steel under boundary friction.

N66-11106 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div

INVESTIGATION OF MECHANISM OF REACTION OF TRIBUTYLTRITHIOPHOSPHITE IN HYDROCARBON ME-DIUM LAYERS OF COPPER BY USING RADIOACTIVE INDI-CATORS

M. M. Kusakov, P. I. Sanin, E. A. Razumovskaya, A. V. Ul'yanova, and A. P. Dekartov *In its* Additives to Oils and Fuels 6 Apr. 1965 p 345-356 refs (See N66-11076 02-15)

The reaction mechanism of tributyltrithiophosphite with copper films in a hydrocarbon medium (naphthene-paraffin oil fraction MS-20) was investigated by means of radioactive tracers. The marking of the sulfur, phosphorus, or carbon atom of the organic molecule makes it possible to differentiate the action of these atoms, thereby clarifying the role of the hydrocarbon radical containing these atoms. Curves portraying the thickness of the layers formed by combination of the several labeled tributylphosphite compounds with respect to time (at constant temperature) are given. The kinetic studies support earlier results obtained for the thermal decomposition of tributyltrithiophosphite.

N66-11107 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ANTISCORING ADDITIVES TO OILS FOR AUTOMOBILE TRANSMISSIONS AND MECHANISM OF THEIR ACTION

 I. E. Vinogradov, Ye. I. Petyakina, and F. Ya. Shames In its Additives to Oils and Fuels 6 Apr. 1965 p 357–371 refs (See N66-11076 02-15)

Additives used in automobile transmission oils for lowering of friction and wear were tested for their antiscoring action on steel plates kept for three days at 120°C under oil samples containing the test additives. The plates were then washed in a solvent and kept for seven days in an atmosphere of humid air in an exsiccator. Corrosion was determined by the increase of weight in the plates after the test. The content of active element in the additive, the percent of additive in the oil after testing, the amount of steel corrosion, and other characteristic data are tabulated for each additive tested, along with the structural formula. The additives tested were organic compounds of sulfur, halides, phosphorus, and nitrogen; various oxidized and sulfurous compounds of molybdenum, tungsten, and zinc; and plumbic soaps. Several graphs showing the antiscoring properties of some of the additives are depicted, and the test results are discussed.

N66-11108 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

INFLUENCE OF CATALYST OF OIL OXIDATION ON ANTI-CORROSIVE EFFECTIVENESS OF ADDITIVES CONTAIN-ING VARIOUS FUNCTIONAL GROUPS

K. S. Ramyya and R. Kh. Sil's *In its* Additives to Oils and Fuels 6 Apr. 1965 p 372-380 refs (See N66-11076 02-15)

The effectiveness of organic metallic salts as oxidation catalysts in oil were studied. Experiments were conducted in which lead plates were immersed in oil, with a gaseous stream of oxygen flowing through the oil, thereby oxidizing (or corroding) the lead plate. The corrosive effectiveness is determined by measuring loss of weight in the lead plates after a period of time, with the oil being kept at a predetermined temperature. Results are depicted graphically for the influence of copper stearate, iron oleate, cobalt naphthenate, copper-iron, and copper cobalt on the corrosion of lead in two different base oils. Several other experimental variations of conditions and additive ingredients to the oils are also given. In general, it was shown that organic salts of metals accelerate the corrosion of the lead plates when the salts are dissolved in the oil, due to their catalytic action on oxidation in the oil. In other similar experiments it was indicated that additives containing anticorrosive compounds are not very effective in the presence of the organic metal catalysts.

N66-11109 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

MECHANISM OF ACTION AND EFFECTIVENESS OF ADDITIVES INCREASING LUBRICATING ABILITY

G. I. Fuks *In its* Additives to Oils and Fuels 6 Apr. 1965 p 381-400 refs (See N66-11076 02-15)

A review of literature data on oil additives is presented along with an analysis of the data in an effort to determine the mechanism of action and effectiveness of additives added to oil for the purpose of increasing the lubricating properties of the oil. Discussed are oil viscosity, friction, interaction of molecules at the boundary layer between oil and metal surface, pressure and temperature effects, static and kinetic friction effects, and boundary layer thickness effects. Several graphs and tables relating these parameters are presented. The relationship of some of these factors to the number of atoms in the hydrocarbon chain of the additive used, is also discussed.

N66-11110 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.
USES OF ANTIOXIDANT ADDITIVES TO POWER ENGINEERING OIL—NEW IN THEORY AND PRACTICE

K. I. Ivanov, Ye. D. Vilyanskaya, and A. Luzhetskiy *In its* Additives to Oils and Fuels 6 Apr. 1965 p 401-413 refs (See N66-11076 02-15)

A review of the inhibiting influence of antioxidant oil additives is presented, with emphasis on the chemical kinetic mechanisms of the inhibitors. A table classifying known retarders of auto-oxidation in petroleum oils is given, along with a chain diagram showing the reaction mechanism of auto-oxidation as initiated by several inhibitors. The advantages of using mixtures of antioxidants is discussed, and tests were conducted with various mixtures of the compounds in power engineering oils. A table illustrating the influence of these mixtures on the stability of the power engineering oils is given. It is seen that different chemical structures of the antioxidants inhibit the rate of auto-oxidation unequally. The differences in the retardant action of the inhibitors is due to the different kinetic path that their free radicals take in interacting with other molecules.

N66-11111 Air Force Systems Command, Wright-Patterson AFB Ohio. Foreign Technology Div.

INFLUENCE OF BASIC TYPES OF ADDITIVES ON OPERATING PROPERTIES AND OXIDATION OF OILS IN AN INTERNAL COMBUSTION ENGINE

A. V. Druzhinina, T. A. Tsiguro, and V. F. Filipov *In its* Additives to Oils and Fuels 6 Apr. 1965 p 414-424 refs (See N66-11076 02-15)

The changes undergone by oils during their use in an internal combustion engine with and without the addition of additives to the oil were studied in an effort to clarify the mechanism of action of the additives on the oxidation process. Barium para-tert-octylphenolate proved to be the most effective additive of those investigated. It was shown that the oxidation of oil passes through a stage of hydrogen peroxide formation. The dynamics of the accumulation of peroxides in the oils containing additives were distinguished from oils not containing additives by measuring the peroxide number of the oil. The influence of several additives on the change in peroxide number in tested oils is graphically depicted. Other graphs are also given showing the influence of additives on the changes in acidity, carbonyl content, and ester numbers in the tested motor oils. The test results are tabulated, and the efficiencies of the additives of varying compositions are compared.

N66-11112 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

COMPLEX OF METHODS TO APPRAISE THE EFFECT OF ADDITIVES ON THE WORKING PROPERTIES OF MOTOR OILS

K. K. Papok, A. P. Zarubin, B. S. Zuseva, V. P. Danilin, G. V. Zakharov et al. *In its* Additives to Oils and Fuels 6 Apr. 1965 p 426-441 refs (See N66-11076 02-15)

Laboratory methods were developed for rapidly appraising the working properties of oils and additives. The complex of methods include micro-methods, tests on model installations, and tests on one cylinder models. With the micro-methods. the fractional composition and thermal properties of a 10 ml oil sample can be determined; with the model installations the washing and crankcase properties of 0.5 liter of oil can be evaluated; and with the one-cylinder model, lacquer deposition and corrosion properties can be determined with 2.5 liters of oil. In the last method an oil and additive test can be coordinated to evaluate the scale forming ability of oil in combination with fuel. Each of the methods is discussed in detail, and tabulated experimental data are given showing the changes in the working properties of different oils under the effect of additives as determined by the above methods. Comparison of results obtained by these methods with tests run on fullscale motors shows good coordination. LS

N66-11113 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

RADIOTRACER METHODS OF RESEARCH OF FUNC-TIONAL PROPERITES OF OILS WITH ADDITIVES

Yu. S. Zaslavskiy, G. I. Shor, R. N. Shneyerova, F. B. Lebedeva, I. A. Morozova et al. *In its* Additives to Oils and Fuels 6 Apr. 1965 p 442-450 refs (See N66-11076 02-15)

A method of studying electrokinetic processes and the mechanism of the dispersion action of additives in motor oils by using radioactive tracers is described, and a schematic diagram of the experimental apparatus is shown. The amount of deposition can be determined by beta-counting. A diagram of the electrophoresis of marked soot in motor oil AS-5 containing additive vnii np-354, recorded from readings of the upper beta-counter when 1000 v was supplied to its foil. is shown. Other curves are given to depict the results of determining the lacquer deposition ability of various oils and additives. In addition the evaluation of the chemical activity of antiburr additives to oils using the radioactive tracer method is discussed, and test data for an oil containing additive is tabulated. Curves depicting the results of investigating the wear properties of oils with chemically active antiburr additives on a friction machine are also given. L.S.

N66-11114 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

A LABORATORY STUDY OF THE ANTIOXIDATION EF-FECTIVENESS OF MOTOR-OIL ADDITIVES

K. S. Ramaya, M. S. Borovaya, and R. Kh. Sil's *In its* Additives to Oils and Fuels 6 Apr. 1965 p 451-457 (See N66-11076 02-15)

A comparison is made of three methods used to determine the antioxidation effectiveness of motor oil additives. In the first method, oxidation proceeds at a temperature of 250°C under conditions of free diffusion of atmospheric oxygen and free vaporization of volatile oxidation products as well as the light fractions of the oil itself. The criterion for the oxidation rate is the time necessary to obtain a residue consisting of 50% lacquer (a product of the oxidation polymerization and condensation) not soluble in light gasoline, and 50% soluble lacquer. The second method allows oxidation for 50 hrs at 200° C under conditions of free access to atmospheric oxygen, but prevents the free vaporization of the oil and the products of its oxidation. The criteria for oxidation rate are the increase in oil viscosity and the amount of oxidation product sediments not soluble in light gasoline. In the third method oxidation is conducted in a closed system at 175° C with oxygen at atmospheric pressure. The oil undergoes no change, and the oxidation rate is determined on the basis of the time needed to absorb 0.8 ml of oxygen by 1 gram of oil. Data from investigations of six oil samples are tabulated and the results discussed. R.N.A.

N66-11115 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

NEW METHOD OF EVALUATING THE EFFECTIVENESS OF ANTIBURR ADDITIVE ACTION IN OILS AND FUELS K. I. Klimov, A. V. Vilenkin, and G. I. Kichkin *In its* Additives to Oils and Fuels 6 Apr. 1965 p 458–466 refs (See N66-11076 02-15)

A friction machine with a pair of crossing cylinders and periodic contact of surfaces was developed to evaluate antiburr properties of lubricating materials. The necessity is shown, in comparative appraisals of antiburr properties of oils with additives on friction machines, of modeling the test conditions by slip speed, contact periodicity, and temperature in a wide interval of their changes. A method was developed for the comparative appraisal of antiburr properties of lubricating materials under conditions simulating the real working conditions of oil. Antiburr properties of certain oil products were investigated

in pure form and with additivies. The instrument and appraisal method used are shown to be highly sensitive and exceed the sensitivity of other methods and instruments.

R.N.A.

N66-11116 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

THE EFFECT OF LUBRICATING MATERIALS AND THEIR ADDITIVES ON FORMATION OF PITTING

M. D. Bezborod'ko and G. S. Krivosheyn *In its* Additives to Oils and Fuels 6 Apr. 1965 p 467-476 refs. (See N66-11076 02-15)

An investigation is presented on the effect of lubricants and their additives on pitting formation. It is shown that antipitting properties of lubricating materials can be quickly and reliably estimated on a four-ball friction machine adjusted for work in conditions of rolling. The ability of lubricants to slow down the development of pitting depends on their viscosity and chemical composition. Additives introduced in lubricating materials, depending on their composition and concentration, can increase or decrease pitting development.

R.N.A.

N66-11117 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div

THE EFFECT OF OIL ADDITIVES ON CORROSIONAL WEAR OF BEARING ALLOYS

K. S. Ramayya and V. S. Zavel'skiy *In its* Additives to Oils and Fuels 6 Apr. 1965 p 477-488 refs (See N66-11076 02-15)

An investigation was conducted to determine the anticorrosion properties of the oil additives tsiatim-330 (naks), tsiatim-339, and DF-1, on the plumbous alloys SOS6-6 used in automobile engine bearings. The naks additive contains the anticorrosive component sulfurized oil and a washing component cobalt naphthenate. The plumbous alloy contains 88% lead. 6% tin, and 6% antimony. Oil samples containing the additives and alloy samples were exposed to various concentration of oleic acid. In acid concentrations up to 1 mg KOH. corrosion of the lead alloy was greater with the naks additive than with the additives tsiatim-339 and DF-1. But at higher acid concentrations the naks additive formed a more protective film on the lead alloy which increased in anticorrision protection with an increase in acid concentration. However, under actual engine operating conditions, oil acidity rarely reaches these concentrations. Therefore, the naks additive is not recommended for use as an anticorrosive component in motors with plumbous alloy SOS6-6 bearings. From the data, additives of the type DF-1, in which the anticorrosive component is of the thiophosphoric group, were shown to give the best protection to plumbous alloy bearings. R.N.A.

N66-11118 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METHOD OF APPRAISAL OF WORKING PROPERTIES OF INHIBITED INSULATING OILS

K. I. Ivanov, R. A. Lipsteyn, A. Ya. Mikhel'son, and A. A. Luzhetskiy *In its* Additives to Oils and Fuels 6 Apr. 1965 p 489-498 refs (See N66-11076 02-15)

A new bench method of determining the working properties of transformer oils was developed. As a result of numerous tests on a large number of developmental types of oils by this method, the following oils were introduced or recommended for introduction: oil of phenol purification from eastern oils (sulfur less than 0.6%) with 0.2% additive Topanol-0 (VTU NP-30-59), oil hydropurified from eastern oils (sulfur less than 2%) without additives, oil of acid-alkaline purification from Anastas'-insk oil with additives, and oil from Emba oils purified by gasiform SO₃ with 0.2% additive Ionol.

 N66-11119 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

CALCULATING THE NECESSARY CONCENTRATIONS
OF NEUTRALIZING ADDITIVES IN MOTOR OILS

V. D. Reznikov, N. G. Puchkov, and M. S. Borovaya *In its* Additives to Oils and Fuels 6 Apr. 1965 p 499-511 refs (See N66-11076 02-15)

A method was developed for calculating the necessary concentrations of neutralizing additives in motor oils when shifting to fuels with large sulfur contents. The calculations are dependent on the sulfur content of the fuel and a number of constructive and exploitational parameters of the motor. The necessary concentrations of the additive vnii np-360 were determined for a D-38 motor operating with fuels of varying sulfur content. The calculations obtained closely coincided with those obtained by experimentation.

N66-11120 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METHOD OF DETERMINING REQUIREMENTS FOR QUALITY OF LUBRICATING OILS FOR TRACTOR MOTORS

S. G. Arab'yan *In its* Additives to Oils and Fuels 6 Apr. 1965 p 512-522 refs (See N66-11076 02-15)

A method is presented for selecting tractor motor lubricating oils in which the motor design features and operating conditions are considered. The crankcase oils are classified on the basis of tests by special motor installations which determine the exploitational properties of the oils. From the test results, the oils are given a point rating according to quality and placed in one of four groups corresponding to various operating conditions of motors. With this system, not only can the quality of oil needed for a particular engine be determined, but also the type of oil needed for a particular working condition of a particular motor can be selected.

N66-11121 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

TESTS OF OILS FROM SULFUROUS CRUDES WITH DIFFERENT ADDITIVES

N. G. Puchkov, M. S. Borovaya, A. A. Deryabin, and G. P. Belyanchikov *In its* Additives to Oils and Fuels 6 Apr. 1965 p 524-534 refs (See N66-11076 02-15)

The results of laboratory and motor tests on a number of native oil additives are compared with certain foreign oil additives to determine the possibility of producing motor oils of the series I, II, and III (oils for normal, heavy, and very heavy working conditions). Results show that available native additives can be used to produce motor oils corresponding to foreign oils of the premium type and series I. Development and application of corresponding additives for oils of series II and III, necessary for new promising motors, are required. Certain native additives used for oils of series O and I are comparable in quality to corresponding imported additives, but it is necessary to establish optimum combinations of these additives and select their concentrations in oils. More work is needed on improving the quality of additives for oils of series I. Work is also needed on decreasing the content or changing the character of metalorganic compounds in additives to decrease carbon deposition in motors, and to improve the antioxidation properties of additives.

N66-11122 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METHODS AND RESULTS OF TESTS OF OILS WITH ADDITIVES ON DIESEL ENGINES OF KOLOMENSKIY FACTORY

L. S. Ryazanov *In its* Additives to Oils and Fuels 6 Apr. 1965 p 535–543 ref (See N66-11076 02-15)

Procedures and results are presented of tests on oils with anticorrosive additives produced from sulfur bearing crude oil. The tests were performed in high-forced diesel engines operating on low sulfur fuels. The oils performed satisfactorily but their quality needs improvement. Requirements for oils and additives are discussed.

R.N.A.

N66-11123 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

TESTS OF ADDITIVES TO OIL ON A 2D100 MOTOR OF A DIESEL LOCOMOTIVE WHILE OPERATING ON SULFUR-BEARING FUEL

B. N. Strunge and N. P. Sinenko In its Additives to Oils and Fuels 6 Apr. 1965 p 544-555 (See N66-11076 02-15)
 A number of oil additives were tested in a 2D100 diesel

engine operating with a sulfur bearing fuel. Test procedures and results are discussed.

N66-11124 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

RESULTS OF MOTOR TESTS OF ADDITIVES DEVELOPED BY THE INSTITUTE OF PETROCHEMICAL PROCESSES OF THE ACADEMY OF SCIENCES OF THE AZERBAY-DZHAN SSR (INKhP AN AZERB SSR) FOR THE IMPROVE-MENT OF OPERATIONAL PROPERTIES OF FUELS AND OILS

V. Ye Bashayev *In its* Additives to Oils and Fuels 6 Apr. 1965 p 556–563 (See N66-11076 02-15)

A discussion is presented on two new additives for improving the operational properties of fuels and oils. The first is a sulfonate detergent additive, SB-3, and the other an anti-wear additive, BFK-1, which is a barium salt product from the condensation of alkylphenol by formaldehyde. A 10% addition of SB-3 to oil prolongs engine life and ensures full mobility of piston rings, and cleanliness of diesel engines and carburetor motors. The additive BFK-1 also ensures prolonged diesel engine life. It is recommended that the SB-3 and BFK-1 additives be mixed in a 4 to 1 ratio for optimum improvement of diesel oil performance.

N66-11125 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

EXPERIMENT IN USING OIL ADDITIVES FROM SULFUR-BEARING CRUDES IN DIESEL LOCOMOTIVE DIESEL ENGINES

I. S. Zelenetskaya *In its* Additives to Oils and Fuels 6 Apr. 1965 p 564-574 (See N66-11076 02-15)

Operational tests were conducted on oils from sulfur bearing crudes with different additives in diesel locomotive engines. On the basis of test results, DS-11 oil with an 8% vnii np-360 additive is recommended for use with diesel fuel containing up to 1% sulfur in diesel locomotive engines of the 2D100 type. The additives tsiatim-339p and aznii-7 performed poorly with 2D100 diesel engines using fuel with a sulfur content of 0.8 to 1.0%. There was evidence of increased scale deposits, scorched oil rings, and increased wear.

N66-11126 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

THE EFFECT OF MOTOR OIL ADDITIVES ON PITTING (POINT BREAKING OFF) OF HYDRAULIC LIFTERS

O. S. Obleukhov, V. V. Protasov, and R. A. Trubinskaya *In its* Additives to Oils and Fuels 6 Apr. 1965 p 575-586 (See N66-11076 02-15)

R.N.A.

Pitting of hydraulic lifters is caused by the washing components of oil additives which promote corrosional fatigue of metal. The most effective additive for preventing pitting is DF-11, dithiophosphate of zinc, which is prepared with primary octyl alcohol (2-ethylhexyl) in a mixture with isoputyl alcohol. This additive is introduced into oil in a quantity of 2%, calculating the content of zinc and phosphorous in oil at nearly 0.1%. To obtain satisfactory washing properties in oil it is necessary to introduce sulfonate or alkylphenol additives. Satisfactory washing, antiwear, and anticorrosive oil properties can be obtained with an additive composition of 3% low ash sulfonate AzNII with 2% DF-11, and 3% sulfonate additive SB-3 with 2% DF-11. Using 24 and 50 hour motor tests, the additives which best prevent pitting can be selected and at the same time a comparative appraisal can be made of the quality of metal used in the hydraulic lifters. R.N.A.

N66-11127 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

METHOD AND RESULTS OF STAND TESTS OF TRANS-MISSION OILS WITH DIFFERENT ADDITIVES

O. S. Obleukhov, E. N. Devyatkin, and A. V. Berenfel'd *In its* Additives to Oils and Fuels 6 Apr. 1965 p 587-595 (See N66-11076 02-15)

Bench tests were conducted for automobile transmission oils. The oils were tested in conditions simulating operation at different speeds, when the transmission of all the torque of the motor was to one drive axle, and where each stage of tests was preceded by a stage of rolling. The procedures are given and the results tabulated. These include antiwear, antiburr, and anticorrosive properties; and also stability and foam characteristics. Additives were considered, and certain oils are recommended.

N66-11128 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

RESEARCH ON EFFECTIVENESS OF ADDITIVE TSIATIM-339 DURING PROLONGED OPERATION OF HIGH SPEED AND FORCED SHIP DIESEL ENGINES ON SULFUR-BEAR-ING FUELS AND OILS

V. P. Korotnenko In its Additives to Oils and Fuels 6 Apr. 1965 p 596-603 (See N66-11076 02-15)

The effectiveness of the additive tsiatim-339 in prolonging the operation of ship diesel engines operating on sulfur bearing fuels and oils was investigated. Diesel engines were operated on sulfur bearing diesel fuel of brand C (GOST 305-58) and lubricating oils from Baku crudes with 3% additive tsiatim-339, and lubricating oils from sulfur bearing crudes with the same additive concentration. Engine life was effectively prolonged by the additive in lubricating oils from Baku crudes. However, in the lubricating oils from sulfur bearing crudes, tsiatim-339 was ineffective in neutralizing the harmful effects of combustion products from the sulfur bearing fuels and oils.

N66-11129 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

THE EFFECT OF VISCOSITY OF ADDITIVES ON OPERA-TIONAL PROPERTIES OF OILS

Ye. G. Semenido, V. I. Sharapov, and N. V. Shchegolev *In its* Additives to Oils and Fuels 6 Apr. 1965 p 604-617 refs (See N66-11076 02-15)

The influence of viscosity additives on the antiwear properties of oil was investigated. The antiwear properties of oils thickened by polyisobutylene exceed those of oils prepared by usual methods. Sulfur bearing oils are better in this respect than Baku oils. Several multifunctional additives were studied for their effect on antiwear properties of oil and of these the best were found to be aznii-8, vnii np-361, and vnii np-361a.

The last two additives are identical in chemical nature and differ only in their washing and polyfunctional components. Data on the antiwear properties of lubricating oils, obtained by the method of radioactive isotopes, agree well with the results of 60-hour bench tests of ASZ $_p$ -10 oil thickened by polyisobutylene with additive vnii np-361a, and on AKZ $_p$ -10 oil with additive aznii-8.

N66-11130 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ADDITIVES TO LIQUID FUELS FOR GAS TURBINE INSTALLATIONS, PREVENTING DEPOSITS OF ASHES AND VANADIUM CORROSION

R. A. Lipshteyn, S. E. Khaykina. A. S. Avetisyan, and T. A. Blagova *In its* Additives to Oils and Fuels. 6 Apr. 1965. p. 619–630. (See N66-11076-02-15)

Static and dynamic tests were conducted on 20 substances to determine their effectiveness as fuel additives in preventing ash deposition in the flow-through area of gas turbines and vanadium corrosion of turbine blades. The most effective were montmorillonite, kaolin, dolmite, magnesium oxide, and sulfate. The tests were conducted with a gas turbine installation with a capacity of 1500 hp on motor fuels DT-1 and DT-2, and on sulfurous black oils 40 and 60. Motor fuel containing around 0.002% vanadium pentoxide causes noticeable corrosion of the steels EYaIT, EI405, and EI612 at temperatures of 700°C and above. The normal operation of a gas turbine on black oil does not exceed 48 hours because of the fast jamming of the flow-through part of the turbine by deposits. According to preliminary data, kaolin, added in a 0.2% wt concentration to black oil, lowers jamming and in motor fuels prevents vanadium corrosion of steel at a gas temperature of 700° C.

N66-11131 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SOME DATA ON THE USE OF ANTICORROSIVE ADDITIVES TO RESIDUAL FUELS CONTAINING VANADIUM AND SULFUR

V. G. Nikolayeva, A. Ya. Dukhnina, B. I. Komarov, and G. I. Levinson *In its* Additives to Oils and Fuels 6 Apr. 1965 p 631-641 (See N66-11076 02-15)

Results are presented of research conducted on the corrosion aggressiveness of ashes of different crude oils and on the influence of magnesium, silicon, and aluminum anticorrosive additives in residual fuels containing vanadium and sulfur Results show that compounds of magnesium and silicon are the best for use as anticorrosive additives during the burning of sulfurous residual gas turbine fuels containing vanadium.

N66-11265# United States Steel Corp., Monroeville, Pa. Applied Research Lab.

DEVELOPMENT OF A KIC STRESS-CORROSION TEST SPECIMEN

S. T. Rolfe 1 Mar. 1965 30 p refs (Contract Nobs-88540) (S-23304; AD-616931)

A study was made to develop a K_{1C} stress-corrosion test that would be suitable for investigating the phenomenon that the effective fracture toughness of certain materials may be reduced if a flaw in the material can extend by stress corrosion to a critical size. The results of the study indicate that by appropriate modification, the standard K_{1C} slow-bend fracture-toughness test can be used to demonstrate the effect of stress corrosion on fracture toughness. The modification consists of notching the specimen face so that plane-strain fracture can be obtained in relatively small specimens of tough materials. The fatigue-cracked area is surrounded by the appropriate corrosive environment and the specimen is dead-weight-loaded as

a cantilever beam Preliminary results on a 12Ni-5Cr-3Mo maraging steel (yield strength of about 175 ksi and Charpy V-notch energy absorption of about 35 ft-lb) have shown that this steel failed by plane-strain fracture at values ranging from 0.8 K_{1C} at 10 hours to 0.3 K_{1C} at 400 hours when the fatigue crack was exposed under stress to synthetic sea water. To date, similar failures have not been observed in the 5Ni-Cr-Mo-V experimental HY-130/150 steel after more than 500 hours in test.

N66-11372# Rock Island Arsenal Lab., III. Research and Engineering Div.

PERFORMANCE EVALUATION OF CUTTING FLUIDS
Lanny D. Wells Jun. 1965 27 p refs
(RIA-65-1491: AD-620158)

An investigation into the effects of cutting fluids upon tool life, cutting forces and various theoretical tool-chip relationships has been conducted for the purpose of developing a test procedure for cutting fluid performance evaluation. Variable speed tool life testing under carefully controlled conditions, with complete tool failure as the end point of tool life, was found to give the most satisfactory results. Some correlation was found to exist between tool life and the Falex extreme pressure test and some theoretical relationships. This correlation appears to be of academic interest only and is of little practical value because of the inherent variation in most machining operations.

Author (TAB)

N66-11492# Oak Ridge National Lab., Tenn. ALUMINUM AND TITANIUM CORROSION IN SALINE WATERS AT ELEVATED TEMPERATURES

E. G. Bohlmann and F. A. Posey [1965] 28 p refs (Contract W-7405-ENG-26) (ORNL-P-1430)

Studies of electrochemical aspects of the corrosion of aluminum alloys 5454 and 6061 were conducted in 1 M NaCI at 150°C in a titanium dynamic loop facility. Corrosion rates were followed with time by measurement of the polarization resistance of the specimens. The results show that the 5454 alloy is superior to the generally recommended 6061 alloy in corrosion resistance under all conditions studied. Polarization curves of the alloys were measured under a variety of conditions in order to determine the nature of the difference in corrosion properties. The results are generally similar to those obtained by other workers at lower temperatures, except for certain complications which appear mainly at the higher temperature of this study. Comparison of polarization curves of the 5454 and 6061 alloys shows that the rate of the cathodic hydrogenevolution reaction on the 6061 alloy is considerably greater than that of the 5454 alloy. The enhanced rate of the cathodic process on the 6061 alloy accounts for its greater corrosion rate at any pH and for its susceptibility to pitting attack. Catalysis of the cathodic process on the 6061 alloy may be attributable to its copper content. Author

N66-11528# Springfield Armory, Mass. TEST RESULTS ON FALEX PINS COATED BY THE PLASMA-ARC PROCESS

Francis X. Hassion 30 Jul. 1965 25 p refs (SA-TR18-1096; AD-621064)

Coatings of nickel-alumina, molybdenum, tungsten, alumina, tungsten carbide-cobalt, stainless steel, and zirconia applied to Falex pins by the plasma-arc process were tested for wear resistance. The tungsten carbide-cobalt, the tungsten, and the molybdenum coatings showed unusually good wear characteristics comparable to dispersions of diamond, zirconia, and thoria in chromium electroplate formed at high current densities. The coefficients of friction appeared to be somewhat higher in the plasma-arc coatings. This may be

due, however, to the initial roughness of the surfaces tested. The other plasma-arc coatings, i.e., nickel-alumina, alumina, stainless steel, and zirconia either flaked, wore off, or galled under test. Procedures are described and results are discussed.

Author (TAB)

N66-11700# Oak Ridge National Lab., Tenn. Metals and Ceramics Div.

PROCUREMENT AND QUALITY EVALUATION OF Nb-1% Zr STOCK FOR BOILING ALKALI METAL CORROSION STUDIES

T. K. Roche Aug. 1965 16 p (Contract W-7405-ENG-26) (ORNL-TM-1179)

Tubing, plate, and bar stock of Nb-1% Zr were procured for evaluation in boiling alkali metal systems. Costs for this material, together with the results of evaluating its quality upon receipt from the various vendors, are presented. Author

N66-11728# Mechanical Technology Inc., Latham, N. Y. PRELIMINARY STUDY OF THE LIQUID METAL LOOP AND TEST RIG FOR PHASE II OF THE INVESTIGATION OF LIQUID METAL LUBRICATED BEARINGS AND ROTOR-BEARING DYNAMICS

W. D. Waldron and E. B. Arwas 23 Feb. 1965 31 p refs (Contract AT(30-1)-3363) (MTI-64TR72, rev.-2; NYO-3363-1)

The results of a study of the mercury loop and the rotor-bearing test rig for use in a liquid metal lubricated bearing and rotor-dynamics program are presented. The modification of the mercury loop for conversion to alkali metal, with NaK selected as the test fluid, is discussed.

N66-11819# Pratt and Whitney Aircraft, Middletown, Conn. SINGLE FILM JOURNAL BEARING TESTS IN WATER B. Weinberg 30 Jul. 1965 17 p refs (Contract AT(30-1)-2789) (TIM-916)

This report describes a series of tests conducted with fluid-film bearings as part of a program for developing a shaft-bearing system for liquid metal pumps to be used in the SNAP-50/SPUR powerplant. Hydrodynamic, hydrostatic, and hybrid type bearings were tested using water to simulate the low kinematic viscosity condition of lithium. The test unit, which was basically a shaft supported by a conventional single deep-groove ball bearing at one end and the test bearing at the other, was also operated to simulate the dynamic conditions of a similar test unit which was operated with lithium at 600° F.

N66-11852# Battelle Memorial Inst., Columbus, Ohio. PROGRESS RELATING TO CIVILIAN APPLICATIONS DURING SEPTEMBER 1965

Russell W. Dayton and Stan J. Paprocki 1 Oct. 1965 31 p refs (Contract W-7405-ENG-92)

(BMI-1745) Available From AEC, Oak Ridge, Tenn.: \$0.75 Research having the general objective of providing support to the Atomic Energy Commission's overall reactor development program is reported. Presented are data on: reactor materials and components, fuel development studies, radioisotope and radiation applications, coated-particle fuel materials, corrosion studies of the fluidized-bed fluoride-volatility process, and the gas-cooled reactor program. Cited are studies on the effect of irradiation on the mechanical properties of Type-347 stainless steel; the effects of high burnup on UO₂-CeO₂ and UO₂-ZrO₂ flueis; radiation-induced formation of organometallic compounds with particular emphasis on organotins; and coated-particle preparation and characterization.

N66-11939# Bureau of Mines, Bartlesville, Okla.
VARIABLES IN THE USE OF HOT-FINISHED MILD STEEL
COUPONS FOR CORROSION INHIBITOR TESTING

Jerry B. F. Champlin and Don R. Thompson 1965 21 p. refs Based on work done in cooperation with the State of Oklahoma (BM-RI-6696)

An accelerated testing procedure developed by the Bureau of Mines for evaluating commercially available corrosion inhibitors is described. Ultrasonic agitation of the corrodent solutions and the hot-finished mild steel test coupons was used to evaluate the effects of several variables on the effectiveness of two corrosion inhibitors. Small changes in the weight of the test coupons in both controlled and inhibited corrodents, before and after exposure, affected the precision and accuracy of the results. Minute amounts of oxygen in the systems were found to be causing the relatively large deviations in the corrosion developed in the controlled tests. Microscopic examination of the test coupons revealed that both surface preparation and internal strains resulting from fabrication methods materially affect corrosion behavior.

N66-11959# Columbia Univ., New York. Lubrication Research

ESTABLISHMENT OF DIFFERENTIAL EQUATIONS FOR LOAD-DEFLECTION CHARACTERISTICS OF THIN ELASTIC LAYERS FOR APPLICATION TO COMPLIANT BEARINGS HAVING FLUID-FILM LUBRICATION

V. Castelli Aug. 1965 25 p ref (Contract Nonr-4259(06)) (Rept.-3: AD-471832)

The report contains a derivation of differential equations which, to any desired degree of approximation, relate directly the normal load and local deflection of a thin elastic layer. Three types of boundary conditions on one side of the layer are studied to represent situations of interest in compliant surface lubrication.

Author(TAB)

N66-12016# Coating and Chemical Lab., Aberdeen Proving Ground Md.

EFFECT OF PAINT VAPORS ON CADMIUM PLATED STEEL

William H. Deaver 1 Oct. 1965 7 p refs (CCL-187; AD-622280)

Studies to determine the cause of cadmium corrosion encountered in electronic vans showed the curing of alkyd resin enamels in a closed system can create an atmosphere corrosive to cadmium plated steel. Proper curing and ventilation should prevent this occurrence. It is also possible that the incorporation of some acid reactive pigment, such as zinc oxide, in alkyd enamels would also eliminate this type corrosion. Investigation of nine additional coatings representing different types of coating vehicles indicated that epoxy, vinyl, nitrocellulose-alkyd and nitrocellulose-acrylic vehicles will not create this corrosive atmosphere.

Author(TAB)

N66-12106# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

EFFECT OF OPERATING CONDITIONS AND GAP SIZE IN THE CONNECTION OF PLASTIC AND METAL DETAILS ON THE MAGNITUDE OF THE FRICTION COEFFICIENT

Yun-Tsyu Shen' 26 Aug. 1965 9 p. Transl. into ENGLISH from Izv. Vysshikh Uchebn. Zavedenii., Mashinostro. (Moscow), no. 3, 1963 p.82–86

(FTD-TT-65-737/1+2+4; AD-621003)

The report discusses operational and geometric factors affecting the workability of polyamide slide bearings. The given data is useful for constructors, introducing plastics into machine construction.

N66-12126*# General Electric Co., Cincinnati, Ohio. Space Power and Propulsion Section.

POTASSIUM CORROSION TEST LOOP DEVELOPMENT Quarterly Progress Report No. 7, Jan. 15-Apr. 15, 1965

E. E. Hoffman, ed. [1965] 107 p refs (Contract NAS3-2547)

(NASA-CR-54735) CFSTI: HC \$4.00/MF \$0.75 CSCL 14B

The evaluation of Component Evaluation Test Loop II was completed. The loop components performed well and metallographic examination and chemical analyses of loop tubing indicated that no corrosion occurred during the 2650 hour test at 2000° F with liquid sodium. All subassemblies of the prototype corrosion loop were completed. Fabrication of alkali metal purification and transfer system components was completed. The sodium for the primary circuit of the prototype loop was purified by hot trapping with zirconium foil and is ready for use. Calibration of prototype loop components including the partial pressure analyzer, refractory alloy thermocouples, flowmeter magnets, and pressure transducer was completed. The 2500 hour 2000° F refluxing potassium test to determine the compatibility of Mo-TZM alloy in the condensing region of a Cb-1Zr alloy capsule was completed and evaluated. Weight change data indicate no significant compatibility problems. A second capsule test is being continued for a total of 5000 hours to determine the time effect on interaction of this three R.N.A component system.

N66-12142*# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio.

ROLLING-CONTACT LUBRICATION STUDIES WITH POLY-PHENYL ETHERS AT REDUCED PRESSURE

Richard J. Parker, Erwin V. Zaretsky, and William J. Anderson Washington, NASA, Dec. 1965, 19 p. refs

(NASA-TM-X-56977; NASA-TN-D-3130) CFSTI. HC \$1.00/MF \$0.50 CSCL 11H

A modified five-ball fatigue tester was used to determine the relative lubricating characteristics in rolling contact of polyphenyl ethers and mineral oils. Test conditions were a race temperature of 300° F, a shaft speed of 4900 revolutions per minute, and a test duration of 6 hours with AISI M-50 balls Measurements on the upper ball were made to determine the effects of reduced pressure, lubricant degassing, contact angle, and contact stress on wear. A four-ring polyphenyl ether (4P3E) exhibited several times more wear than a naphthenic mineral oil when the fluids were tested at pressures near their vapor pressures at 300° F. In tests at atmospheric pressure in an argon atmosphere, the 4P3E polyphenyl ether exhibited more wear than a paraffinic oil. Greater wear occurred when the 4P3E polyphenyl ether was tested at a pressure near its vapor pressure than in argon at atmospheric pressure with all other conditions equal. Increased wear at higher contact angles and higher contact stresses was accompanied by increased darkening of the 4P3E polyphenyl ether. Rollingcontact fatigue tests in the five-ball fatigue tester indicated that the fatigue life with a 5P4E polyphenyl ether at 300°F may be expected to be comparable to that with the mineral oils. The polyphenyl ethers appear to be inferior to the mineral oils in their ability to provide elastohydrodynamic lubrication.

N66-12264*# General Electric Co., Cincinnati, Ohio. Space Power and Propulsion Section.

STUDIES OF ALKALI METAL CORROSION ON MATERIALS FOR ADVANCED SPACE POWER SYSTEMS Quarterly Progress Report No. 4, Mar. 26-Jun. 26, 1965

R. W. Harrison [1965] 47 p refs (Contract NAS3-6012)

(NASA-CR-54476) CFSTI: HC \$2.00/MF \$0.50 CSCL 11F

Influence of stress on corrosion behavior of an advanced refractory alloy in potassium and corrosion mass transfer effects in a stainless steel-niobium alloy-potassium system were

a investigated. Two niobium-base alloy stress corrosion reflux capsules were heat treated for one hour at 2400° F. Since creep rate measurements indicated a faster rate at 2250° F than expected from pre-test uniaxial creep data, a temperature of 2100° F was selected to give the desired 5–10% creep strain for 500 to 2000 hr operation. With 430 hr test time accumulated, creep strain has reached 2–3%. Metallographic examination indicates no changes in one type of capsule (321SS), but two distinct layers, believed to be NbC and Nb2N, in the other (316SS). Gross sensitization and sigma phase occurred in the latter, and stress-rupture testing of Nb–1Zr specimens indicates the effects of carbon and nitrogen mass transfer. Post-test evaluation shows significant advantage of the Type 321SS capsule over the Type 316SS with respect to C and N transfer.

N66-12375# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

POLYSILOXANES AS ANTIFRICTION AND ANTIWEAR ADMIXTURES TO PETROLEUM GREASES

G. V. Vinogradov, N. S. Nametkin, and M. I. Nosov. 18 Jun. 1965. 13 p. refs. Transi. into ENGLISH from Neftekhimiya (USSR), vol. 3, no. 5, 1963. p. 792–798. (FTD-TT-65-316/1+2+4; AD-621008)

The use of polysiloxanes in combination with petroleum oils to achieve high lubricating qualities was investigated, as well as finding petroleum oil components most effective for this purpose. The results show that: (1) In a narrow range, polyethylsiloxane concentrations can be highly effective antiwear and antifriction additions to petroleum oils. (2) In the use of remnant oil MK-22, the highest applicability with respect to polyethyloxanes are demonstrated by fractions (obtained by absorption distribution over silica gel), enriched with hydrocarbons with a small number of aromatic rings in the molecules (3) Conditions for the appearance of high activity of polyethylsiloxanes at heavy friction conditions are preliminary training of friction surfaces in polyethylsiloxane solutions in open air and sufficiently high concentration of oxygen in the friction zone. The mechanism of antifriction and antiwear effects of polyethylsiloxanes are determined by chemical processes during friction, which are connected with the decomposition of polyethylsiloxane in the friction zone and with the oxidation processes taking place on the friction surfaces.

N66-12509# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

FREE-CUTTING STAINLESS STEEL

N. M. Pisarev and V. M. Kozhin 27 May 1965 5 p Transl. into ENGLISH from Soviet patent no. 155813 (Appl. no. 779510/22-2, 18 May 1962) 2 p (FTD-TT-65-487/1; AD-620079)

The object of the invention is a free-cutting stainless steel containing 0.35-0.45% carbon, 16-18% chromium, 1.5-2.5% nickel, 0.7-1.2% manganese and up to 0.5% silicon is distinguished by the fact that, in order to enhance the mechanical and anticorrosion properties, 0.7-0.9% molybdenum, 0.15-0.25% sulfur and 0.08-0.15% phosphorous are introduced.

N66-12537# Shell Oil Co., Wood River, III. Research Lab. STUDY OF HELICOPTER GEAR LUBRICATION Quarterly Progress Report, Jun.-Aug. 1965

D. R. Bailey, S. J. Beaubien, J. E. Bevel, and D. E. Stuart [1965] 22 p refs

(Contract NOw-65-0323-c)

(QPR-2; AD-621916)

Studies of the effect of gear-tooth surface pretreatments on gear performance were continued. Two surface precoatings, one obtained with Parco lubrite solution and one with tri-

chloroacetic acid, were found to increase greatly the constant load gear fatigue life, the former consistently, and the latter under some conditions of operation. A 30% reduction in load with the untreated gears was necessary in order to achieve the same constant load life as obtained with Parco lubrite treated gears at 6400 rpm. In other experiments, improvement of the surface finish by lapping resulted in improvements in gear life of about two to four times that of the untreated gears, the greater improvement being a low speed. None of the pretreatments significantly affected the score load of a MIL-L-23699 oil. In break-in studies employing a loading schedule in which the load was increased stepwise, it was found that neither operation for a long prior period at low load nor elimination of the low-load steps had any significant effect on the eventual failure load, or the mode of failure. In tests with a synthetic base oil on the rotary contact simulator, in which various points on the gear tooth profile were simulated, immediate scoring occurred on the disks simulating the tips, and areas near the tips, of the pinion and gear addenda. In every case of scoring, the mating disks, representing the corresponding dedenda, had undergone considerable surface cracking and sometimes pitting. Between these extremities on the gear-Author (TAB) tooth active profile no failures occurred.

N66-12595# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

THE GYROSCOPE IN GIMBAL SUSPENSION

Yevgeniy Leopol'dovich Nikolai 18 Aug. 1965 147 p refs Transl. into ENGLISH from the book "Giroskop v Kardanovom Podvese" Moscow, Izd. Nauka, 1964 136 p (FTD-TT-65-416/1+2; AD-620837)

Contents: Differential equations of motion of a gyroscope in a gimbal mount; Stability of the axis of a rapidly spinning gyroscope; Pseudoregular precession of a gyroscope acted on by a constant moment: The case of constant friction at the gimbal axes. The representative point method; Elementary cases of gyroscope motion in the presence of friction at the gimbal axes; Small oscillations of a balanced gyroscope in the presence of friction at the gimbal axes; Pseudoregular precession of a gyroscope in the presence of friction at the gimbal axes; Motion of a gyroscope in the presence of friction forces proportional to the normal components of the dynamic reactions; Present state of the theory of the astatic gyroscope in a gimbal mount.

N66-12606# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

RESOURCE INCREASED IN DOUBLE

M. Gal'perin, G. Ushakov, and G. Vasil'chenko 26 Aug. 1965 10 p Transl. into ENGLISH from Grazhdanskaya Aviatsiya (Moscow), no. 8, 1964 p 28-29 (FTD-TT-65-723/1+2+4; AD-620974)

The general service life and time before first repair of piston type aircraft engines was almost doubled by improving the air flow of the cylinder, reducing cylinder temperature, improving lubrication and reducing load on pistons of main connecting rods.

N66-12735 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

BASIC PROBLEMS IN PREPARATION FOR BROAD APPLICATION OF ALUMINUM ALLOYS IN CONSTRUCTION

S. V. Taranovskiy *In its* Bldg. Struct. from Aluminum Alloys 27 Jul. 1965 p 1-23 (See N66-12734 03-17)

Basic problems in the use of aluminum alloys for construction are examined. Discussions are included on the selection of brands of aluminum alloys and types of joints for building structures, the manufacture of semifinished aluminum alloy

products and structures, the corrosion resistance of aluminum alloys, and certain peculiarities of aluminum alloy structures with respect to calculating ultimate strains and stability. R.N.A.

N66-12739 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

CORROSION RESISTANCE OF ALUMINUM ALLOYS IN BUILDING STRUCTURES

Yu. N. Tikhenko and V. Ya. Flaks *In its* Bldg. Struct. from Aluminum Alloys 27 Jul. 1965 p 99–132 refs (See N66-12734-03-17)

Corrosion data on aluminum alloys in building structures and the results of corrosion tests conducted on aluminum alloys under environmental conditions in metallurgical factories and in the atmosphere of an industrial city are presented. Corrosion losses in sheets of AMts-M. AMg6-M. and D16-T alloys were found to depend on the composition and character of the corrosive medium. Least corrosion losses were encountered in the metallurgical factory environment for the D16-T alloys with a protective plating of aluminum. Unplated D16-T alloy had the next best corrosion resistance followed by AMts-M and AMg6. Corrosion in aluminum alloy building structures should be determined by losses in strength and depth of corrosion penetration rather than by weight losses. The advantage of aluminum alloys in corrosion resistance over steel in metallurgical factories is greater in open air conditions than inside buildings. Aluminum alloy structures gave long lasting corrosion protection in the range of corrosive media encountered in metallurgical factories.

N66-12831# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

AN ADDITIVE FOR SUPPRESSING VANADIUM CORROSION OF FUELS

R. A. Lipshteyn, A. S. Avetisyan et al. 20 Sep. 1965. 6 p. Transl. into ENGLISH from Soviet Patent no. 162269 (Appl. no. 849707/23-4, 29 Jul. 1963. 1 p.

(FTD-TT-65-505/1+4; AD-621778)

The object of the invention is an additive for suppressing vanadium corrosion of fuels on the basis of green oil. For the purpose of improving the additive's properties tetraethoxysilane or the bottoms in the production of tetraethoxysilane is added to the green oil.

Author (TAB)

N66-12932# Battelle-Northwest, Richland, Wash.
CORROSION EVALUATION OF HIGH-SILICON ALUMINUM ALLOYS

H. C. Bowen Sep. 1965 23 p ref (Contract AT(45-1)-1830) (BNWL-125) CFSTI: \$1.00

A battery of tests was performed on four high-silicon aluminum alloys containing nickel and/or magnesium. The tests included high and low flow isothermal and nonisothermal 140° C water tests, galvanic couples, stress corrosion cracking tests, and tests in 400° C steam and 360° C water. The HDA-1 and -4 alloys were decidedly superior to the other two alloys in the nonisothermal high flow, the 360° C water, and the 400° C steam tests which are considered the tests of most significance. The HDA-4 alloy had better resistance in high temperature water and is considered the most promising alloy.

N66-12956# Ilikon Corp., Natick, Mass.
TECHNIQUES FOR TESTING MATERIALS IN ULTRAHIGH VACUUM

Paul R. Gould [1964] 16 p. refs. Presented at Fall Meeting of the Am. Phys. Soc., New England Section, Amherst, Mass., 17 Oct. 1964 (APS64G) A 20 cubic foot volume ultrahigh vacuum system with an equilibrium pressure of about 1×10^{-11} torr was used for testing materials in this environment. High temperature tensile tests, alloy powder heat treatment, friction studies on dry lubricants, and weight loss measurements were performed. Some details of the experimental techniques are given, and a discussion of methods is presented.

N66-13015*# General Electric Co., Cincinnati, Ohio. Space Power and Propulsion Section.

POTASSIUM CORROSION TEST LOOP DEVELOPMENT: PURIFICATION AND ANALYSIS OF HELIUM FOR THE WELDING CHAMBER Topical Report No. 1

T. F. Lyon 1 Jul. 1965 48 p refs

(Contract NAS3-2547)

(NASA-CR-54168) CFSTI. HC \$2.00/MF \$0.50 CSCL 14B

A helium analysis system was assembled and used to measure the concentrations of impurities in a vacuum purged, inert gas welding chamber. The analytical system consists of a mass spectrometer and an electrolytic hygrometer to monitor the chamber gas, and a trace oxygen analyzer and electrolytic hygrometer to detect impurities in the inlet helium. It was found that reliable analyses for water vapor could not be obtained with the initial operation of the mass spectrometer. Since water vapor was expected to be one of the chief contaminants within the welding chamber, the electrolytic hygrometer system was installed on the welding chamber and used for the water analyses. The results indicated that the impurities in the welding chamber (other than water vapor) were oxygen, nitrogen, and hydrogen. The mass spectrometer was then calibrated for these three gases, and the reliable detection limit for each of these was estimated to be between one and two volume ppM. Qualitative analyses of other impurities were also obtained. The layout and operation of the mass spectrometer and other analytical instruments used are described, and typical impurity levels encountered in the welding chamber and changes in the im-RRD purity levels are given.

N66-13147# Pratt and Whitney Aircraft, Middletown, Conn. Canel Div.

OVERHUNG ROTOR DYNAMICS TESTS USING HYDRO-STATIC WATER BEARINGS

D. A. Newey 24 Jun. 1965 51 p refs (Contract AT(30-1)-2789) (TIM-874)

This report describes the results of a rotor dynamics test with an overhung mass system using water as a lubricant, which is part of a liquid metal pump development program. Most of the work was directed toward finding a means of predicting and optimizing the conditions required to maintain stable rotation of the shaft. Bearing stiffness was evaluated by use of a hydraulic loading device. The relation between bearing stiffness and stability was studied by observing shaft whirl patterns. Low clearances were found to produce low whirl ratios and considerable hydrodynamic action at high speeds. Higher whirl ratios up to six were obtained by increasing the bearing clearance. The dynamic assembly consisted of a relatively stiff shaft supported by orifice compensated hydrostatic bearings. The amplitude of the synchronous whirl pattern at the system critical speed was found to be negligible due to high fluid damping characteristics. Author

N66-13178# Atomic Weapons Research Establishment, Aldermaston (England).
THE WATER VAPOUR CORROSION OF URANIUM AND

ITS PREVENTION V. J. Corcoran, C. Johnston, W. J. Metcalfe, and J. Thrope Jul. 1965–20 p. refs

(AWRE-0-42/65) CFSTI: HC \$1.00/MF \$0.50

The reaction between uranium and atmospheres containing water vapor in the presence of nitrogen and oxygen has been studied at 25 and 40° C. The steady production of hydrogen from uranium and moist nitrogen was suppressed by the presence of gaseous oxygen, which itself was slowly consumed. The ability of sulphide and arsenic coatings to suppress hydrogen production from uranium in moist nitrogen was also in-Author vestigated.

N66-13189# Sandia Corp., Albuquerque, N. Mex. ION PLATED COATINGS FOR THE CORROSION PROTEC-TION OF URANIUM

R. D. Bland, J. E. Mc Donald, and D. M. Mattox Oct. 1965 24 n refs

(SC-DR-65-519) CFSTI: \$2.00

The feasibility of using the ion plating process to cast depleted uranium with relatively thin aluminum coatings was demonstrated. It was found that electropolishing is preferable to nitric acid dip for surface preparation prior to deposition of the coating, and that the uranium must be kept cool during the ion plating process to prevent surface oxidation. Ion bombardment followed by ion plating provided corrosion protection up to 96 hours exposure in a condensing water vapor atmosphere at 95° C. Various surface preparation techniques and deposition parameters are compared, and results indicate that standard vacuum deposition techniques do not provide adequate protection for uranium. Failure mode analysis shows that the vacuum evaporated coatings fail as a result of vapor penetration through pinholes in the film with subsequent interfacial corrosion and catastrophic adhesive failure. In the ion plated coatings, corrosion was confined to relatively small areas around the original pinholes even after extended exposure. M G.J

N66-13268* National Aeronautics and Space Administration, Washington, D. C.

THE DETERIORATION OF CONTACTS DURING THE SWITCHING OF LOW VOLTAGE (UP TO 220 V) dc AND ac CURRENTS

V. T. Nezhdanov and B. A. Vasil'yev In its Elec. Contacts Dec. 1965 p 169-177 ref (See N66-13251 03-09) CFSTI: HC \$7.45/MF \$2.25

Investigations were conducted to determine the variation in the electric wear of contacts as a function of contact material and the value of the magnetic field in the arc quenching zone when dc current is switched off, and also as a function of contact separation speed when ac current is turned off. Results are discussed.

N66-13269* National Aeronautics and Space Administration, Washington, D. C.

RESISTANCE OF CONTACT MATERIALS TO ELECTRIC WEAR

O. F. Gayday In its Elec. Contacts Dec. 1965 p 178-184 refs (See N66-13251 03-09) CFSTI: HC \$7.45/MF \$2.25

Electric contacts of silver, SOM cermet (Ag with 5 to 25% CuO), and SOK15 cermet (Ag with 15% CdO) were evaluated for their resistance to electric wear. The evaluation of the contact materials tested in dc contactors showed that the best contacts were those made of silver and of SOM10 and SOK15 cermets. The least wear by weight was exhibited by silver contacts. The wear by weight of the SOM10 and SOK15 cermet contacts was 1.6 to 1.7 times greater than for silver. A transfer of metal from the anode to the cathode occurred with all the tested contacts. This was most pronounced in silver where the depth of depression on the contact reached 2 mm, but less in SOK15 and even less in SOM10. As a result the SOM10 and SOK15 materials were selected for KM-2000 contactors operating with nominal dc currents up to 300 A. The analysis of contact materials tested in ac contactors shows that the maximum number of operations was sustained by contacts made from cermets SOM15, SOK15, and SOM10. As a result these three cermets were selected for use in KM-2000 contactors R.N.A. operating with ac currents up to 150 A.

N66-13388# Joint Publications Research Service, Washington, D. C.

TRANSLATIONS ON COMMUNIST CHINA'S SCIENCE AND **TECHNOLOGY NO. 247**

26 Nov. 1965 77 p refs Transl. into ENGLISH from Chinese periodicals

(JPRS-33046: TT-65-33623) CFSTI: \$3.00

1. EXPERIMENTAL DETERMINATION OF INERTIA PARAMETERS OF MOVING BODY UNDER WATER K.-h. Chao and Y. Chiang p 1-47 refs (See N66-13389 04-12)

2. STUDIES ON ATMOSPHERIC CIRCULATION IN THE STRATOSPHERE AND THE EFFECT OF SOLAR AC-TIVITYON ATMOSPHERIC CIRCULATION p 48-53 (See N66-13390 04-13)

3. MEANS OF IMPROVING CORROSIVE RESISTANCE OF ALLOYS C.-m. Ch'en p 54-75 refs (See N66-13391 04-17)

Joint Publications Research Service, Washing-N66-13391 ton, D. C.

MEANS OF IMPROVING CORROSIVE RESISTANCE OF **ALLOYS**

Chun-ming Ch'en In its Transl. on Communist China's Sci. and Technol. No. 247 26 Nov. 1965 p 54-75 refs Transl. into ENGLISH from K'o Hsueh T'ung-pao (Scientia), (Peiping), no. 9, 20 Sep. 1965 p 799-804 (See N66-13388 04-34) CFSTI: \$3.00

The corrosion resistance of alloys is discussed and methods for improving corrosion resistance of alloys are summarized. It is concluded that since the corrosion process of a metal is determined by many complicated factors it is not possible to predict the corrosive properties on the basis of the alloy composition. However, if the principles discussed are followed, the time required to trial produce corrosion resistant alloys will be greatly reduced.

N66-13426# Esso Research and Engineering Co., Linden, N. J. Products Research Div.

LUBRICITY PROPERTIES OF HIGH-TEMPERATURE JET FUELS Quarterly Progress Report, 15 May-15 Aug. 1965 J. K. Appeldoorn, R. J. Campion, W. G. Dukek, M. J. Furey, and F. F. Tao [1965] 45 p refs

(Contract AF 33(615)-2828)

(QPR-1: AD-472148)

This is the first quarterly report of work to study the lubricity properties of jet fuels. A field survey of engine and pump manufacturers indicates there is a potential problem when pumping jet fuels, particularly at high pressures, high temperatures and when using highly-purified fuels. Problems in the field include wear, scuffing, sticking, seizure, and fatigue pitting. Laboratory tests on pure hydrocarbons in the jet-fuel boiling range indicate that viscosity is beneficial in reducing wear and friction, but that chemical structure also has some effect. The addition of typical sulfur and nitrogen compounds, surprisingly, gave no reduction in wear and friction. In a vane pump test, a high-purity kerosene gave very excessive wear; adding 1% of a special lubricity additive essentially eliminated Author (TAB) the wear.

N66-13716# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div. CHEMISTRY AND TECHNOLOGY OF FUELS AND LUBRI-**CANTS** Selected Articles

15 Sep. 1965 22 p refs Transl. into ENGLISH from Khim. i Tekhol. Topliv i Masel (Moscow), no. 8, 19 (FTD-TT-65-704/1+2; AD-621797) CFSTI: HC \$1.00/MF \$0.50

CONTENTS:

- 1. ACTION OF ADDITIVES ON WEAR-RESISTANCE AND ANTI-FRICTION PROPERTIES OF POLYSILOXANE COMPOUNDS M. I. Nosov and G. V. Vinogradov p 1–19 refs (See N66-13717 04-06)
- 2. DETERMINATION OF ANTIOXIDANT ADDITIVES IN OILS BY THE THIN-LAYER CHROMATOGRAPHIC METHOD N. D. Zubkova, Yu. I. Turskii, V. I. Genkina, and G. V. Klyuchko p 11-19 refs (See N66-13718 04-06)

N66-13717 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ACTION OF ADDITIVES ON WEAR-RESISTANCE ANTI-FRICTION PROPERTIES OF POLYSILOXANE

M. I. Nosov and G. V. Vinogradov In its Chem. and Tech. of Fuels and Lubricants 15 Sep. 1965 p 1-9 refs (See N66-13716 04-06) CFSTI: HC \$1.00/MF \$0.50

Experiments were performed to determine the specific action of additives during boundary friction. Polyethylsiloxane fluid (PES) and two polymethylphenylsiloxane fluids with low (polymer 3) and high (polymer 2) content of phenyl groups were used; their properties are tabulated. The relationship between additive activity and the nature of polysiloxane, and the action of molecular oxygen on additive properties were also considered. Results indicate: (1) Additives distinguished by high activity in relation to preventing jamming of steel in hydrocarbon lubricants act very weakly in polysiloxane. (2) Polymethylphenylsiloxane is more sensitive to wear-resistant and antiscore additive action. The additives affect the character of mechanical relaxation variations, average value of kinetic friction, and residual friction when the moving surfaces are stopped. (3) Tests in open air and under a vacuum of sulpho-, chloring, and phosphor-organic compounds in polyethylsiloxane show that molecular oxygen affects additive efficiency. M.G.J.

N66-13718 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

DETERMINATION OF ANTIOXIDANT ADDITIVES IN OILS BY THE THIN-LAYER CHROMATOGRAPHIC METHODS N. D. Zubkova, Yu. I. Turskii, V. I. Genkina, and G. V. Klyuchko In its Chem. and Tech. of Fuels and Lubricants 15 Sep. 1965 p. 11–19 refs (See N66-13716 04-06) CFSTI: HC \$1.00/MF \$0.50

For qualitative analysis of additives in lubricating oils, the possibility of using thin-film chromatography on a nonfixed layer of aluminum oxide was examined. Details are given on the chromatographic analysis of alkly-phenois and aryl-amines, and the application of this method for identifying antioxidant additives in oils is described. Mineral oil, and synthetic oil on a dioctyl-sembacinate base were investigated, and results indicate that amine compounds are present in the synthetic oil. The data were experimentally confirmed by separating the detected antioxidant additives from the analyzed oils, recrystallizing them from the solvents for purification, and identifying them. It was concluded that the method has the advantages of simplicity, high sensitivity, and speed (about 15 to 20 minutes); and permits detection of an antioxidant additive in oil at a minimum concentration of 0.05%. M.G.J.

N66-13754# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.
METHOD OF STABILIZING SILICONE OILS

G. S. Tubyanskaya and R. I. Kobzova 21 Sep. 1965 5 p. Transl. into ENGLISH from Soviet Patent No. 162268 (Appl. No. 856107/23-4, 9 Sep. 1963) 1 p. (FTD-TT-65-520/1+4; AD-622349) CFSTI: HC \$1.00/MF

\$0.50

The object of the invention is a method of stabilization of silicone oils by means of the introduction of additives which has the distinguishing feature that, as an additive, cyclopentadienyl tricarbonyl manganese is introduced.

Author (TAB)

N66-13775# MSA Research Corp., Callery, Pa FACTORS AFFECTING THE COMPATIBILITY OF LIQUID CESIUM WITH CONTAINMENT METALS Second Quarterly Progress Report, May—Jul. 1965 F. Tepper and J. Greer 26 Aug. 1965 13 p (Contract AF 33(615)-2386) (MSAR-65-111)

The mechanisms of attack of structural metals by cesium metal is being studied. A two phase natural convection loop has been fabricated. The ultrahigh vacuum test chamber to be used in operation of refractory metal loops has been received, modified and checked out Mass transfer tests have been performed with iron and nickel. The mass transfer rate is being measured gravimetrically.

Author

N66-13857# Pratt and Whitney Aircraft, Middletown, Conn. Advanced Nuclear Engineering Lab.

APPLICATION OF INTERNAL FRICTION METHODS TO CORROSION STUDY IN COLUMBIUM ALLOYS

G. F. Schenck. 30 Jul. 1965. 21 p. refs. Presented at the ASM Symp. on Anal. Uses of Internal Friction at the ASTM Ann. Meeting. Purdue Univ., Lafayette, Ind., 16 Jun. 1965. (Contract AT(30-1)-2789) (CNLM-6344)

Lithium corrodes niobium and niobium-zirconium alloys intergranularly and on the <110> crystallographic planes when these alloys are contaminated with oxygen. In certain heat treated conditions, however, niobium-zirconium alloys are not attacked by the alkali metal even though they contain relatively large concentrations of oxygen. The internal friction behavior of oxygenated Nb-1 Zr alloy was studied to determine the physical situation of oxygen in the alloy at various heat treatment conditions. From this investigation it became apparent that lithium is only able to corrode the niobium metal or alloy if the oxygen is in interstitial solid solution. Heat treatment of the Nb-1 Zr alloy at temperatures near 2200° F permits corrosion stabilization of the alloy with oxygen concentrations as great as 2:1 atom fraction of the zirconium. The corrosion stabilization is achieved by precipitation of the oxygen as zirconium dioxide. Author (NSA)

N66-13944# Laboratoires du Centre d'Etude de l'Energie Nucleaire, Mol (Belgium).
IMPERFECTIONS IN METALS. II: CORROSION AND OXIDATION Quarterly Report No. 8, 1 Jul.-31 Sep. 1964

[1964] 32 p refs (Contract EURATOM-082-62-7 RDB)

(EUR-2363; EURAEC-1404; R-2316) CFSTI: HC \$2.00/MF

Thermal oxidation films formed on annealed titanium foils were recrystallized in order to study the defect structure of the rutile modification of titanium dioxide. By this procedure large monocrystalline areas were obtained suitable for transmission electron microscopy and diffraction. Several contrast effects were observed in these films. Extended fringe patterns, which sometimes formed closed loops, are attributed to antiphase boundaries. A model for the occurrence of this type of defect based on the idealized image of a hexagonal close-packed stacking of the oxygen ions in the rutile structure is proposed.

* This model is also reliable with the observation of twins with the (101) plane as boundary plane. The habit plane of the antiphase boundaries is in an irrational plane for the tetragonal rutile lattice; it is however a simple plane in the oxygen lattice. The antiphase boundaries moved easily under enhanced electron irradiation. Mutual annihilation and disappearance of the boundaries was observed by annealing in the microscope. The model further explains the observation of antiphase boundaries ending at dislocations and the behavior at the contract between these boundaries and twin boundaries. Finally, geometrically shaped contrast features were observed which are attributed to cavities

N66-13991*# Tyco Labs., Inc., Waltham, Mass.
DEVELOPMENT OF CATHODIC ELECTROCATALYSTS FOR
USE IN LOW TEMPERATURE H₂/O₂ FUEL CELLS WITH
AN ALKALINE ELECTROLYTE First Quarterly Report, Jul. 1—
Seo. 30, 1965

A. C. Makrides, R. J. Jasinski, and J. Giner [1965] 59 p (Contract NASw-1233)

(NASA-CR-68891) CFSTI: HC \$3.00/MF \$0.50 CSCL 07D Various metallic ingots were prepared and tested for corrosion resistance and electrocatalytic activity in a rotating electrochemical cell, the temperature of which can be regulated. The solid ingots were mounted in an alkali resistant resin and tested potentiostatically as a rotating disc electrode run consecutively in N₂- and O₂-saturated KOH solution. The method of preparing the solid ingots as rotating disc electrodes is described, and schematic diagrams of a rotating disc electrode. a rotating electrode cell, and a floating electrode cell are shown. Current potential curves for Pt. Au, Ag, Ta. Zr₂Ni, TiNi, NbPt, TiCu, TaPt₂, TiPt₃, TaPt₃, TiCu₃, ZrAu₃, NbNi₃, TiNi₃, TiCr₄, WC, Cr₃C₂, TiC, and Ni₃8 are given.

N66-14061*# Pratt and Whitney Aircraft, East Hartford, Conn. BRAYTON-CYCLE TURBOMACHINERY ROLLING-ELE-MENT BEARING SYSTEM First Quarterly Report, Jul. 2–Oct. 2, 1965

H. Means Oct. 1963 74 p refs (Contract NAS3-7635) (NASA-CR-54785; PWA-2713) CFSTI: HC \$3.00/MF \$0.75 CSCL 131

The potential of oil lubricated rolling element bearings for the Brayton-cycle space power machinery was investigated. A basic bearing-seal lubrication, scavenge, and separation system concept adaptable to the machinery developed was evolved. Mechanical design work was initiated on the turbine compressor and the turboalternator to replace the gas bearing rotor support system with an oil lubricated rolling element bearing system. A detailed design analysis was made to define the geometry of the rolling element bearings for the turbine compressor. Lubricant evaluations were initiated to form a basis for selection of the optimum lubricant for the Brayton-cycle turbomachinery. The effects of oil contamination of the working fluid (argon) were studied to establish limiting oil contamination criteria.

N66-14066*# National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, Ala.
DISTRIBUTION OF FAILURE TIMES IN STRESS CORRO-

J. B. Gayle 1 Nov. 1965 16 p refs

SION TESTS

(NASA-TM-X-53355) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F
The results of stress corrosion tests on aluminum alloys have been analyzed with respect to the statistical nature of the distribution of failure times. The analyses indicated that the data were represented adequately by a three-parameter Weibull distribution in which the induction period amounted to 85 percent of the time of the first observed failure and 55 percent of the time required for failure of half the specimens. Author

N66-14170# Atomic Weapons Research Establishment, Aldermaston (England).

THE CORROSION AND IGNITION BEHAVIOUR OF SOME URANIUM/PLUTONIUM/IRON ALLOYS. PART 2: ALLOYS CONTAINING MORE THAN 8 a/o IRON

G. Picton and J. F. Sackman May 1965 16 p refs (AWRE-O-18/65) HMSO: 3s 3d

Alloys containing 16.2 and 16.8 a/o iron have been compared with an alloy containing 7.7 a/o iron. There was no improvement in either the corrosion or the ignition behavior. Under accelerated corrosion conditions the 16.2 a/o iron alloy can corrode more rapidly at ~0% r.h. than at 95% r.h. because of cracking and disintegration. It is concluded that casting conditions are the most important parameters for good corrosion and ignition behavior.

N66-14228# Southwest Research Inst., San Antonio, Tex.
LUBRICATION RESEARCH AND TEST METHOD DEVELOPMENT FOR AEROSPACE PROPULSION SYSTEMS Technical
Report, 15 Feb. 1964–15 Apr. 1965

B. B. Baber, W. R. Blackstone, and P. M. Ku. Wright-Patterson AFB, Ohio, AF Aero Propulsion Lab., Aug. 1965 68 p. refs (Contract AF 33(657)-11088)

(AFAPL-TR-65-70; AD-621072) CFSTI: HC \$3.00/MF \$0.75

This program was concerned with the further development of the ABMA impace tester and the investigation of different test methods used to determine the impact sensitivity of materials in contact with rocket propellants. It was found that the specimen cup material and design had a significant effect on plummet rebound height. The use of a modified anvil region assembly, including a steel specimen cup, significantly increased the reactivity of materials subjected to impace in the presence of LOX in addition to improving plummet rebound height repeatability. The 'up-and-down' test procedure, from which a statistical estimate of the drop height producing a 50percent probability of reaction may be obtained was investigated. The results of 10 separate up-and-down tests on one grease material showed repeatability to be excellent. Results were also obtained for additional greases and these results showed that some greases rated as satisfactory had about the same 50-percent points as other greases considered unsatisfactory with the only apparent difference being the intensity of the reactions. Author (TAB)

N66-14232# Naval Research Lab., Washington, D. C. Metallurgy Div.

MARINE CORROSION STUDIES: STRESS-CORROSION CRACKING, DEEP OCEAN TECHNOLOGY, CATHODIC PROTECTION, AND CORROSION FATIGUE Third Interim Report of Progress

B. F. Brown, B. W. Forgeson, T. J. Lennox, Jr., T. C. Lupton, R. L. Newbegin et al. Jul. 1965–97 p. refs.

(NRL-Memo-1634; AD-621743) CFSTI: HC \$3.00/MF \$0.75 Contents: stress-corrosion cracking of titanium alloys in salt water, fresh water, and sea water; stress-corrosion cracking tests on welded titanium alloy plates; a new stress-corrosion cracking test procedure for high strength alloys; a study of the stress factor in corrosion cracking by use of the pre-cracked cantilever beam specimen; a study of the crystallographic orientation of cleavage facets produced by stress-corrosion cracking of Ti-7Al-2Cb-1Ta in distilled water; the effectiveness of sodium chromate to inhibit stress-corrosion crack propagation in aisi 4340 steel; metallic corrosion and cathodic protection to 5652 foot ocean depths; performance of tributyl tin oxide and cuprous oxide antifouling paints on 5086-H32 and 6061-T6 aluminum alloys in sea water and river water exposures; status report on the current distribution along a wire rope cathode; inoperative galvanic anodes related to improper chemical composition of the zinc; determination of the effective driving potential and effective d.c. resistance of galvanic anodes; low cycle fatigue crack propagation in 'wet environments'. TAB

N66-14309# Army Weapons Command, Rock Island, III. Research and Engineering Div.

TRANSPARENT FLEXIBLE HEAT SEALABLE FILMS—EVAL-UATION OF ABILITY TO PROTECT AGAINST CORROSION Richard Murrens Jun. 1965–18 p

(RIA-65-1588: AD-623300) CFSTI: HC \$1.00/MF \$0.50

Ten different transparent plastic films were evaluated for their ability to provide protection against corrosion to steel panels with and without preservation in an accelerated humidity environment. The films represented water vapor transmission rate (WVTR) values currently required by military specifications. Results showed that films with low WVTR values did not prevent the entrance of water vapor, which resulted in corrosion. Prevention against corrosion was maintained for extended periods of time only when preservatives were used.

Author (TAB)

N66-14463# SKF Industries, Inc., King of Prussia, Pa. Research Lab.

A BASIC STUDY OF THE SLIDING CONTACTS IN ROLLING BEARINGS, PROJECT II Progress Report No. 2, Jul. 17-Oct. 16, 1965

C. J. Belsky, W. E. Schmidt, J. A. Kamenshine, K. Tataiah, and J. I. Mc Cool [1965] 122 p refs (Contract NOw-65-0182-f)

(AL65L081; AD-623665) CFSTI: HC \$4.00/MF \$0.75

A 2-ball test machine, especially designed for sliding tests and capable of being used with irradiated balls for purposes of wear determination, was used to determine the load-speed relationship at the initiation of smearing failure in a sliding 2-ball configuration for three highly refined mineral oils and three ester-type lubricants. A configuration of three crowned cylindrical rollers was operated between two flat thrust washers in the presence of a non-metallic cage. The elastohydrodynamic film condition between rollers and flat washers was determined using a previously developed contact conductivity method. Preliminary surface microgeometry trackings were made on the test elements and the required modification of statistical theories relating conductivity results to the film thickness/roughness ratio was accomplished. Kinematical studies were made of the axial roller motion and skew of cylindrical rollers running in a conventional cylindrical roller bearing with flanged outer ring, in aligned or misaligned conditions.

N66-14468# Naval Air Engineering Center, Philadelphia, Pa. FOUNDATIONAL RESEARCH PROGRAM

1965 219 p refs

(AD-623630) CFSTI: HC \$5.00/MF \$1.25

Progress is reported on twenty-six research projects. These include the following: Fluid Mechanics; Lubrication of Metal Surfaces with Solid Films; Oxygen Embrittlement of Metals; Aircraft Ejection Seat Design; Salt Water Permeation through Organic Protective Coatings; High Strength Aluminum Alloy Corrosion; Biological Stress; Maser Spectroscopy; Air Bubble Test Vehicle; Jet Noise Suppression; Polarization Studies of Corrosion; Polymer Chemistry; Electron Microfractography; Metabolic Mechanisms of Man; Deep-Sea Simulation; Turbines; Radiation; Thermoplastics; Neutron Activation Analysis; Synthetic Fibers; Heat Transfer; Catapult Operations; Missile Launching; and Hydrogen Embrittlement of Metals and Alloys.

N66-14469# Southwest Research Inst., San Antonio, Tex. FUNDAMENTAL INVESTIGATION OF MOLYBDENUM DISULFIDE AS A SOLID LUBRICANT Final Technical Report, Jul. 23, 1964—Jul. 22, 1965

J. C. Tyler and P. M. Ku 23 Aug. 1965 70 p refs (Contract NOw-64-0545-f) (RS-460; AD-623484) CFSTI: HC \$3.00/MF \$0.75

A basic test facility for performing compression, tension, torsion, cohesion, adhesion, and sliding experiments on cylindrically shaped molybdenum disulfide (MoS₂) specimens in a controlled atmosphere or in vacuum was designed, fabricated, and put into operation. Compacts of a reference MoS₂ powder and a commercially available MoS2 powder were made. without the use of a binder, over a wide range of compacting pressures and length-to-diameter ratios. Data were obtained on the variations of compact specific gravity and hardness with respect to compacting pressure and length-to-diameter ratio. Measurements were also made on the compressive and tensile properties of the MoS₂ specimens in clean dry air and at room temperature. The ultimate compressive and tensile strength were determined over a wide range of specimen specific gravities, as were the moduli of elasticity in compression and tension. Author (TAB)

N66-14567# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

THERMAL STABILITY OF ANTIWEAR ADDITIVES IN LUBRICATING OILS

A. M. Ravikovich, Ye. I. Petyakina, and P. P. Bagryantseva 17 Sep. 1965 10 p. refs. Transl. into ENGLISH from Khim i Tekhnol. Topliv i Masel (Moscow), no. 12, 1964 p. 44-47 (FTD-TT-65-867/1+4; AD-622474) CFSTI: HC \$1.00/MF \$0.50

Use of a four-sphere friction machine to evaluate antiscratching and antiwear properties of oils is discussed, and the test methods are described. Results indicate that anti-scratching admixtures containing sulfur, chlorine, and lead do not improve the antiwear properties of mineral oils while admixtures containing phosphorus exhibit an antiwear effect. A method developed to determine thermal stability (TS) of antiwear admixtures is also described. It is applicable for working concentrations of admixtures in lubricating oils, and permits the evaluation of the wear resistant effect of the admixture and oil soluble products of its decomposition. The admixture solution in oil is poured into a hermetically capped small stainless steel receptacle, which is heated in an aluminum bath arrangement at a given temperature for a specified length of time. cooled, filtered, and tested on a four-ball friction machine. Formulas are given for the admixtures tested, the decomposition temperatures of each are tabulated, and the TS values are listed. It was shown that the decomposition point of dialkyldithiophosphate additives depends to a considerable degree upon the nature of the oil and the presence of other additives. M.G.J

N66-14754*# General Electric Co., Cincinnati, Ohio. Space Power and Propulsion Section.

STUDIES OF ALKALI METAL CORROSION ON MATE-RIALS FOR ADVANCED SPACE POWER SYSTEMS Quarterly Progress Report No. 5, Jun. 26—Sep. 26, 1965

R. W. Harrison [1965] 25 p refs

(Contract NAS3-6012)

(NASA-CR-54844) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F

Two stress corrosion reflux capsule tests are reported for a niobium-base alloy, designated D-43, in potassium. The first test completed 1000 hours at 2100° F; was removed from the test facility; and drained of potassium, cleaned, and sectioned. Although there were spots in the liquid and condensing regions on the inner surface of the capsule, these locations were not associated with regions of high stress. Lower uniaxial creep strengths were obtained from capsule test data than were predicted by pretest and literature data. Equivalent uniaxial creep strains of 7.4% in the liquid region and 5.4% in the condensing region were calculated. The second reflux capsule test has logged 1600 hours at 2050° F, and is still in progress. M.W.R.

N66-14785*# General Electric Co., Cincinnati, Ohio. Space Power and Propulsion Section.

POTASSIUM CORROSION TEST LOOP DEVELOPMENT Quarterly Progress Report No. 8, 15 Apr.-15 Jul. 1965 E. E. Hoffman, ed. 23 Nov. 1965 50 p refs (Contract NAS3-2547)

(NASA-CR-54843) CFSTI: HC \$3.00/MF \$0.50 CSCL 11F

Development of a prototype corrosion test loop for the evaluation of refractory alloys in boiling and condensing potassium environments which simulate projected space electric power systems is reported. The prototype test consists of a two-loop Cb-1Zr facility; sodium will be heated by direct resistance in the primary loop and will be used in a heat exchanger to boil potassium in the secondary, corrosion test loop. Heat rejection for condensation in the secondary loop will be accomplished by radiation in a high-vacuum environment to the water cooled vacuum chamber. Purification of the alkali metals for the prototype loop was performed. Checkout tests of the prototype loop equipment and controls were conducted and calibration of system instrumentation was completed prior to increasing system temperatures and flows to the design conditions. The results of the 5000-hour, 2000°F refluxing potassium capsule test to determine the compatibility of Mo-TZM alloy in a Cb-1Zr container indicate that no significant corrosion problem exists in this system at temperatures equivalent to those planned for the prototype loop test. MRW

N66-15016# Naval Research Lab., Washington, D. C.
NMR ANALYSIS OF MIXED PENTAERYTHRITOL, DIPENTAERYTHRITOL, AND 1,1,1-TRIMETHYLOLPROPANE
ESTERS

W. B. Moniz and C. F. Poranski, Jr. 19 Aug. 1965 25 p. refs. (NRL-6307; AD-621566) CFSTI: HC \$1.00/MF \$0.50

Benzene solutions of mixed pentaerythritol, dipentaerythritol, and 1,1,1-trimethylolpropane esters may be quantitatively assayed by proton NMR spectroscopy with an absolute accuracy of = 5 mole-% for each of the ester types. Higher accuracies are possible if a calibration curve is used. Average acid chain length and the approximate degree of chain branching are also obtained. The NMR method can be used for monitoring base stocks, checking blend compositions, and determining constancy of formulation of oils qualified under specification MIL-L23699, NMR analyses of a group of commercial esters and of several aircraft engine lubricant formulations were made. Results were obtained on both the Varian A-60 and HA-100 spectrometers, with comparable accuracy. The A-60 is felt to be the preferred instrument, however, because its integrals are simpler to process. Author (TAB)

N66-15087# Commissariat a l'Energie Atomique, Saclay (France). Centre d'Etudes Nucleaires.

ATMOSPHERIC CORROSION OF URANIUM-CARBON ALLOYS [CORROSION ATMOSPHERIQUE DES ALLIAGES URANIUM-CARBONE]

Piere Rousset and Andre Accary May 1965 47 p refs in FRENCH

(CEA-R-2732) CFSTI: HC \$2.00/MF \$0.50

The corrosion of uranium-carbon alloys having compositions close to that of the mono-carbide was studied. It is shown that the extent of the observed corrosion effects increases with the water vapor content of the surrounding gas, and it was concluded that the atmospheric corrosion of these alloys is due essentially to the humidity of the air, the effect of the oxygen being very slight at room temperature. Optimum conditions for preserving U-C alloys are either a vacuum or a perfectly dry argon atmosphere. The type of corrosion involved is one that cracks under stress and is transgranular (it can also be intergranular in the case of substoichiometric alloys). Two hypotheses for explaining this mechanism are proposed, one of which is

illustrated by the existence, at the fissure interface, of corrosion products which can play the role of corners in the monocarbide grains.

Author (NSA)

N66-15092# Union Carbide Nuclear Co., Oak Ridge, Tenn. Y-12 Plant

PRODUCTION-SIZE LATHE HYDROSTATIC COMPONENTS
P. J. Steger 21 May 1965 15 p Presented at the ASME
Spring Lubrication Symp., New York, 7–9 Jun. 1965
(Contract W-7405-ENG-26)

(Y-DA-921; Conf-650651-1) CFSTI: HC \$1.00/MF \$0.50

Two lathe components using hydrostatic air bearings are described: a hydrostatic boring bar and a production-size spindle. Porous graphite bearing pads are used in both components. The accuracy and performance of the components are discussed.

N66-15186*# Aerojet-General Corp., Azusa, Calif.
SNAP-8 MATERIALS REPORT FOR JULY-DECEMBER
1964

H. Derow and B. E. Farwell Jan. 1965 111 p refs /ts Rept.-2989

(Contract NAS5-417)

(NASA-CR-54718) CFSTI: HC \$4.00/MF \$0.75 CSCL 18N Progress is reported on the project to provide data to guide the selection of materials for SNAP-8 system components and of providing metallurgical assistance in the design, development, fabrication, and testing of that system. Among the work completed was the fabrication and testing of a prototype condenser tube-to-tube sheet joint sample representing the 0.5inch-diameter tube end. Also, analytical methods were established for evaluating the lubricant-coolant fluid. These methods included gas chromatographic determination of isomer ratios and volatile impurities, halogen analysis, and phenol analysis. Creep rupture tests were conducted on welded and unwelded 9%Cr-1%Mo steel specimens to evaluate the gross creep rupture strength efficiency of welds. The tests were run at 1325° F at two stress levels, 1600 and 2300 psi. The results indicate that welding does not decrease the creep or creep rupture strength of this material at 1325° F. The assembly and installation of the CL-4 was completed during the period. The design and operating parameters of a hydrogen injector system for use in CL-4 were also completed. Flat sheet refractory bimetal tube material specimens were exposed to 1350° and 1450° F in a vacuum for 500, 1000, and 2500 hr to evaluate cross bond diffusion effects.

N66-15241*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, Md.

IN-FLIGHT TEST TO DETERMINE SPACE ENVIRON-MENTAL EFFECTS ON FRICTION, WEAR, AND LUBRI-CATION OF MATERIALS

Harold E. Evans and Edward J. Devine [1965] 15 p Presented at the AIAA 2d Ann. Meeting and Tech. Display. San Francisco, 26–29 Jul. 1965 Submitted for Publication

(NASA-TM-X-54967) CFSTI: HC \$1.00/MF \$0.50 CSCL 13H Measurement of rolling and sliding friction and cold welding effects in orbit is the purpose of a proposed experiment designed on a modular basis. The modules, which may be combined as necessary to fit the final space and power available in the spacecraft include: (1) a bearing test module to test eight instrument bearings under load and to measure torque and time to failure; (2) one to three friction and wear test modules to make measurements of six different combinations of materials; and (3) a pressure transducer to measure total pressure in the vicinity of the experiment. Several illustrations of the modules are included.

M.W.R.

N66-15243* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FLUORIDE SOLID LUBRICANTS FOR EXTREME TEM-PERATURES AND CORROSIVE ENVIRONMENTS

Harold E. Sliney, Thomas N. Strom, and Gordon P. Allen Washington, NASA, 1964 37 p. refs. Presented at the 20th Ann. Meeting of the Am. Soc. of Lubrication Engr., Detroit, 4-6 May 1965

(NASA-TM-X-52077) CFSTI: HC \$2.00/MF \$0.50 CSCL 11H Fluorides of the alkali metals and the alkaline earth metals have an interesting combination of properties that make them promising candidates as solid lubricant materials for use at high temperatures and in corrosive environments. They are chemically inert in strong oxidizing or reducing environments; they are relatively soft and nonabrasive; and some of them, such as CaF2, have planes of perfect cleavage in their crystal structure suggesting low shear strength and good friction properties. Thin, fused fluoride coatings (0.001 in.) were applied to nickel-chromium alloys by spraying water slurries of the fluorides on the bearing surface, drying, then firing in a hydrogen atmosphere. Coatings of CaF2-LiF mixtures and of CaF2-BaF2 mixtures were effective as solid lubricants in hydrogen to 1500° F and in air to 1200° F. CaF2-BaF2 coatings were effective solid lubricants in liquid sodium at 1000°F and

N66-15366* # SKF Industries, Inc., King of Prussia, Pa. Research Lab

SUPERSONIC TRANSPORT LUBRICATION SYSTEM **INVESTIGATION** Second Semiannual Report

C. G. Hingley and L. B. Sibley 20 Nov. 1965 125 p refs (Contract NAS3-6267)

a sliding velocity of 2000 ft/min.

(NASA-CR-54312; SKF-AL65T077) CFSTI: HC \$4.00/MF \$1 00 CSCL 131

Ball bearings and bellows face seals for use on Mach 3 aircraft gas turbine engine mainshafts, and suitable fest rigs to simulate engine operating conditions, have been manufactured and check-out testing conducted on all hardware and test systems. A development program is underway to determine the most suitable combination of presently available materials and lubricants to permit operation of these bearings and seals under typical engine load and speed conditions at the highest possible ambient temperature above 600°F with the seals exposed to 1200°F air and a pressure differential of 100 psi Tests are conducted primarily using a nitrogenblanketed bearing chamber and lubricant system. Test lubricants are being screened for their potential performance under two different application techniques, namely, jet lubrication of the bearings with circulating oil, and once-through lubrication Author in the form of oil mist.

N66-15373*# General Electric Co., Cincinnati, Ohio. Space Power and Propulsion Section.

ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM Quarterly Progress Report No. 2, 15 Jul-15 Oct. 1965

R. W. Harrison, ed. [1965] 31 p refs (Contract NAS3-6474)

(NASA-CR-54845) CFSTI: HC \$2.00/MF \$0.50 CSCL 11F

Progress is reported on a program to fabricate, operate for 10 000 hours, and evaluate a potassium corrosion test loop constructed of T-111 alloy. The T-111 alloy was selected as the containment alloy and Mo-TZC and Nb-132M alloys were selected for inclusion in the turbine simulator. Revisions in the prototype corrosion loop assembly drawings were made based on experience gained in fabrication, installation, and operation of the loop. Specifications for cleaning, welding, and heat treating loop components are being prepared. R.N.A. N66-15491*# National Aeronautics and Space Administration. • Lewis Research Center, Cleveland, Ohio.

FRICTION, WEAR, AND ADHESION CHARACTERISTICS OF TITANIUM-ALUMINUM ALLOYS IN VACUUM

Donald H. Buckley and Robert L. Johnson Washington, NASA, Jan. 1966 18 p. refs.

(NASA-TN-D-3235) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F Friction, wear, and adhesion measurements were made in

vacuum (10⁻⁵ mm Hg) of titanium-aluminum alloys containing 11.16 and 21 weight percent aluminum. Experiments were conducted with a 3/16-inch-radius rider sliding on the flat surface of a 2-1/2-inch-diameter disk specimen at loads to 1500 grams. The disk was rotated to produce sliding velocities to 750 centimeters per second. With increasing addition of aluminum to titanium, an increase in lattice ratio (c/a) for titanium occurred along with a decrease in friction, wear, and adhesion. The increase in (c/a) lattice ratio with the addition of aluminum to titanium occurred even though the unit cell size decreased; these results are unlike those with the addition of tin and oxygen to titanium. While titanium exhibited an adhesion coefficient of 5.3, the titanium-aluminum alloys exhibited adhesion characteristics which could be considered negligible. These alloys exhibited superior friction and wear properties in vacuum compared with 52100 and 440-C stainless than when sliding on themselves.

N66-15492* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

INFLUENCE OF ORIENTATION OF GRAINS IN TUNGSTEN ON ITS FRICTION CHARACTERISTICS

Donald H. Buckley Washington, NASA, Jan. 1966 23 p refs (NASA-TN-D-3238) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F

The influence of crystallographic orientation on the friction properties of tungsten was determined in both air and vacuum. Friction measurements were made with a 3/8-inch oriented sapphire ball sliding on a large grained tungsten disk, and the orientation of each grain on the tungsten surface was determined. The two sapphire orientations examined were the (0001) plane. [1010] direction, and the (1010) plane. [0001] direction, sliding on the tungsten surface. The sapphire ball was loaded against the disk with a 500-gram load. The disk was then rotated to produce sliding velocities of 0.013 and 0.001 centimeter per second. The vacuum experiments were conducted with electron-cleaned surfaces at 10-10 millimeter of mercury. The investigation indicates that tungsten exhibits anisotropic friction properties. Friction characteristics on different crystal planes in a particular direction did not differ markedly: considerable differences in friction coefficient, however, existed in changing crystallographic directions on particular planes. Further, marked differences in friction were observed with changes in crystallographic orientation of the sapphire. Friction decreased considerably when vacuum meas-Author urements were repeated in air.

N66-15554# Sandia Corp., Albuquerque, N. Mex. ION PLATING OF SPRF REACTOR PARTS Development Report

D. M. Mattox and R. D. Bland Nov. 1965 21 p refs (SC-DR-65-530) CFSTI: \$1.00

It has been found that SPRF reactor parts are protected from corrosion more effectively by an ion-plated coating of aluminum than by an electroplated nickel coating. Extensive detail is given on the technique of ion plating aluminum on the reactor parts and on observations made during plating. Stripping of the aluminum plating from several of the pieces showed the probable existence of an aluminum-uranium intermetallic, interfacial layer formed during the deposition process. Some possible improvements on the plating process are given based on the experience gained in plating these parts.

N66-15557# Marine Engineering Lab. Annapolis. Md. STATE-OF-THE-ART SURVEY ON HOT CORROSION IN MARINE GAS-TURBINE ENGINES

G. J. Danek Mar. 1965 36 p refs

(MEL-32/65; AD-461181)

This summary describes a state-of-the-art survey of hot corrosion problems which can seriously limit the suitability of gas-turbine engines for marine propulsion systems. Catastrophic attack of nickel- and cobalt-base superalloys at temperatures above 1550° F is attributed to the action of a molten slag that forms by the reaction of ingested sea salt and sulfur contained in the fuel. A general lack of agreement was found to exist among investigators on the mechanisms of sulfidation corrosion, methods of sorting and screening materials, resistance of specific materials to attack, and proposed solutions to the problem. Nevertheless, the collected information provided valuable guidance in formulating the Navy's Marine Gas-Turbine Alloy Development Program. A description of this program and specifications selected for standardized equipment to evaluate sulfidation resistance are presented.

N66-15815°# Pratt and Whitney Aircraft, West Palm Beach, Fla. Florida Research and Development Center.

RESEARCH AND DEVELOPMENT OF MATERIALS FOR USE AS LUBRICANTS IN A LIQUID HYDROGEN ENVIRONMENT Final Report, Jul. 1964–Nov. 1965

W. H. Rempe and W. E. Young 29 Oct. 1965 69 p. (Contract NAS8-11537)

(NASA-CR-69569; PWA-FR-1602) CFSTI: HC \$3.00/ MF \$0.75 CSCL 13H

The objective of the program was to develop materials for use as lubricants in rolling-element bearings operating in a liquid hydrogen environment at DN levels up to 4.0×10^6 mm-rpm. In the first phase, the results of which were previously reported, 10 candidate lubricant materials were selected and evaluated in a ball-plate test apparatus. In the second phase, 10 additional materials were evaluated, and from the 20 candidates, the four most promising were selected for testing in actual 80-mm bearings at speeds up to 50 000 rpm. Author

N66-15921# United Kingdom Atomic Energy Authority, Harwell (England). Chemistry Div.

STRESS CORROSION OF IRRADIATED STAINLESS STEELS

 $M,\,J,\,$ Davies, D. A. Landsman, and W. E. Seddon $\,$ Aug. 1965 21 p. refs

(AERE-R-5014) HMSO: 2s 6d

Fully annealed specimens of Type-316 stainless steel and of a 20 Cr-25 Ni-Nb-stabilized stainless steel were subjected to stress corrosion tests in boiling 42% MgCl $_2$ solution: identical specimens were exposed to the same test after receiving doses of fast neutrons up to 2 \times 10 20 n·cm $^{-2}$. Irradiation of the Type-316 steel greatly increased its susceptibility to stress corrosion cracking at low stress levels, but the 20–25–Nb steel was immune to cracking in both irradiated and unirradiated conditions. It is proposed that the effect on the Type-316 steel is due to fast neutron radiation damage in the oxide film on the metal.

N66-16058*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EVALUATION OF IMPREGNATED LUBRICANTS IN BALLBEARING RETAINERS AT 10^{-6} Torr

L. Dale Smith, Dean C. Glenn, and Herbert W. Scibbe Washington. NASA, Feb. 1966 21 p refs (NASA-TN-D-3259) CFSTI: HC \$1.00/MF \$0.50 CSCL 131

Four liquid lubricants, a polyphenyl ether, polysiloxane, a sebacate, and a high-viscosity mineral oil, were evaluated as lubricating impregnants in cotton-cloth phenolic retainers of

20-millimeter-bore ball bearings operating in a vacuum of 10⁻⁶ torr. The effect of the cloth weave on the lubricating effectiveness of the best of the lubricants was also studied. The test bearings were run at 3550 rpm under axial loads of 50 to 100 pounds (22.7 to 45.4 kg) for 1 hour, or until the torque exceeded and remained above 20 inch-ounces (14.1 cm-N). Although none of the lubricants provided good lubrication in the vacuum environment of this system, the most acceptable lubricant was the mineral oil. It provided the lowest torque levels and torque roughness and carried the maximum load for the full duration of the test. High initial torques occurred frequently with all of the lubricants, which indicated inadequate lubrication during the initial part of the run. Comparing bearing performance obtained with only impregnated retainers to that obtained with both impregnated retainers and prelubrication showed that the impregnated retainers used did not feed the lubricant fast enough to provide good lubrication at the conditions of this investigation. In additional tests with the high-viscosity mineral oil, varying the weave of cloth in the retainer produced no significant improvements in the bearing torque.

N66-16158*# National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, Ala.
SIMULATION OF THE J-Z ENGINE GIMBAL BEARING

K. E. Demorest and K. W. Wilks 20 Jan. 1966 23 p refs (NASA-TM-X-53379) CFSTI: HC \$1.00/MF \$0.50 CSCL 11H

A test apparatus, designed to simulate the operation of the J-2 engine gimbal system, was used to test the J-2 gimbal lubricant at atmospheric pressure, at 10^{-6} mm of Hg, and over a wide range of temperatures. The currently specified gimbal lubricant, Fabroid consists of woven glass and Teflon fibers bound together with a phenolic resin. The Fabroid lubricant provided a low and constant coefficient of friction both at atmospheric pressure and at 10^{-6} mm of Hg at loads to 25 000 psi as long as the ambient temperature remained constant. However, the coefficient of friction of Fabroid was shown to be temperature dependent, increasing sharply with reducing temperatures. Although no experimental evidence indicated any degradation, the lubricating characteristics of Fabroid under high bearing loads had a tendency to fray and shed fibrous material.

N66-16193°# Materials Research Lab., Inc., Richton Park, III.

ELEVATED TEMPERATURE STRESS CORROSION OF HIGH STRENGTH SHEET MATERIALS IN THE PRESENCE OF STRESS CONCENTRATIONS Final Report E. J. Ripling, R. L. Kirchner, R. P. O'Shea, and R. G. Lingwall Nov. 1965 47 p refs

(Contract NASr-50)

(NASA-CR-69851) CFSTI: HC \$2.00/MF \$0.50 CSCL 11F

CONTENTS:

- 1. THE DIFFUSION OF CORROSION PRODUCTS IN HOT SALT STRESS-CORROSION CRACKING OF TITANIUM p 2-19 refs (See N66-16194 07-17)
- 2 ELECTROCHEMICAL ASPECTS OF HOT SOLID SALT STRESS CORROSION CRACKING OF TITANIUM BASE ALLOY p 20-35 refs (See N66-16195 07-17)
 - 3. MISCELLANEOUS EXPERIMENTS p 36-39

N66-16194* Materials Research Lab.. Inc., Richton Park, III. THE DIFFUSION OF CORROSION PRODUCTS IN HOT SALT STRESS-CORROSION CRACKING OF TITANIUM In its Elevated Temp. Stress Corrosion of High Strength Sheet Mater. in the Presence of Stress Concentrations Nov. 1965 p. 2–19 refs (See N66-16193 07-17) CFSTI: HC \$2.00/MF \$0.50

An experimental technique is described for separating the gaseous, liquid and solid reaction products generated by the hot salt corrosion of titanium. By use of this procedure, it is shown that the product that causes cracking is not a gas, and hence would not be expected to be washed away by a fast moving air stream in service.

Author

N66-16195* Materials Research Lab., Inc., Richton Park, Ili. ELECTROCHEMICAL ASPECTS OF HOT SOLID SALT STRESS CORROSION CRACKING OF TITANIUM BASE ALLOY

In its Elevated Temp. Stress Corrosion of High Strength Sheet Mater. in the Presence of Stress Concentrations. Nov. 1965 to 20–35 refs (See N66-16193 07-17). CFSTI: HC \$2.00/MF \$0.50.

It is shown that the corrosion of titanium in the presence of hot solid salt occurs due to an oxygen differential cell. Cracking always occurs at the cathode of this cell, and the cracking can be prevented by impressing an anodic current on the stressed specimens.

N66-16305*# Oak Ridge National Lab., Tenn. SNAP-8 CORROSION PROGRAM Summary Report W. R. Huntley et al. Dec. 1965 223 p. refs (NASA Order C-220-A; Contract W-7405-ENG-26)

(NASA-CR-69822; ORNL-3898) CFSTI: HC \$6.00/MF \$1.25 CSCL 18N

To investigate the compatibility of the structural materials and NaK coolant in the SNAP-8 primary coolant circuit, a corrosion loop program was undertaken which used reduced-scale forced-flow loops that closely simulated the actual system. Loop design was primarily a chromized Hastelloy N heated section and Croloy 9M heat exchanger section connected by stainless steel. Eleven loop experiments were completed which accumulated about 25000 hr of operation at design conditions. In addition to an oxide break, plugging-indicator breaks were observed at 800 to 1100° F and 400 to 600° F; the first is believed to be due to argon and the precipitate in the second was not identified. A third plugging curve break was consistent with the cold-trap operating temperature and represented the design oxide level. Control of oxygen level varied with loop conditions. Studies indicate that loop exposures cause development of carbide and sigma phases. Additions of hydrogen to the NaK produce no detrimental effects, and the addition of 1 to 4 atm % lithium considerably diminishes the hydrogen MWR activity.

N66-16451# Bureau of Mines, College Park, Md.
CORROSION PROPERTIES OF MOLYBDENUM, TUNGSTEN, VANADIUM, AND SOME VANADIUM ALLOYS
Walter L. Acherman, J. P. Carter, C. B. Kenahan, and David
Schlain 1966 73 p refs
(BM-RI-6715)

Molybdenum, tungsten, and vanadium were found by the Bureau of Mines to possess generally superior chemical and galvanic corrosion properties in many aqueous corrosion media at temperatures up to the boiling point. The corrosion resistance of vanadium in certain solutions was further improved by alloying it with such metals as columbium, tantalum, and titanium. Tungsten was susceptible to a type of crevice corrosion in mercuric chloride solutions, but no other instances of crevice corrosion were encountered. With few exceptions, molybdenum, tungsten, and vanadium were not adversely affected when coupled with dissimilar metals in galvanic corrosion experiments; in some cases one or both members of a couple were protected by contact. When exposed to aqueous

ammonia spray at 60°C, all three metals were moderately attacked, but they were resistant in spray environments of substitute ocean water and ammonium dihydrogen phosphate.

Author

N66-16581# Bureau of Mines, Pittsburgh, Pa. Pittsburgh Coal Research Center.

ANALYSIS OF LIGHT OILS FROM FLUIDIZED CARBON-IZATION

J. G. Walters and C. Ortuglio 1966 34 p refs (BM-RI-6709)

Analyses of light oils produced from the fluidized carbonization of coal at 485°, 550°, 600°, and 660°C are presented. Tar vapors from 485°C fluidized carbonization were thermally treated at 600°, 700°, and 800°C, and the analyses of light oils produced by this treatment are also presented. Procedures were developed for analysis of coal carbonization light oil by gas chromatography to permit a more definitive analysis than can be obtained by the conventional distillation procedure. An increase in low-boiling platins, benzene, and toluene, a decrease in low-boiling paraffins, and little change in the remainder of the aromatics was observed with increased temperature of carbonization.

N66-16588* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

FRICTION AND WEAR CHARACTERISTICS OF POLYIMIDE AND FILLED POLYIMIDE COMPOSITIONS IN VACUUM ($10^{-10}\ \text{mm}\ \text{Hg}$)

Donald H. Buckley Washington, NASA, Feb. 1966 13 p. refs (NASA-TN-D-3281) CFSTI: HC \$1.00/MF \$0.50 CSCL 11D

The friction and wear characteristics of polyimide and filled polyimide compositions were examined in a vacuum environment (10-10 mm Hg). Copper-filled (to 50 weight percent) compositions as well as graphite- and molybdenum-disulfidefilled compositions were studied. Friction and wear experiments were conducted with a 3/16-inch-radius hemispherical rider sliding on a flat disk, which was rotated to produce sliding speeds to 1600 feet per minute. The polyimide was loaded against the disk (various metals) under a load of 1000 grams. The results of the investigation indicate that, to obtain effective lubrication (low friction and wear), a transfer of the polyimide film to the mating surface must be achieved. In its absence, high friction occurred with all polyimide materials. With copper addition, a minimum in wear rate was obtained at 30 weight percent copper. Both friction and wear increased with the addition of graphite as a filler to the polyimide. With the addition of molybdenum disulfide, marked decreases in both friction and wear occurred.

N66-16738# Naval Research Lab., Washington, D. C. FACTORS AFFECTING THE ICING RESISTANCE OF LUBRICANTS FOR AIRCRAFT ORDNANCE. Final Report H. R. Baker and R. N. Bolster. 21 Oct. 1965. 38 p. refs (NRL-6329; AD-624594). CFSTI: HC \$2.00/MF \$0.50

Recent samples of the all-weather semifluid lubricant for aircraft ordnance, both from manufacturers and from Navy stocks, have failed to meet the cold-sweat-cold gun firing test required by Military Specification MIL-L-19701 (Nord). These failures were due to ice adhesion attendant on the poor water resistance of the lubricants. The probable cause of the loss in water resistance was the presence in the lithium stearate thickener of surface-active impurities such as sodium soaps and soaps of myristic and oleic acids. These impurities can be detected by measurements of surface tension lowering. It is probable that the water resistance of other lithium stearate thickened greases are also affected by these impurities. The investigation established that variations in raw materials other than the soap were not major contributors

to the difficulties encountered. A lubricant of altered formulation has been developed and shown to be superior to the original lubricant. Variations in the consistency of the improved lubricant over a wide temperature range were found to be much less than those of the original lubricant. Resistance to water and to ice adhesion are increased. This material has successfully lubricated the Mk 12 machine gun equipped with the Mk 7 penumatic feeder under ambient temperature and cold-sweat-cold conditions. This formulation retains all of the useful properties of the original lubricant, such as compatibility with MIL-P-5516 oil-resistant rubber, resistance to evaporation loss, corrosion inhibition, and antiwear protection.

N66-16816# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

PECULIARITIES OF CREATION OF HEAT-RESISTANT FRICTIONAL MATERIALS

G. A. Georgiyevskiy 18 Nov. 1965 30 p. refs. Transl. into ENGLISH from the book "Povysheniye Effektivnosti Tormoznykh Ustroystv. Svoystva Friktsionnykh Materialov" Moscow, Akad. Nauk. 1959. p.93–109

(FTD-MT-64-483; AD-624760) CFSTI: HC\$2.00/MF\$0.50

Principles of creation of frictional materials for work at high temperatures and pressures reduce to the following: use the friction series and series of wear-resistance to make the selection of friction ingredients; with this the thermal conductions and the influence of ingredients on counterbody of the friction pair should be taken into account. The binder should be heat-resistant, should preserve good elastic properties at high temperatures, and also should possess the ability to form coke-like products with good mechanical properties. The binder should have high adhesional properties. The content of organic binding should be minimum; this favors application of ingredients with little developed active surface. Increase and stabilization of coefficient of friction can be attained by: (a) introduction of oxidizers, promoting a lowering of the formation of liquid products of destruction and retaining the reduction of reactors; (b) additional heat treatment of friction material at a temperature of 400-600 degrees without an oxidizing medium. Every recommendation should be carried out in such a manner as to ensure the creation of frictional layer as a result of the use of heat emitted during braking. Author (TAB)

N66-17119# Naval Civil Engineering Lab., Port Hueneme, Calif.

POTENTIOSTATIC CORROSION STUDIES OF IRON, TYPE-304 AND TYPE-321 STAINLESS STEEL Technical Report, Jun. 1964—May 1965

Howard A. Porte Dec. 1965 40 p refs

(R423; AD-624269) CFSTI: HC \$2.00/MF \$0.50

Important in the control and prevention of corrosion, electrochemical characteristics of iron and two types of stainless steel in various electrolyte systems were investigated as part of a long-range study of the mechanisms of the electrochemical and physical transformations that occur at electrode-electrolyte interfaces. The anodic potentiostatic polarization of iron was investigated in deaerated 1N sulfuric acid. deserated and serated borate buffer solution (pH 8.4), and in deaerated and aerated seawater. The effects of potential rate change and chloride ion concentration on polarization characteristics were studied in the borate buffer and sulfuric acid solutions. Polarization curves were determined for Type-321 stainless steel in deaerated 1N sulfuric acid and in deaerated borate buffer; the effect of chloride ion concentration was studied in both solutions. Polarization experiments were performed on Type-304 stainless steel in deaerated 1N sulfuric acid; the effect of cathodic pretreatment was studied. Electrochemical polarization curves have proved to be useful in predicting which of a group of alloys would be the most corrosion resistant in a particular environment.

Author (TAB)

 ${f N66-17358}^*\#$ National Aeronautics and Space Administration, Washington, D. C.

BIBLIOGRAPHY ON SOLID LUBRICANTS, WITH INDEXES Feb. 1966 $34\ p$

(NASA-SP-5037) CFSTI: HC \$1.00/MF \$0.50 CSCL 11H An annotated bibliography from the collections of TPA, STAR, and IAA entries, covering the years 1962 to 1964, designed to assess and identify literature on the applications and uses of solid lubricants is presented. A subject index and personal author index are included.

N66-17405# United Nuclear Corp., White Plains, N. Y. SODIUM TECHNOLOGY

Kurt Goldmann and Bertram Minushkin In Argonne Natl. Lab. Reactor Technol. Jan. 1966 p 321–425 refs (See N66-17404 08-22) CFSTI: \$4.50

Sodium technology developed in conjunction with the design construction, and operation of liquid-metal-cooled reactor plants is reviewed. These power plants have an inherent capability of producing steam in the 500° to 900° F range with maximum liquid-metal temperatures of 600° to 1000° F. Also, the state-of-the-art of sodium technology is reviewed for the next-generation of power plants which are projected to have a capability of producing steam at 1050° F with maximum liquid-metal temperatures of 1200° to 1300° F. Materials selection, corrosion, control of sodium purity, and the experience gained in these areas with operating plants are examined in detail and other aspects of sodium technology such as sodium components, safe handling procedures, and heat transfer are briefly summarized.

N66-17440# Defense Dept., Washington, D. C. Office of the Director of Defense Research and Engineering. PROCEEDINGS OF AEROSPACE SYMPOSIUM ON LUBRICATING TECHNIQUES AND DESIGN STUDIES OF BEARINGS AND GEARS FOR AN ORBITAL MANNED SPACE LABORATORY

[1965] 63 p refs Symp. held in Detroit, 7 May 1965 Sponsored by DOD and Am. Soc. of Lubrication Engr. (AD-623336) CFSTI: HC \$3.00/MF \$0.75

CONTENTS:

- 1. FLUID LUBRICATION OF DOOR ACTIVATORS FOR MANNED ORBITAL SPACE STATION F. J. Clauss (Lockheed Missiles and Space Co.) p 3-4 ref (See N66-17441 08-15)
- 2. FLUID SEALS J. W. Abar (Crane Packing Co.) p 5-8 (See N66-17442 08-15)
- 3. LUBRICATING DOOR ACTIVATORS ON A MANNED ORBITAL SPACE STATION USING ONLY SOLID LUBRICANTS V. Hopkins, R. Hubbell, M. Campbell, and R. Schroeder (Midwest Res. Inst.) p 9-24 refs (See N66-17443 08-15)
- 4. USE OF MECHANICAL TRANSFER SYSTEMS A. S. Irwin (Marlin-Rockwell Corp.) p 25-29 (See N66-17444 08-15)
- 5. TRANSMITTING MOTION THROUGH A VACUUM WALL R. S. Christie (Princeton Univ.) p 30-43 (See N66-17445 08-15)
 - 6. DISCUSSION p 45-58

N66-17441 Lockheed Missiles and Space Co., Sunnyvale, Calif. Material Sciences Lab.

FLUID LUBRICATION OF DOOR ACTIVATORS FOR MANNED ORBITAL SPACE STATION

Francis J. Clauss *In Defense Dept. Proc. of Aerospace Symp.* [1965] p 3-4 refs (See N66-17440 08-15) CFSTI: HC \$3.00/MF \$0.75

The hypothetical door mechanism of a MOL was studied for its performance with various lubricants. The system was separated into area #1 including all parts from the drive motor up, and area #2 included the pinion gear and all parts of the telescoping rack. Oil and greases was found most desirable for lubrication in area #1, whereas bonded molybdenum disulfide film and self-lubricating composite materials were preferable to oils and greases in area #2.

N66-17443 Midwest Research Inst., Kansas City, Mo.
LUBRICATING DOOR ACTIVATORS ON A MANNED ORBITAL
SPACE STATION USING ONLY SOLID LUBRICANTS
Vern Hopkins, Ron Hubbell, Mahlon Campbell, and Roger
Schroeder In Defense Dept. Proc. of Aerospace Symp. [1965]
p 9-24 refs (See N66-17440 08-15) CFSTI: HC \$3.00/MF
\$0.75

This paper presents an approach to the use of solid lubrication on door activators in a hypothetical manned orbital space station. A design configuration for a worm-gear activator mechanism is given, and types of lubricants and lubricating methods for the individual components are discussed.

Author

N66-17533# Ohio State Univ. Research Foundation, Columbus. Dept. of Metallurgical Engineering.

A STUDY OF THE MECHANISM OF STRESS CORROSION CRACKING IN THE IRON-NICKEL-CHROMIUM ALLOY SYSTEM Quarterly Report, 17 Mar.-16 Jun. 1965

R. W. Staehle, F. H. Beck, M. G. Fontana, and J. P. Hirth 9 Jul. 1965 43 p ref

(Contract AT(11-1)-1319)

(COO-1319-27) CFSTI: HC \$2.00/MF \$0.50

The addition of 17 different elements as fourth-components in the Cr-Fe-Ni alloy system caused stress-corrosion cracking in all cases. Tests in combinations of water, chloride, and oxygen at 800° F indicate that both chloride and oxygen are necessary for accelerated surface attack. Tensile properties were determined from room temperature to 1200° F for selected alloys. An increase in strength with increasing chromium content was noted. Electron micrographs of oxide films revealed a distinct difference between those on lowand high-nickel alloys.

N66-17611# Library of Congress, Washington, D. C. Aerospace Information Div.

CURRENT INFORMATION ON FUELS AND LUBRICANTS Surveys of Soviet-Bloc Scientific and Technical Literature 12 May 1964 13 p refs Compilation of Abstracts /ts Rept. 30

(AID-U-64-37; AD-623248) CFSTI: HC \$1.00/MF \$0.50 A review consisting of extracts, summaries, abstracts, and comments is given of Soviet developments in lubricants and fuels. In the study of liquid metal lubricants, the corrosiveness, hygroscopicity, and antiwear properties of a series of inorganic salts in their mixtures were investigated. Chlorides and bromides are reported to possess the best antiwear properties. Also mentioned were: (1) the receptivity of base oils to additives; (2) the suitability of liquid polysiloxanes as fluid bases in high temperature greases; and (3) the effects of sulfur and dichloroamine B additives on base oils. In the study of diesel fuels and gasolines, the effect of carbamide dewaxing on hydrofined and unhydrofined oils was determined. Also, the conditions were determined under which dewaxing could take place without loss of carbamide activity. Finally, a method for the systematic analysis of microcontaminants in jet fuels is outlined.

N66-17654# Grumman Aircraft Engineering Corp., Bethpage. N. Y. Research Dept.

FRICTION AND WEAR BETWEEN UNLUBRICATED METAL AND NONMETAL SURFACES

William Wolkowitz and Barry E. Ranish Sep. 1964 51 p refs (RM-239; AD-475570)

An investigation has been made of the friction and wear characteristics of metal-to-metal and metal-to-nonmetal couples. The metals used were SAE 4620 and 1018 steel, and 7075-T6 and 2014-T6 aluminum alloy; the nonmetals were igneous rocks, i.e., rhyolite and basalt. Tests were made in air, vacuum, and argon. Both constant loading and continuously increasing loading were used. Two kinds of motion were employed—continuous and oscillatory sliding. The continuous sliding tests were conducted on a modified Alpha-Molykote friction tester at two speeds—4.5 and 26.0 ft/minute. The oscillatory sliding tests were made on a Grumman designed and built, ultrahigh vacuum friction tester at speeds ranging from 0.33 to 6.0 ft/minute. Author (TAB)

N66-17717* National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, Ala.
DRY FILM LUBRICANTS

J. E. Kingsbury and E. C. Mc Kannan *In its* Symp. on Technol. Status and Trends 1966 p 101-104 refs (See N66-17706) 08-15) GPO: HC \$1.50; CFSTI: MF \$1.25

The stimulus for the development of dry film lubricants was provided by the unsatisfactory condition created when commercial liquid lubricants were exposed to the multiple environs of space. In the search for a satisfactory solution to lubrication in space, dry films were investigated. The dry film lubrication concept has proven most desirable for space, and a natural fallout is the potential shown by such films for consumer item application. On the acceptance that the coefficient of friction of dry films is not equivalent to that of a liquid lubricant under ideal conditions, this paper discusses how the ideal condition for liquid lubrication is rarely achieved in practical applications. Comparisons are made between the performance of dry film and liquid lubricants as a function of temperature, environmental pressure, and life. Furthermore, consideration is given to the comparative costs of liquid versus dry film lubricants to show the practicality and desirability of Author dry film lubrication to consumer items.

N66-17779# Joint Publications Research Service, Washington, D. C.

ZIRCONIUM AND ITS ALLOYS

11 Oct. 1965 36 p refs Transl. into ENGLISH from Russian periodicals

(JPRS-32341; TT-65-32831) CFSTI: \$2.00

CONTENTS:

- 1. VISCOSITY OF LIQUID ZIRCONIUM V. P. Yelyutin. M. A. Maurakh, and I. A. Pan'kov p 1-7 refs (See N66-17780 08-17)
- 2. OXIDATION OF BINARY ALLOYS I. N. Frantsevich and R. F. Voytovich p 8-16 (See N66-17781 08-17)
- 3. PREPARATION OF ZIRCONIUM BORIDE ALLOYS WITH MOLYBDENUM DISILICIDE AND DETERMINATION OF CERTAIN PROPERTIES OF THESE ALLOYS M. A. Kuzenkova and P. S. Kislyy p 17–23 refs (See N66-17782 09.17)
- 4. CORROSION OF ZIRCONIUM IN THE ALKALINE METAL CHLORIDE MELT V. P. Volodin, I. N. Ozeryanaya, and M. V. Smirnov p 24-31 refs (See N86-17783 08-17)

N66-17783 Joint Publications Research Service, Washington, D. C.
CORROSION OF ZIRCONIUM IN THE ALKALINE METAL
CHLORIDE MELT

NSA

-V. P. Volodin, I. N. Ozeryanaya, and M. V. Smirnov In its Zirconium and Its Alloys 11 Oct. 1965 p 24–31 refs Transl. into ENGLISH from Elektrokhimiya Rasplavlennykh Solevykh i Tverdykh Elektrolitov—Trudy Instituta Elektrokhimii (Sverdlovsk, USSR), no. 6, 1965 p 87–91 (See N66-17779 08-17) CFSTI: \$2.00

Results are presented of a study on the corrosion of zirconium in the molten equimolar mixture of potassium and sodium chlorides in relation to the temperature with the possible minimum inlet of oxidants. The research was performed by three methods: (1) the direct determination of the corrosion rate of zirconium according to the weight loss of the sample and the data of the melt chemical analysis; (2) by the computation of the corrosion current from the values of the equilibrium potential; and (3) according to the changes of anodic polarization. The temperature relationship of the zirconium equilibrium potential was found. It is shown that within the limits of possible experimental errors, the corrosion rate determined by the direct method conforms well with the corrosion rate computed from the values of equilibrium potentials and according to the anodic polarization curves.

N66-17856# Compagnie des Ateliers et Forges de la Loire, Paris (France). Dept. des Recherches.

[MECHANICAL PROPERTIES OF STEELS] Quarterly Report No. 2, Jan.-Apr. 1965

[1965] 43 p ref Transl. into ENGLISH from the FRENCH (Contract EURATOM-033-64-9 TEEF (RD))

(EURAEC-1397; EUR-2356) CFSTI: HC \$2.00/MF \$0.75

The mechanical properties at room temperature, the stress-corrosion in 42% MgCl₂ solutions, and the stress-corrosion in MgCl₂-NaCl solutions as a function of pH were measured. The addition of silicon to the austenitic and austenoferritic steels increased the yield strengths and the stress-corsion resistance to boiling MgCl₂.

N66-18080# Metaalinstituut TNO, Delft (Netherlands).
ANALYSIS OF A CORRODED STEEL SUPPORTING PLATE
USING AN ELECTRON MICROSCOPE [ONDERZOEK VAN
EEN GECORRODEERDE STEUNPLAAT MET BEHULP VAN
DE ELECTRONENMICROSCOOP]

J. M. Nijpjes and H. B. Zeedijk 28 Oct. 1965 $\,$ 10 p. In DUTCH (M65-933; TDCK-43809) CFSTI: HC \$1.00/MF \$0.50

An electron microscope was used to study the products found in the matrix and on the surface of a steel supporting plate, and results of the qualitative analysis are presented. Data indicate that the corrosion products consist of a complex oxide, with the corrosion layer containing mostly Fe and Ni and, as minor components. Cr and V. The carbides in the supporting plate and in the basic materials are identified as Cr_{23} and C_{6} . Findings also show that the carbides are large in the supporting plate, and flat in the basic material where the carbides appear mainly on the edges of the disks.

N66-18172°# National Aeronautics and Space Administration. Flight Research Center, Edwards, Calif.

DRAG AND WEAR CHARACTERISTICS OF VARIOUS SKID MATERIALS ON DISSIMILAR LAKEBED SURFACES DURING THE SLIDEOUT OF THE X-15 AIRPLANE

Ronald J. Wilson Washington, NASA, Mar. 1966 28 p refs (NASA-TN-D-3331) CFSTI: HC \$0.40/MF \$0.50 CSCL 01C

An investigation was made to determine the coefficients of friction and the wear characteristics for X-15 landing-gear skids of various materials. Data are presented for skids made of 4130 steel, with and without cermet coating, and Inconel X for several lakebed-surface conditions. The mean coefficient of friction on a dry-hard surface was found to be 0.30 for 4130 steel skids, 0.36 for 4130 steel skids with cermet coating, and

0.35 for Inconel X skids. The mean coefficient of friction for the cermet-coated skids on a soft surface was 0.46; for Enconel X skids on a damp surface the mean value was 0.25. Flight data are compared with experimental ground-tow test data on natural and simulated lakebed surfaces. Also included is the variation of skid wear with slideout distance.

Author

N66-18181*# General Electric Co., Schenectady, N. Y. Advanced Technology Labs.

EVALUATION OF THIN WALL SPACECRAFT ELECTRICAL WIRING. VOLUME II: TEST RESULTS AND FACILITIES Technical Report No. 1

L. J. Frisco and K. N. Mathes 28 Jul. 1965 204 p (Contract NAS9-4549)

(NASA-CR-65233) CFSTI: HC \$6.00/MF \$1.25 CSCL 13H Results of insulation resistance measurements on spools of wire immersed in wet oxygen are given for 1 minute and 5 minute electrification times. One specimen of each wire sample was also tested extensively at the end of the 3-day immersion to determine its resistance versus time of voltage application characteristics and to find dielectric losses at very low frequencies. Insulation resistance measurements on cabled, aged wires exposed to abrasion, radiation, offgassing in oxygen, etc., showed excellent agreement among specimens of the same wires. In general, taped wire constructions produced decreased insulation resistance, while extruded wires remained unaffected.

N66-18224# Battelle Memorial Inst., Columbus, Ohio.
CORROSION PROTECTION OF THE HYDROFLUORINATOR
BY AN INERT GAS SPARGE

P. D. Miller, L. K. Matson, and E. F. Stephan $\,$ 5 Feb. 1965 20 p

(Contract W-7405-ENG-92) (BMI-X-329)

Several experiments were conducted to determine if an inert gas sparge just below the surface of the liquid would reduce the severe attack at the interface by diluting the HF in this area. In these experiments, the 52-37-11 mole % NaF-LiF-ZrF₄ salt with HF sparge was used at 650°C in 4-inch Hastelloy B and 2-inch INOR-8 containers with INOR-8 corrosion specimens. It was concluded that argon and helium sparge gases definitly reduced corrosion, but the data were inconsistent. Gas flow patterns and other variables may have

N66-18290# Los Alamos Scientific Lab., N. Mex.
HIGH-TEMPERATURE COMPATIBILITY TESTING OF
MOLTEN PLUTONIUM FUEL-CONTAINER SYSTEMS
R. L. Andelin [1965] 5 p refs Presented at the 13th Conf.
on Remote Systems Technol., Washington, D. C.

(Contract W-7405-ENG-36)

an effect on the corrosion inhibition.

(LA-DC-7316; CONF-651101-28) CFSTI: HC \$1.00/MF \$0.50 The linear relation of Ta capsule lifetime versus temperature obtained for capsules containing Pu and Ga-stabilized Pu-2.5 wt% Fe fuels implies a constant failure mechanism with temperature. The capsules containing Pu had a much shorter lifetime. Carburization of the Ta capsule retarded the Pu intergranular penetration. No difference was observed when using high-purity Na(<1 ppM O₂) or high vacuum (1×10⁻⁷ torr) as external capsule environments during testing.

N66-18416# Atomic Weapons Research Establishment, Aldermaston (England).

URANIUM CORROSION STUDIES. PART 2: THE RATE OF REACTION OF POLISHED URANIUM AND WATER VAPOUR AT VARIOUS TEMPERATURES

J. H. Grimes and J. R. Morris Sep. 1965 27 p refs (AWRE-0-68/65) HMSO: 3s 3d

The rate of reaction of uranium and water vapor has been determined at temperatures in the range 30° to 80° C. An activation energy of 9 kcal/g mole has been derived. Comparisons are made between the rate of corrosion of uranium found by the measurement of oxide film growth and that found by other methods.

N66-18493# Bureau of Yards and Docks, Pearl Harbor, Hawaii.

THE OCCURRENCE AND PREVENTION OF CORROSION Willard E. Edwards Dec. 1965 11 p (AD-625900) CFSTI: HC \$1.00/MF \$0.50

The best time to provide protection against corrosion is during the planning, design, and construction stages. This is done through the proper choice of both materials and construction methods. Coatings and cathodic protection of steal may then be called for and used as required. After that, rigid maintenance practices, regularly performed by qualified personnel, are essential in order to realize the great savings which can be accomplished through corrosion mitigation. Whenever underground leaks occur in iron or steel pipes due to external corrosion, it is good insurance to install a magnesium anode at the same time that the leak is repaired. Cathodic protection will usually save many times its installation cost wherever it may be required in corrosive soils or water.

N66-18514# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

STUDYING THE EFFECT OF ADDITIONS TO POLYCAPRO-LACTAM "B" ON ANTIFRICTION PROPERTIES AND AD-HESION TO METAL

D, S. Makhmudov and A. N. Levin 15 Nov. 1965 14 p. refs Transl. into ENGLISH from Tr. Inst. Khim, Machinostr. (Moscow), v. 27, 1964 p. 194–200

(FTD-TT-65-986/1+2+4; AD-625286) CFSTI: HC \$1.00/ MF \$0.50

It is shown that the addition to polycaprolactum of aluminum powder, talcum, graphite and, in particular, molybdenum disulfide improves its antifriction properties and certain other physio-mechanical qualities.

N66-18519# Ampex Corp., Redwood City, Calif.
INTERACTION BETWEEN SELF-ACTING AND EXTERNALLY PRESSURIZED EFFECTS IN A FOIL BEARING
E. J. Barlow Oct. 1965 24 p refs
(Contract Nonr-3815(00)(X))

(RR-65-12; AD-625762) CFSTI: HC \$1.00/MF \$0.50

For a foil bearing, the interaction between the flow of lubricant from feed holes and the flow in from the surrounding environment is calculated numerically. The results are applicable for a partial arc foil bearing whenever the feed holes are far from both ends of the wrap angle. The report extends the linearized solution into the nonlinear range.

Author (TAB)

N66-18520# Aluminum Co. of America, New Kensington. Pa. Alcoa Research Labs.

FRACTURE TOUGHNESS, FATIGUE-CRACK PROPAGA-TION AND CORROSION CHARACTERISTICS OF ALUMI-NUM ALLOY PLATES FOR WING SKINS Quarterly Report, 3 Sep.-3 Dec. 1985

G. E. Nordmark, B. W. Lifka, and J. G. Kaufman 15 Dec. 1965 43 p ref

(Contract AF 33(615)-2012)

(AD-625454) CFSTI: HC \$2.00/MF \$0.50

The fracture toughness, fatigue properties and corrosion resistance of 2020-T651, 2024-T851, 2219-T851 and

7001-T75 are being determined. Fracture-toughness tests of 1-in. specimens of the 2020-T651, 2219-T851 and 7001-T75 were completed during the past quarter. The fracture toughness of 2020-T651 is lowest; those of 7001-T75 and 2024-T851 are higher but still about 20 percent below that of 7075-T651 (from AF33 (657)-11155). The fracture toughness of 2219-T851 is exceptionally high, equalling or exceeding that of 7075-T7351. Fatigue tests of center-notched specimens of 2020-T651 and 2219-T851 are complete. Cracks initiate in about the same number of cycles for 2219-T851 as for 2024-T851, and slightly sooner than in 2020-T651 and 7075-T651. Cracks propagate more slowly in 2219-T851 and 2020-T651 than in some of the other alloys, but 2020-T651 fails at shorter crack lengths. Corrosion tests show that 2020-T651, 2024-T851 and 2219-T851 are highly resistant to exfoliation attack and to stress-corrosion cracking in any direction at stresses up to 75 percent of the yield strength, similar to the case for 7075-T7351. Author (TAB)

N66-18539# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

PROBLEM OF THE BEHAVIOR OF HEAT RESISTANT ALLOYS IN CONTACT WITH SODIUM IN STRESSED STATE G. P. Benediktova and S. T. Kishkin 8 Dec. 1965 12 p Transl. into ENGLISH from Tr. Aviatsionyy Inst. (Moscow), no. 158. 1964 p 29–34

(FTD-TT-65-1050/1+2+4; AD-625148) CFSTI: HC \$1.00/MF 0.50

The article discusses stress corrosion of heat-resistant alloys in contact with Sodium containing admixtures.

N66-18553# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ON DETONATION COMBUSTION OF HETEROGENEOUS SYSTEMS

V. Ye. Gordeyev, V. F. Komos, and Ya. K. Troshin. 3 Dec. 1965 12 p. refs. Transl. into ENGLISH from Dokl. Akad. Nauk SSSR, v. 160 no. 4, 1965. p.853-856

(FTD-TT-65-1106/1+2+4; AD-625158) CFSTI: HC \$1.00 MF \$0.50

The transition from combustion to detonation of a thin layer of lubricating oil in an oxygen filled tube was studied, using a high speed photographic system to record the process. Various methods were used to initiate combustion, including shock waves and electric discharges. An investigation conducted to determine the amount of oil per unit area necessary for an accelerating combustion established two critical values, one corresponding to detonation and the other corresponding to explosion. Under the conditions of the experiments, combustion was observed to accelerate from 200 m/sec to 800 m/sec over a distance of 600 mm.

N66-18654# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

DETERMINING THE ELASTICITY OF SATURATED VAPORS OF LUBRICATING MATERIALS

V. M. Martynov and M. V. Morozova 3 Dec. 1965–16 p. refs Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow), no. 12, 1963 p. 62-65

(FTD-TT-65-1063/1+2+4: AD-625155) CFSTI: HC \$1.00/ MF \$0.50

On the basis of experimental data, obtained during the study of elasticity of saturated oil and grease vapors, it can be concluded, that, if the oil or grease are designated for use within a period of long time in vacuum conditions, when the vapors of evaporating components do not effect the operation of the mechanisms, evaluation of the working period of the given lubricant will be insufficient by the value of the initial

vapor elasticity. The initial vapor elasticity depends upon the admixture of light components, the removal of which sharply reduces vapor elasticity.

TAB

N66-18656# Air Force Systems Command, Wright-Patterson AFB. Ohio. Foreign Technology Div.

METHOD OF OBTAINING LUBRICANT FOR TITANIUM PARTS

N. K. Sul'zhenko, V. P. Barannik et al. 15 Dec. 1965 5 p Transl. into ENGLISH from Soviet Patent no. 166081 (Appl. no. 819801/23-4, 7 Feb. 1963) 1 p

(FTD-TT-65-1193; AD-625160) CFSTI: HC \$1.00/MF \$0.50
The object of the invention is a method of obtaining a lubricant for titanium parts on the basis of crystalline iodide for preventing the seizing of fastened titanium parts and improving anticorrosion capacity. Oleic acid is subjected to interaction with crystalline iodine at a temperature of 85 degrees in the ratio of 1:1.

Author (TAB)

N66-18773# Du Pont de Nemours (E. I.) and Co., Aiken, S. C. Nuclear Materials Div.

STRESS CORROSION CRACKING OF AUSTENITIC STAIN LESS STEEL Status Report, Period Ending 1 Sep. 1964 McIntyre R. Louthan, Jr Feb. 1965 20 p refs (Contract AT(07-2)-1)

(DP-957) CFSTI HC \$1 00/MF \$0 50

Stress corrosion cracking of austenitic stainless steel is being investigated to develop a fundamental understanding of the phenomenon. The status of studies relating specimen microstructure and dislocation substructure to the susceptibility to stress corrosion cracking are presented. The results show that anodic dissolution plays a major role in the nucleation and propagation of stress corrosion cracks. The susceptibilities of different heats of the same type of steel to cracking are quite different, and these differences are not attributable to differences in the composition of major alloying elements, material hardness or dislocation substructure. It is also shown that the relative rate of preferential attack at dislocation arrays and stacking faults in thin foils of type 304 stainless steel exposed to dilute NaCl solutions increased with increasing temperature and was more rapid in heats of steel which were most susceptible to cracking in bulk tests. Author (NSA)

N66-18846# Mechanical Technology, Inc., Latham, N. Y. A THEORY FOR TURBULENT FLUID FILMS AND ITS APPLICATION TO BEARINGS

H. G. Elrod, Jr., C. W. Ng, and C. H. T. Pan. Mar. 1965 $\,$ 73 p refs

(Contract AT(30-1)-3363)

(NYO-3363-2: MTI-65TR9) CFSTI: HC \$2.00/MF \$0.75

A new turbulent lubrication analysis was derived which takes into account certain well-established facts concerning turbulent shear flow. Consistent with lubrication-film theory, the nature of the local flow is taken to depend only on local film thickness, surface velocity, and pressure gradients. An eddy diffusivity treatment is used which incorporates the "law of wall" with the use of local (within the film) shear stress. Stress reversal phenomena are accommodated, and isotropy of the turbulent exchange mechanism in the plane of the film is assured. Coefficients are developed for use in the generalized Reynolds (lubrication) equation, and computation procedures for the static and dynamic characteristics of turbulent. self-acting bearings have been prepared. The non-linear effects due to the coupling of the shear-induced flows and the flows due to the circumferential and axial pressure gradients are fully considered in this analysis. Thus, it is anticipated that it, unlike the previous linearized analysis, is directly applicable also to turbulent, externally pressurized and hybrid bearings. Author (NSA)

N66-18857# Bettis Atomic Power Lab., Pittsburgh, Pa.
TEST RIG FOR USE IN WEAR AND FRICTION STUDIES
IN A WATER ENVIRONMENT

N. B. Dewees Mar. 1965 39 p refs (Contract AT(11-1)-GEN-14)

(WAPD-288) CFSTI: HC \$2.00/MF \$0.50

A test rig is described for measuring the rate of wear and the coefficient of friction for materials tested in a pressurized water environment at temperatures to 500°F. The rig operates with either a continuous sliding or an oscillating motion. Two different designs of specimens are tested simultaneously to show in a single test whether loading or design of specimens may significantly affect test results. Tests can be performed with a unit loading on the wear surfaces of 30 to 9000 psi with the standard specimens. Evaluation of a material combination is based upon relative wear rates between the two types of specimens as well as the magnitude and trend of wear rate and roughness in successive test intervals. Examples are given for material combinations having widely different performance.

N66-18864# Societe Nationale d'Etude et de Construction de Moteurs d'Aviation, Suresnes (France). Division Atomiques. PROGRESS OF WORK DURING THE FOURTH QUARTER 1964 Quarterly Report No. 19

C. Moussez 11 Jan. 1965 9 p Transl. into ENGLISH from French

(Contract EURATOM-061-64-7TEEF)

(EURAEC-1288) CFSTI: HC \$1.00/MF \$0.50

Progress is reported in measurements of 20 mm-dia. circular channel pressure drop, flow quality, and corrosion film thickness. Tests on a 2-channel cruciform section are discussed. Thermal studies on a 20-mm circular section with evolutive flux are discussed along with studies on a test section with direct heating by Joule effect. A test section with nine heating rods was designed.

N66-18872# Commissariat a l'Energie Atomique. Saclay (France). Centre d'Etudes Nucleaires.
ELECTROMAGNETIC CIRCUI ATION PIARE FOR COMMISSARIA DE COMISSARIA DE COMMISSARIA DE COMISSARIA DE COMMISSARIA DE COMMISSARIA DE COMISSARIA DE COMMISSARIA DE COMMISSARIA DE COMMISSARIA DE COMISSARIA DE COMMISSARIA DE

ELECTROMAGNETIC CIRCULATION PUMP FOR COR-ROSIVE GASES [POMPE DE CIRCULATION ELECTRO-MAGNETIQUE POUR GAZ CORROSIFS]

Pierre Noe, Denise Delafosse, and Gérard Deletre Feb. 1965 16 p in FRENCH (CEA-R-2744)

In order to transport very corrosive products (fluorinated compounds), a totally metallic circulation pump capable of operating at above room temperatures and with a molecular vacuum was developed. Maximum simplicity was the primary aim both in conception and operation. The tests showed that the compression ratios produced, although not high, are interesting (1.5 at a pression of 100 torr). The flow-rate range is very wide: about one hundred ccs/atm/min. to 3.000 ccs/atm/min. Desorption of the pump presents no difficulty if both the aspiration and the reject sides are pumped together. A hole of 2 mm diameter drilled in the piston makes it possible to desorb the space between the two segments. The price of the pump is 1.300 F, with the electrical cabinet.

N66-18889# Battelle-Northwest, Richland, Wash. Reactor and Materials Technology Dept.

CORROSION OF ZIRCALOY-2, WEAR AND CREVICE EFFECTS

W. K. Winegardner 25 Aug. 1965 6 p refs Presented at the Meeting of the Inland Empire Sect. of the Natl. Assoc. of Corrosion Engr., 17 Sep. 1965 (Contract AT(45-1)-1830)

(BNWL-SA-313)

The localized corrosion of Zircaloy-2 by wear or fretting and crevices in the PRTR is discussed. It is concluded that

wear and concentration of lithia in heated crevices can initiate localized corrosion of Zircaloy-2 reactor core components.

N66-18899# Westinghouse Electric Corp., Pittsburgh, Pa. Research Labs

INVESTIGATION OF CORROSION FILMS ON INCONEL AND AISI TYPE 304 STAINLESS STEEL BY TWO NEW TOOLS: THE SPINNING-SOURCE MASS SPECTROGRAPH MICROPROBE AND THE SCANNING ELECTRON MICRO-

W. M. Hickam, G. G. Sweeney, and W. T. Lindsay, Jr. Jan. 1965 28 p. refs. Prepared for Bettis Atomic Power Lab. (Contract AT(11-1)-GEN-14)

(WERL-1114-1) CFSTI: HC \$2.00/MF \$0.50

The results of a preliminary study on the use of the spinning-source mass spectrograph microprobe and the scanning electron microscope to investigate surfaces of Inconel and AISI type 304 stainless steel corroded in high temperature water are reported. The results showed that the scanning electron microscope has great potential usefulness for the study of corrosion reactions. This results in part from the unusual contrast-producing process, which can reveal surface features not easily distinguished by other means, and in part from the fact that the examination is nondestructive and does not require surface replication. The spinning-source mass spectrograph microprobe in its present state of development is less suited to sampling very thin $(<1\mu)$ oxide films than to thin layers of unoxidized metal.

N66-18903# Atomics International, Canaga Park, Calif. EFFECT OF EXTENDED EXPOSURE TO HEATED LIH ON TENSILE PROPERTIES OF 347 AND 321 STAINLESS STEELS R. S. Neymark 7 Jan. 1965 35 p refs (Contract AT(11-1)-GEN-8)

(NAA-SR-MEMO-10885)

Tensile specimens of Type 321 and of Type 347 stainless steel that which were exposed in LiH exhibited similar tensile properties to control specimens that were concurrently exposed in helium. The elongation observed in several test conditions with both Types 321 and 347 was as low as 18 to 20%, whether exposed in LiH or in helium. Type 316 had exhibited minimum elongations of about 27 to 23% under equivalent exposure and test conditions, and v ould be preferred over Types 321 or 347 if maximum ductility under all conditions was essential. Weight changes were determined for tabs of Type 347, 316, and 19-9 DL, which were included in the LiH with the tensile blanks. Type 316 had the smallest veight change and 19-9 DL the greatest, but none corroded appreciably (the maximum rate was less than 0.0004 inches per year).

N66-18939# Virginia Polytechnic Inst., Blacksburg. Dept. of Metals and Ceramic Engineering.

THE RELATIONSHIP OF NITROGEN CONTENT OF AUS-TENITIC STAINLESS STEELS TO STRESS CORROSION Quarterly Report No. 4

B N. Ferry Jun. 1965 16 p ref (Contract AT(40-1)-3208)

(EURAEC-1424) CFSTI: HC \$1.00/MF \$0.50

The percentage of nitrogen dissolved in type 304 stainless steel was measured as a function of the nitriding time at 1000° F for different ammonia-hydrogen ratios. This information enables nitriding and diffusion anneal treatments to be combined. Two torsional pendulum experiments were performed and the relaxation spectrum obtained for unnitrided type 304 stainless steel at 0.50 cps frequency. No internal friction peaks occurred between 80 and 423° F. The mean internal friction (logarithmic decrement) values were 0.0016 for the first and 0.0021 NSA for the second experiments.

N66-19008# College of Aeronautics, Cranfield (England). MINIMUM HYDRODYNAMIC OILFILM THICKNESS: AN EX-PERIMENT AND THEORETICAL INVESTIGATION B. R. Reason Aug. 1965 23 p refs

(CoA-AERO-184) CFSTI: HC \$1.00/MF \$0.50

The paper deals with an experimental and analytical investigation of the lowest limit of hydrodynamic film thickness compatible with the condition of 'running in'. Using the working geometry of an experimental test rig together with the two dimensional Reynolds equation, an analytical expression for the minimum hydrodynamic film thickness has been developed. The problem has been investigated from an experimental standpoint using a measuring system based on an air gauge and capable of detecting film thickness changes of the order of 10-6 inches. Although calculations of the magnitude of the minimum hydrodynamic oilfilm thickness gave values as low as 5×10-6 inches, the minimum value obtained experi-Author mentally was 2.5×10-5 inches.

N66-19104°# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va.

SALT STRESS CORROSION OF RESIDUALLY STRESSED Ti-8AI-1Mo-1V ALLOY SHEET AFTER EXPOSURE AT ELEVATED TEMPERATURES

Howard B. Dexter Washington, NASA, Mar. 1966 22 p. refs (NASA-TN-D-3299) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F

An experimental investigation of the salt-stress-corrosion cracking of residually stressed Ti-8AI-1Mo-1V alloy sheet (duplex annealed) has been carried out with bend specimens which were brake formed from 0.050-inch-thick sheet over dies with radii of 0.25, 0.5, 1, 1.5, and 2.5 inches: residual, tensile stresses ranged from 25 to 65 ksi. Specimens were salt dipped in a 3.4-percent NaCl solution and exposed at temperatures from 400° to 600°F for times up to 6400 hours Severe stress-corrosion cracking was found to occur after 20 hours exposure at 600°F for the 0.25-inch-radius specimens. but no salt stress corrosion was noted at 400°F regardless of stress. Salt stress corrosion after 3200 and 6400 hours exposure began to occur at temperatures above 400°F for the bend radii investigated. Additional tests were run to determine the relative effects of NaCl. CaCl2. MgCl2, sea salt, and simulated sea salt (seven parts NaCl to one part MgCl₂) on stresscorrosion cracking. The results showed NaCl to be the most corrosive. Conventional stress-relieving procedures were effective in eliminating stress corrosion when performed in an argon environment, but results were erratic when the specimens were stress relieved in air.

N66-19189# Defence Research Board, Ottawa (Ontario). Directorate of Scientific Information Services. CATHODIC POLARIZATION OF SPENT ZINC-CONTAIN-ING PAINTS IN SEA WATER

A. G. Khanlaroua, M. R. Khanmamedoua, and M. A. Ibrahimova May 1965 14 p refs Transl. into ENGLISH from Lakokrasochnye Materialy i Ikh Primenenie (Leningrad), v. 3, 1964 p 34-37

(T-424-R) CFSTI: HC \$1.00/MF \$0.50

Studies were undertaken to establish the dependence of protective zinc paints upon the chemical composition of the electrolyte. Paint coatings of 90% zinc and 10% polystyrene were tested in solutions of NaCl, KCl, Na2SO4, K2SO4, and MgSO₄ for two months. Tabulated data show the alterations of the electrode potential after exposures at various time periods. Experiments on the cathodic polarization of spent zinc paint coatings in sea water showed that their polarizability depends both on the chemical composition of the binder, and on the degree to which the zinc is spent. Maximum cathodic polarizability was found in paint coatings with chlorinated rubber and polystyrene bases. The deduction was made that the protective action of spent zinc paint coatings

can be restored by brief cathodic polarization with currents of small density. It was concluded that the use of cathodic protection simultaneously with protective coatings of zinc paint reduced the electric current expenditures, and increased the period of effectiveness of the paint coatings.

N.E.N.

N66-19192# Mechanical Technology, Inc., Latham, N. Y. FRICTION AND LUBRICATION AT EXTREME PRESSURES Interim Report

M. B. Peterson and F. F. Ling 2 Dec. 1965 67 p. refs (Contract Now-65-0363-c) (MTI-65TR59)

A theoretical and experimental program is being conducted to better define the frictional process in hot metal deformation. The initial portion of this program was directed toward gaining a better understanding of friction at the extreme pressures characteristic of metal working. To do this a simple bench test was used. A foil of metal (workpiece) is compressed between an anyit and a flat plate. When a force is applied to the anvil, slip takes place between the metal and the flat. Using this device, the coefficient of friction was determined for pure metals for pressures to 200,000 psi and temperatures to 1000° F. Three regions of friction were found: classical friction; deformation friction, where the friction is completely defined by plastic deformation; and thin film friction, in which shear rate effects are hypothesized. An analysis was made of two modes of deformation and compared with experimental results. A study of pure metal lubrication was conducted. It is proposed that the effectiveness of a lubricant for a given metal can be based upon its ability to withstand the wear of the deforming metal.

Author

N66-19245# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

NEW ANTIFRICTION AND CHEMICALLY STABLE MATERIALS

S. N. Ganz and V. B. Parkhomenko 1 Dec. 1965–15 p. Transl. into ENGLISH from Khim. Prom. Nauk Tekhn. Zb. (Kiev), no. 4, 1963 p. 20–24

(FTD-TT-65-857/1+2+4: AD-625092) CFSTI: HC \$1.00/ MF \$0.50

A description is given of new types of antifriction and chemically stable materials, manufactured on the basis of fluoroplast-4 (a polytetrafluoroethylene), where molybdenum disulfide, boron nitride, barium sulfuric acid, colloidal graphite type S-1, ground coke, pure anhydrous aluminum oxide and gas channel soot were used as fillers. These materials can be used in role of self-greasing piston rings, slide bearings, packing elements, etc. Their application will offer the possibility of replacing stainless steel, pure aluminum, anti-chlor and other deficit and high cost materials in chemical apparatus and machine construction.

Author (TAB)

N66-19381# Mechanical Technology, Inc., Latham, N. Y STRESSES IN LUBRICATED ROLLERS CONSIDERING ARBITRARILY DISTRIBUTED NORMAL AND TANGENTIAL LOADS H. S. Cheng and R. J. Wernick Dec. 1965 28 p refs (Contract Nonr-3279(00))

(MTI-65TR61; AD-626008) CFSTI: HC \$2.00/MF \$0.50

A numerical solution to the stresses in lubricated rollers considering arbitrarily distributed normal and tangential loads is obtained. Results are obtained for rollers operating in the elastohydrodynamic regime with and without sliding. The effect of a small amount of slip in the contact is shown to be significant.

Author (TAB)

N66-19382# Frankford Arsenal, Philadelphia, Pa.
STRESS-CORROSION SUSCEPTIBILITY OF ULTRAHIGH
STRENGTH STEEL EVALUATED IN TERMS OF FRACTURE
TOUGHNESS

Joseph H. Mulherin and Edward H. Hess. Nov. 1965-35 p. refs. (R-1782; AD-626013). CFSTI: HC \$2.00/MF \$0.50

The stress-corrosion susceptibility of several ultrahigh strength ferrous alloys is described on the basis of fracture mechanics parameters. Two general conditions were considered: first, the susceptibility of a material at various levels of tensile yield strength and fracture toughness; and second, susceptibility as a function of applied subcritical stress intensity levels. Experimentally, a notched and fatigue-cracked bendbar specimen configuration was used. Under a subcritical load, fracture of the specimen occurs upon sufficient environmentally influenced crack extension. The susceptibility criterion adopted in this investigation was the time period to catastrophic fracture of the specimen. The results are evaluated in terms of strength level and fracture toughness, and the usefulness of the data generated is examined in terms of material evaluation Author (TAB) and application.

N66-19466# Coating and Chemical Lab., Aberdeen Proving

EXTENDED USE OF IMPROVED COOLING SYSTEM IN-HIBITOR—FIELD EVALUATION Interim Report

James H. Conley 3 Dec. 1965 12 p refs

(CCL-190; AD-625928) CFSTI: HC \$0.50/MF 0.50

The object of this investigation is to determine if Federal Specification 0-1-490a, Corrosion Inhibitor is suitable for use in vehicle cooling systems for extended periods. The improved inhibitor was placed in the vehicle cooling systems with antifreeze compounds meeting Federal Specification O-A-548a, Type I, or commercial materials similar to the Type I. The inhibitor was added at the rate of 1 ounce per 2 quarts of water used in making up the antifreeze solution. Four government vehicles and four private passenger cars were utilized for test. Solutions were checked every three months and if necessary the coolant freezing point, pH value and reserve alkalinity (R.A.) value were adjusted. Data indicate that inspection periods of longer than three months permits the coolant to get out of control. In the event the Army adopts the continued use of antifreeze solutions for two years. the coolant solutions must be checked every three months by technical personnel and adjusted, if necessary, to insure Author (TAB) safe continued use.

N66-19474# Socony Mobil Oil Co., Paulsboro, N. J.
STUDY AND EVALUATION OF THE OXIDATIVE AND DEPOSIT-FORMING PROPERTIES OF HIGH TEMPERATURE
LUBRICANTS

S. J. Leonardi and E. A. Oberright Wright-Patterson AFB, Ohio, AF Aero Propulsion Lab., Nov. 1965 26 p refs (Contract AF 33(615)-1367)

(AFAPL-TR-65-85; AD-625833) CFSTI: HC \$2.00/MF \$0.50

A series of high temperature oils was evaluated in a high temperature thin film oxidation unit. The apparatus measures oxygen consumption and deposits formed by the oils in thin films on a rotating heated disk. The test exhibited excellent correlation with deposit formation in a jet engine. To simplify the selection of conditions for future testing requirements, the effects of several test variables were evaluated. These include test time, oil circulation rate, oxidation of the sump oil, dispersion of the sump air, and effects of metals in the sump.

Author (TAB)

N66-19515*# Aerojet-General Corp., Azusa, Calif. SNAP-8

SNAP-8 MATERIALS REPORT FOR JANUARY-JUNE 1965 H. Derow and B. E. Farwell Jul. 1965 83 p. refs. /ts Rept.-3038

(Contract NAS5-417)

(NASA-CR-54719) CFSTI: HC \$3.00/MF \$0.75 CSCL 18N Investigations were conducted in support of the design, fabrication, and development testing of various SNAP-8 components. Investigation of a mercury forced-convection corrosion loop was continued with the aim of evaluating the corrosion resistance of 9Cr-1Mo alloy steel (the reference mercury-containment material) for 10.000-hour service. Rubidium is being evaluated as an additive to the mercury to promote boiler conditioning. Data were developed in a continued program to evaluate the effect of the SNAP-8 operating environment on 9Cr-1Mo steel.

N66-19560# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.
ADDITIVE TO SULFUROUS FUEL

M. I. Shapovalov 8 Dec. 1965 5 p. Transt. into ENGLISH from Soviet Patent no. 157034 (Appl. no. 755907/23-5, 15 Dec. 1961) 2 p.

(FTD-TT-65-1126/1+4; AD-625248) CFSTI: HC \$1.00/ MF \$0.50

The object of the invention is an additive to sulfurous fuel on the basis of tricresylphosphate and nitrobenzene which has the distinguishing feature that, for the purpose of reducing the wear on the piston cylinders and lessening the scale formation, there are introduced isopropyl spirits and chromium nitrate.

Author (TAB)

N66-19561# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div. ADDITIVE TO SULFUROUS FUELS FOR HIGH-SPEED DIESEL ENGINES

N. A. Butkov, P. A. Sukhorukov, Ye. A. Kazmina, P. P. Botkin, and V. S. Yamburenko 8 Dec. 1965 5 p Transl. into ENG-LISH from Soviet Patent no. 155359 (Appl. no. 783879/24-6, 22 Jun. 1962) 2 p

(FTD-TT-65-1125/1+4; AD-625248) CFSTI: HC \$1.00/ MF \$0.50

The object of the invention is an additive to sulfurous fuels for high-speed Diesel engines, which has the distinguished feature that, for the purpose of lowering the scale formation and wear of the engines, as an additional active component barium naphthenate is introduced in the amount of 0.6% with a corresponding lowering in the content of deparaffined heavy gas oil from 91% to 90.4%.

N66-19564# Southwest Research Inst., San Antonio, Tex. LUBRICATION RESEARCH FOR AERO PROPULSION SYSTEMS Phase Report No. 1, Feb. 1-Sep. 1, 1965 E. L. Anderson, B. B. Baker, and P. M. Ku Oct 1965 42 p (Contract AF 33(615)-2384)

(AFAPL-TR-65-118; AD-625485) CFSTI: HC \$2.00/MF \$0.50

Investigations were conducted to determine the possible effect of selected aircraft gas turbine engine lubricants and various solvents on the removal of carbonaceous deposits which had accumulated during service on the No. 2 bearing rear support of the J-57 engine. Six MIL-L-7808 type and one MIL-L-23699 type lubricants and six solvents were included in this program. Under the test procedures used, the deposits on the bearing support specimens were found to be quite stable in the presence of all seven lubricants investigated; no loosening or sloughing of the deposits was observed. Of the six solvents evaluated, only Cities Service 26

was found to be effective in removing significant amounts of deposits from the specimen. Flashing of liquid water, loosened crinkled, blistered, and flaked deposits but had no effect on smooth carbon or varnish.

Author (TAB)

N66-19762°# National Aeronautics and Space Administration.
Marshall Space Flight Center, Huntsville, Ala.
GALVANIC CORROSION OF ALUMINUM ASSEMBLIES
BY STAINLESS STEEL WIRE INSERTS

T. S. Humphries and E. E. Nelson 2 Mar. 1966 20 p (NASA-TM-X-53404) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F

Data on the galvanic corrosion which is associated with bare and plated stainless steel inserts in aluminum assemblies are presented. Bare, cadmium plated, and silver plated stainless steel inserts which had been installed in 5456 and 2219 aluminum alloy blocks were tested in several corrosive environments—salt, brackish, and tap water and salt spray. It was found that the cadmium plated stainless steel inserts resulted in minimum galvanic corrosion of 5456 aluminum and afforded cathodic protection to 2219 aluminum. Silver plated stainless steel inserts that were tested caused severe galvanic corrosion of the aluminum assemblies and, therefore, are not recommended for use with aluminum.

N66-19769# Rock Island Arsenal Lab., III. Research and Engineering Div.

RHEOLOGICAL PROPERTIES OF GREASES OVER WIDE TEMPERATURE RANGES Technical Report

Robert L. Young Oct. 1965 33 p refs

(RIA-TR-65-2812; AD-625136) CFSTI: HC \$2.00/MF \$0.50

Routine physical characteristics were determined for ten lubricating greases of varying types. The roll stability test for lubricating grease, ASTM D1831-64, was performed on each grease at eleven temperatures ranging from -65° to 250°F and for extended periods of time. The apparent viscosity, ASTM D1092-62, was determined for each grease at the same temperatures. Curves were constructed from the roll stability, apparent viscosity and yield stress data. A departure from the general trend of the slope of these curves was taken as a possible phase change or transition temperature. The wear preventive characteristics of lubricating grease. ASTM D2266-64T were determined for two greases that gave indications of having definite phase changes. Wear tests were made over the working range of temperatures for each grease. The results did not show any noticeable change in lubricity of the grease occasioned by the indicated phase change.

N66-19772# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

ANTIWEAR ADDITIVE FOR LUBRICATING OILS

L. M. Kogan, A. M. Pavikovich, Yu. N. Bezobrazov, and N. M. Burmakin. 21 Oct. 1965. 6 p. Transl. into ENGLISH from Russian Patent no. 166436 (Appl. no. 776560/23-5, 29 Apr. 1962). 2 p.

(FTD-TT-65-795/1+2+4; AD-625053) CFSTI: HC \$1.00/MF 0.50

The object of the invention is the application of hexachlorcyclopentadiene as an antiwear additive to lubricating oils.

Author (TAB)

N66-19816# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

MOTOR AND JET OILS AND FLUIDS Selected Chapters K. K. Papok and Ye G. Semenido 29 Dec. 1965 151 p refs Transl. into ENGLISH from the Book "Motornyve i Reaktivnyye Masla i Zhidkosti" Moscow, izd. "Khimiya", 1963 p 123-139, 224-236, 391-398, 411-462, 544-552, 673-691 (FTD-MT-64-382; AD-626977) CFSTI: HC \$5.00/MF \$1.00

Contents: Viscosity additives, Multifunctional additives, Diesel oils, Oils for turbojet and turboprop engines, Oils for gas turbines, Oils for rocket engines, Plastic lubricants and their structure, and Liquids for engine-cooling systems.

N66-20010# Army Foreign Science and Technology Center, Washington, D. C.

EFFECTS OF ADDITIVES ON ANTIWEAR AND ANTI-FRICTION PROPERTIES OF POLYSILOXANES

M. I. Nosov and G. V. Vinogradov Dec. 1965 11 p refs Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow), no. 8, Aug. 1965 p 50-53

(FSTC-381-T65-553: AD-626078) CFSTI: HC \$1.00/MF \$0.50

The effect of some organic compounds containing sulfur, chlorine, and phosphorus on the lubricating action of polysiloxanes of various types under heavy friction loads were studied. Additives that show a high activity in preventing scoring of steel in hydrocarbon lubricating media were much less effective in polysiloxanes. Their activity decreased sharply on transition from polyethylsiloxane to polymethylsiloxane and then to polymethylphenylsiloxanes. They almost had no effect on the lubricating capacity of polymethylphenylsiloxanes. The assumption is made that the decomposition of well known additives, which determines their effectiveness in preventing scoring of steel, initiates chain reactions in which the principal components of lubricating oils participate. With increasing stability of lubricating media to reactions in which free radicals take part, the activity of additives that counteract scoring decreases. This explains the lack of effectiveness in polymethylphenylsiloxanes of the additives considered. Author (TAB)

N66-20013# Army Weapons Command, Rock Island, III. Research and Engineering Div.

HIGH TEMPERATURE OXIDATION INHIBITION OF ALUMINUM COMPLEX SOAP GREASE

Max T. Fisher Nov. 1965 23 p refs

(RIA-65-3264; AD-626582) CFSTI: HC \$1.00/MF \$0.50

The aluminum complex soap greases made previously (see AD-610 560) had good high and low temperature shear properties and good oxidation stability at 210° F but at 250° F were deficient in the latter property. Efforts to correct this deficiency consisted of incorporating antioxidants which had proved effective at the higher temperature in other grease types. The antioxidants were generally less effective at 250° F in these aluminum base greases than they were in other greases at the same temperature. Two of the inhibitors, 2,4'diisopropyl amino diphenyl ether and a proprietary mixture of complex organic amines, did impart superior resistance to oxidation at 250° F. The former, in a one percent concentration, limited the pressure drop to 25 psi in 400 hours, and a 27 psi drop in 400 hours was recorded using the latter material in a 0.3 percent concentration. This work shows that it will be difficult to find antioxidants for limiting the pressure drop of aluminum complex soap grease to 20 psi in 400 hours at 250° F. Author (TAB)

N66-20026# Koninklijke Marine, The Hague (Netherlands).

THE INFLUENCE OF PAINTS WITH A HIGH ZINC CONTENT ON THE WELDING OF A52 STEEL [DE INVLOED VAN ZINKRIJKE VERVEN OP DE LASBAARHEID VAN STAAL A 52]

H. F. M. Frohn Sep. 1965 25 p In DUTCH

(AT-1959/69; TDCK-43691) CFSTI: HC \$1.00/MF \$0.50

Research was conducted to determine what effect corrosive-resistant paints with a high zinc content had on the welding of A52 steel. Also considered were such mechanical properties of welding bonds, as crack values, strength of V-shaped seam connection, cross welding connections, and fatigue strength. Results showed no adverse effects from ap-

plications of 15 to 18 microns of the protective paint. The influence of the spraying materials (steel bits and copper remnants) was also checked, with no major effects detected. Epoxy resin and chlorine rubber based paints are compared, and the recommendation is made that a primary coat of an epoxy resin paint with a high zinc content be applied during ship construction.

N66-20193# Lockheed Missiles and Space Co., Sunnyvale, Calif.

HEAT TRANSFER FROM A CYLINDRICAL SURFACE WITH A DENSE NETWORK OF RIBS

 B. Tsesarskii [1965] 9 p refs Transl. into ENGLISH from Inzh. Fiz. Zh. (USSR), v. 9, no. 6, 1965 p 783-787

The heat transfer in lubricating oil from an intensely heated copper surface with a dense network of ribs was studied. The temperature field and the heat transmission coefficients from the heated surface to the cooling fluid were obtained by forming the differential equations for the heat propagation for the ribs and the heat balance for the fluid. The Laplace transform of these equations and their boundary conditions was then used to compute the heat transmission coefficients and to find an expression for the magnitude of the maximum heat transfer coefficient if the fluid temperature was constant over the whole channel section.

G.G.

N66-20254# Mechanical Technology, Inc., Latham, N. Y. AN EXPERIMENTAL STUDY OF FILM RUPTURE IN JOURNAL BEARINGS WITH LOW KINEMATIC VISCOSITY LUBRICANTS May 1964-Feb. 1965

F. K. Orcutt and C. H. T. Pan Mar. 1965 63 p refs (Contract AT(30-1)-3363)

(MTI-65TR13; NYO-3363-4) CFSTI: HC \$3.00/MF \$0.75 Studies of film rupture and cavitation in bearing film were extended to lubrication with fluids of low kinematic viscosity whose surface forces (surface tension and wettability) are different from those of hydrocarbon oils and closer to those of liquid metals. The study consisted of visual observations of the film rupture region, using high speed still and motion picture records. Local film boiling in the film rupture region was induced by de-aeration and reduction of ambient pressures. The visual studies and a parallel theoretical analysis indicated that the surface forces greatly affect the details of the film rupture region. Unstable film rupture regions as well as entrainment of bubbles and their carry-over to the high pressure regions of the lubricant film are much more prevalent when the lubricant has high surface tension and poor wettability. Since these conditions are at least a prerequisite to cavitation damage, it is particularly desirable in such cases to design bearings so as to avoid generation of large negative pressure gradients which can reduce the hydrodynamic pressures to the vapor pressure of the lubricant. Author (NSA)

N66-20259# Mechanical Technology, Inc., Latham, N. Y.
AN INVESTIGATION OF ROTOR-BEARING DYNAMICS
WITH FLEXIBLE ROTORS AND TURBULENT-FLOW JOURNAL BEARINGS. PART 1: ANALYSIS, DESIGN AND
FABRICATION OF THE TEST APPARATUS Jun. 1964Feb. 1965

F. K. Orcutt and E. B. Arwas Mar. 1965 76 p refs (Contract AT(30-1)-3363)

(MTI-65TR12; NYO-3363-3) CFSTI: HC \$3.00/MF \$0.75 A description is given of the preliminary part of an investigation aimed at demonstrating feasibility and generating technology and design procedures on high speed rotors operating in the flexible rotor range while supported in pivoted pad journal bearings lubricated with a low viscosity liquid and operating in the turbulent flow regime. It is intended to operate three rotor arrangements over a speed range that, in each case, spans the first three system critical speeds and extends to above twice the first system critical speed. The rotor arrangements

case, spans the first three system critical speeds and extends to above twice the first system critical speed. The rotor arrangements are: (a) central mass between two journal bearings, (b) central mass between the two journal bearings plus an overhung mass on one end, and (c) central mass between the journal bearings plus overhung masses on both ends. The analysis, design, and fabrication of the test apparatus is described. The calculated critical speed maps as well as the calculated vibration amplitudes and phase angles of the response of the rotor bearings systems to unbalanced loads are presented.

N66-20315# Combustion Engineering, Inc., Windsor, Conn. Nuclear Div.
INVESTIGATION OF CATALYTIC RECOMBINATION OF RADIOLYTIC OXYGEN AND HYDROGEN Quarterly Report No. 5, Oct.-Dec. 1964

C. Thomas Sawyer and F. M. Stern 10 Jan. 1965 19 p ref (Contract AT(40-1)-3151) (CEND-525, EURAEC-1330) CFSTI: HC \$1.00/MF \$0.50

The endurance testing of catalysts is accomplished by taking 835-900 psig power plant steam, superheating it to the desired temperature, adding metered hydrogen and oxygen, passing the steam over the catalysts and monitoring the effluent for the remaining free oxygen. For parallel arrangement tests, 60 lb/hr of steam was passed through each of the catalysts. Several conditions existed in the catalyst beds during the tests. Data are tabulated. Because the use of the catalytic recombiner was successful in inhibiting chloride stress corrosion, tests were made on the effects of oxygen on intergranular corrosion. For these tests, stressed and sensitized Type 304 stainless steel specimens were exposed to 800°F. 860 psig steam. Two weeks of testing produced no intergranular cracks or attack in specimens located either upstream or downstream of the catalyst bed. Fourteen days of operation at 800°F, 835 psig, and 775 lb/hr without any injected chlorides also produced no intergranular cracks or attack.

N86-20408# Societe d'Etudes, de Recherches et d'Application pour l'Industrie. Brussels (Belgium).

CORROSION STUDIES ON STEELS IN WATER AND STEAM AT HIGH TEMPERATURE Quarterly Progress Report No. 10, 1 Oct.-31 Dec. 1964

29 Jan. 1965 82 p. refs. Transl. into ENGLISH from French (EURATOM-089-62-7 RDB)

(EURAEC-1308) CFSTI: HC S3.00/MF \$0.75

The static corrosion tests in superheated steam were continued for stainless steel type AISI 304, for the purpose of finding the type of oxidation obtained after sanding the surface of the test pieces. Silica sanding by compressed air has the same behavior as all the cold-worked states studied up to the present. In addition, the first tests in steam at 500°C. with the addition of oxygen, have been carried out. Subject to confirmation, the addition of a quantity of oxygen ≤ 80 ppm does not appear to greatly modify the behavior in superheated steam and, in particular, the advantage gained by surface work-hardening. Finally, it will be noted that a very light electrolytic polishing of milled test pieces (1 to 1.5 μ solution), does not change their behavior in superheated steam at 500°C whilst there is an extremely harmful effect in respect to corrosion in water at 300°C. Detailed metallographic examinations effected on different samples of 13-10 steel treated mechanically and then oxidized in steam at 500°C show that the presence of oxide precipitates in the metallic cold-worked area, under the continuous layer of oxides, is very probable. The dynamic corrosion tests in water at 300°C, 150 kg/cm², and 10 m/sec, effected for varying periods up to 2,000 hours, have been completed These tests show that the corrosion rate of 18-10 steel becomes very low above 1.000 hr of testing. Tests of extremely long duration would be necessary to define its value more accurately, which is between 0 and 5 mg/dm²/month. It is confirmed that the "surface state" factor has no appreciable influence on the rate of 10 m/sec. For boiler steel, it is verified that the "metal in water" component constitutes the principal corrosion element, which progresses linearly at a rate of approximately 500 mg/dm²/month. The adherent oxide skin on the test pieces is invariably 1 μ , whatever the duration of the test. The classification of the surface states remains that obtained during earlier static tests, the differences being greatly reduced, however. It is probable that the residual differences observed at the rate of 10 m/sec, are only apparent and attributable to the incidence of the surface treatment on the true surface of the test pieces.

N66-20430# Mechanical Technology, Inc., Latham, N. Y. DESIGN AND DEVELOPMENT OF A GAS-BEARING BRAYTON CYCLE TURBOCOMPRESSOR

1 Mar. 1965 96 p

(Contract AT(30-1)-3237)

(NYO-3237-1; MTI-64TR7) CFSTI: HC \$3.00/MF \$0.50 A technology program has been underway since June, 1962

to demonstrate feasibility of, and to identify problem areas associated with, the application of gas-lubricated bearings to closed-system gas-turbine machinery. A Brayton cycle gas generator (turbocompressor) utilizing self-acting gas bearings has been designed, built, and is now under test. Selfsustained closed-loop operation of the turbocompressor, using its own cycle gas as the bearing lubricant, was achieved on November 21, 1964. Design point conditions of the turbocompressor are: turbine inlet temperature=1300°F. compressor inlet temperature = 100°F, compressor inlet pressure=15.5 psia, turbocompressor speed=24,000 rpm, cycle gas flow = -6.700 lb/hr nitrogen, and simulated power output =-30 kw. The aerodynamic, mechanical, and instrumentation aspects of the turbocompressor design and development program are described. A brief summary of the initial test-performance is also presented.

N66-20592# Franklin Inst., Philadelphia, Pa. Research Labs. EVALUATION OF FRICTION AND WEAR CHARACTERISTICS OF MATERIALS FOR GAS-LUBRICATED BEARINGS UNDER CONDITIONS OF START-STOP, AND WHIRL INDUCED RUBBING Final Technical Report

J. G. Hinkle and D. D. Fuller Sep. 1965 94 p refs (Contract Nonr-4569(00))

(F-B2232; AD-625376) CFSTI: HC \$3.00/MF \$0.75

A materials evaluation study was made as applied to general types of self-acting gas-lubricated bearings under start-stop cycling with equal emphasis on ability to sustain whirl-induced solid contact. The study entailed a systematic program of investigation and classification of the performance in a realistic bearing environment of likely combinations of materials, surface treatments, and coatings at four ambient conditions: air at room temperature and atmospheric pressure, air at 300°F and atmospheric pressure. Introgen at 300°F and atmospheric pressure Concurrent with the above mentioned tasks, bearing instability characteristics (in contrast to journal instability) were studied experimentally and correlated with theory.

Author (TAB)

N66-20801# Technisch Documentatie en Informatie Centrum Voor de Krijgsmacht, The Hague (Netherlands).

LITERATURE SURVEY IN CHEMICAL TECHNOLOGY
[LITERATUUROVERZICHT CHEMISCHE TECHNOLOGIE]

9 Feb. 1966 37 p refs In DUTCH, GERMAN, and ENGLISH

Its Vol. 1, No. CT-2

CFSTI: HC \$2.00/MF \$0.50

Abstracts and bibliographic notes are included on the topics of coorosion, surface treatment, plastics, lubricants, materials, water and air purification, fire fighting, packaging, batteries, chemicals, and technical news.

Transl. by J.O.

N66-21121# Naval Research Lab., Washington, D.,C. A NEW APPROACH TO LUBRICATING BALL BEARINGS Interim Report

V G Fitz Simmons, C. M. Murphy, J. B. Romans, and C. R. Singleterry 28 Dec 1965 25 p refs (NRL-6356; AD-627345) CFSTI HC \$1.00/MF \$0.50

A study was undertaken of the causes of unsatisfactory service and storage life of Navy synchros and servo motors. Silicone oils have been in wide use as the lubricant for the ball bearings of these devices because of the good lowtemperature characteristics of these materials. Examination of bearings from synchros which failed qualification tests gave evidence of fretting corrosion, broken bearing retainers. dry residues, and loss of lubricant. A white flocculent substance was found in new silicone-lubricated bearings. This substance could be reproduced in the laboratory at room temperature when rubbing ferrous metals were lubricated with silicones. The principal cause of early synchro and servo motor bearing failure is believed to be the creeping away of the small supply of silicone lubricant from the load-carrying area of the bearings under service and storage conditions. Studies proved that a lubricant based on bis(2-ethylhexyl)azelate satisfactorily lubricated synchro bearings at temperatures as low as -55°C. Creeping of lubricants composed either of the azelate ester or of silicones from ball bearings was prevented by the use of low-energy fluorochemical barrier films. The life of synchros containing bearings treated with the barrier film and lubricated with a bis(2-ethylhexy)azelate composition has increased from 300 hours to nearly 4,000 hours on standard qualification tests.

N66-21312# National Academy of Sciences—National Research Council, Washington, D. C. Materials Advisory Board.
METALWORKING PROCESSES AND EQUIPMENT Third
Progress Report by the Ad Hoc Committee

31 Oct 1965 32 p refs

than one hour

(MAB-206-M(3); AD-625049) CFSTI: HC \$2.00/MF \$0.50
An investigation was made of lubrication in metal working, application of deformation theory to practice, limitations of the extrusion processes, thin sheet rolling.

TAB

N66-21317# Army Weapons Command, Rock Island, III. Research and Engineering Div.

A NEW METHOD FOR THE ANALYSIS OF VOLATILE COR-ROSION INHIBITED PAPER

Peter Martin, Jr. Nov. 1965 25 p refs

(RIA-65-3105; AD-626584) CFSTI: HC \$1.00/MF \$0.50 The method utilized a commercial instrument, the Corrator, which measures instantaneous corrosion rates in a conducting media. Laboratory and field tests were conducted on new and used VCI paper to establish the reliability and accuracy of the method. The VCI papers were analyzed by adding a paper sample to the salt solution, stirring to remove the VCI, and noting the decrease in the corrosion rate. The decrease in the corrosion rate was converted to weight of loading (grams per square foot) by means of the standard curves previously prepared. The results obtained compared favorably with results obtained by other more tedious analytical methods. The method developed has the following advantages: utilizes a stable reagent, nontechnical personnel can conduct the test, the instrument is battery operated and the test time is less

N66-21324# Naval Research Lab., Washington, D. C.
PROTECTIVE COATINGS FOR MAGNESIUM ALLOYS.
PART 2: RESISTANCE OF FLAME-FUSED TEFLONCOATED MAGNESIUM AND ALUMINUM ALLOYS TO CORROSION BY 3% SODIUM CHLORIDE SOLUTIONS
D. L. Venezky, A. G. Sands, and E. B. Simmons, Jr. 15 Dec.
1965 35 p refs

(NRL-6353; AD-626213) CF\$TI: HC \$2.00/MF \$0.50

Teflon one-coat green enamel, which has been applied in thin films, 0.0002 to 0.0004 in thick, and which has been properly flame fused, will not be wet by the 3% sodium chloride solution during the test period; specimens having such Teflon coatings exhibit enhanced corrosion resistance. Three methods were evaluated as accelerated corrosion tests: an immersion test, a salt droplet test, and a spherical-joint contact test which could be modified to measure the relative resistance of the coated specimens. Magnesium alloy AZ31B-H₂₄, chrome pickled, was most resistant to corrosion when coated with flamefused Teflon one-coat green enamel; magnesium alloy specimens treated otherwise exhibited enhanced corrosion rates. Aluminum alloy 6061-T6, Teflon coated and flame fused, exhibited the greatest corrosion resistance when compared with the other aluminum alloys tested. No correlation was found between the various aluminum alloy tempers studied and the corrosion rate. In general, the corrosion tests indicate that the flame-fused Teflon coating afforded some protection against corrosion as compared to the uncoated specimens. TAB

N66-21419# Rock Island Arsenal Lab., III. Research and Engineering Div.

DEVELOPMENT OF AN IMPROVED RINSE SOLUTION FOR PHOSPHATE COATINGS THROUGH ADDITION OF ORGANIC ACIDS

William O. Crawford Jan. 1966 25 p refs (RIA-66-67; AD-628072) CFSTI: HC \$1.00/MF \$0.50

Work was undertaken in order to improve the salt spray resistance capabilities of phosphate coatings through innovations in the post treatment of the phosphate coatings and specifically through improvements in the supplementary rinse solutions. Various compounds, both organic and inorganic, were tested in solution, both by themselves and in combination with each other and with the existing chromic acid rinse solution, as possible rinses for phosphate coatings. It was found that four different 1-4 and 1-5 dicarboxylic acids, when used in the proper concentration with the existing 0.6 gm/liter (0.08 oz./gal) chromic acid rinse increased the salt spray life of a phosphate coating by at least one hour over the salt spray life of a coating treated in the standard 0.6 gm/1 chromic acid rinse. These four acids are: citric acid, glutaric acid, maleic acid and succinic acid. It was also found that one aromatic dicarboxylic acid tested, phthalic acid, had the same effect on the salt apray life as the above mentioned aliphatic acids. Author (TAB)

N66-21473# Rock Island Arsenal Lab., III. Research and Engineering Div.

FACTORS INFLUENCING CORROSION PROTECTION PROVIDED BY SOLID FILM LUBRICANT COATINGS Final Technical Report

George P. Murphy and Francis S. Meade Dec. 1965 25 p refs (RIA-65-3380; AD-627395) CFSTI: HC \$1.00/MF \$0.50

This investigation included the effect of (1) resin-pigment ratio, (2) coating thickness, and (3) wearing away of the film on the corrosion protection provided by solid lubricant coatings. Two series of solid film lubricants of various resin-pigment ratios were made using good and poor pigment dispersion techniques. These series of solid film lubricants

were evaluated at several levels of coating thickness. Corrosion protection was evaluated by means of 20% Salt Fog cabinet while wear life was determined by the Falex Wear Test method. A combination friction-salt fog test was used in determining the effect of wearing away of the film on corrosion resistance. It was found that a solid film lubricant can be manufactured, using good pigment dispersion techniques, which will provide 1000 hours of salt fog protection. This lubricant showed no loss in wear life. It was also found that, by using a 0.0010 in. coating made up of two layers, salt fog life can be increased by at least 6 fold without sacrificing wear life.

N66-21481# Ampex Corp., Redwood City, Calif. SELF-ACTING FOIL BEARINGS OF INFINITE WIDTH Edward J. Barlow Jan. 1966 25 p refs (Contract Nonr-3815(00) (X))

(RR-65-14; AD-628021) CFSTI: HC \$1.00/MF \$0.50

The minimum gap between a rigid cylinder and a moving foil (or between a rotating cylinder and a stationary foil) is determined as a function of the wrap angle as well as of the foil speed and tension, the cylinder radius, and the viscosity of Author (TAB) the lubricant.

N66-21940# Laboratoires du Centre d'Etude de l'Energie Nucleaire, Mol (Belgium).

IN PILE CORROSION OF NUCLEAR MATERIALS Final Report, Mar. 1962-31 Mar. 1964

[1964] 43 p

(Contract EURATOM-084-62-3 RDB)

(EUR-2674; EURAEC-1522) CFSTI: HC \$2.00/MF \$0.50

Corrosion experiments on aluminum, stainless steel, zirconium, titanium, niobium, zircaloy-2 and platinum were carried out in-pile and after pile irradiation, and the results were compared with those obtained out-of-pile under identical conditions. Two horizontal channels and one vertical channel of the BR1 reactor were used in which the thermal neutron flux was 1.38×1012 n/cm2/sec and the fast neutron flux was 1.4×10¹² n/cm²/sec (2.8 Mev). The gamma flux during operation of the reactor was 7.3×10⁵ R/hr for energies between 1 and 5 Mev. After shut-down the gamma flux was 2.6×10⁵ R/hr for energies from 0.4 to 2.8Mev. Electrochemical techniques were applied as testing method. It was confirmed that passivation of aluminum is improved by pile irradiation, as indicated by decreased anodic currents and increased oxygen overvoltages. Potential-current curves on 18/8 chrome nickel steels showed that the anodic currents increased with irradiation when the solution was nitrogen, oxygen, or argon saturated and in all acidities. In-pile potential-current measurements on a ferritic steel (CSX) showed large anodic currents and current peaks. These electric currents indicated a strong general corrosion. The post irradiation examination of zirconium, Zicaloy-2, titanium, and niobium showed that the thickness of the initial oxide films on those metals increased with increasing irradiation dose. Gamma rays had a similar, but smaller effect as pile irradiation. It was concluded that the effects of pile irradiation on the corrosion process are mainly solution effects and not so much metal effects. However, the mechanism of the reactions is not well (NSA) understood.

N66-22066# Sandia Corp., Albuquerque, N. Mex. WEAR TESTING OF PLATED COATINGS

C. W. Jennings Jul. 1965 32 p refs

(Contract AT(29-1)-789)

(SC-DR-65-269) CFSTI: HC \$2.00/MF \$0.50

An investigation was conducted to determine the wear characteristics of combinations of electroplated metals for use in rotary switches. From specimens electroplated under controlled conditions and tested for wear resistance with a wear tester which was similar in operation to a rotary switch, no apparent correlation was found between wear resistance and conditions of electroplating, other than thickness of the deposits. A thin film of soft gold (approximately 30 millionths of an inch thick) electroplated on a hard substrate of rhodium or electroless nickel or bright nickel was found to provide better wear characteristics than a rhodium-on-nickel system A few tests were also run on gold alloy boards and ion-plated gold on alumina substrates. The latter combination, which had excellent wear characteristics, shows considerable promise for high temperature or corrosive applications.

Author (NSA)

N66-22187# Metallgesellschaft, A. G., Frankfurt am Main (West Germany)

FURTHER DEVELOPMENT OF THE ZIRCONIUM ALLOY ZrNb3Sn1 WITH A VIEW TO ITS APPLICATION AS JACKETING MATERIAL IN WATER-COOLED NUCLEAR Quarterly Report No. 3, 1 Apr.-30 Jun. 1964 REACTORS 7 Jul. 1964 16 p refs Transl into ENGLISH from German (Contract EURATOM-019-63-11 TEED) (EURAEC-1115)

ZrNb3Sn1 alloys with small admixtures of chromium. iron, germanium, copper, antimony, tellurium and vanadium were examined in comparative corrosion experiments in superheated steam at 400° and 450°C. After 1000 hours in superheated steam at 450°C, the following alloys show a considerably lower corrosion than the ZrNb3Sn1 alloy: (1) ZrNb 2.78 Fe 0.1, (2) ZrNb 2.78 Sn 0.3 Fe 0.1, (3) ZrNb 2.78 Sn 1 Fe 0.1, (4) ZrNb 1.90 Sn 1 Fe 0.5, (5) ZrNb 2.34 Cu O.2, (6) ZrNb 2.34 Sn O.6 Cu O.2, (7) ZrNb 1.74 Cr O.5. (8) ZrNb 2.56 V 0.1-Sn 0.3, (9) ZrNb 2.04 Sb 0.2, (10) ZrNb 2.04 Sb 0.2-Sn 0.3. Large cast ingots were smelted from these alloys and prepared as test material for more thorough corrosion experiments and for mechanical examination. Creep test experiments at 450°C, and tensile tests at room temperature and 450°C were started. The stress in the creep tests amounted to 3 and 4.5 kg/mm² respectively. Author

N66-22205°# Oak Ridge National Lab., Tenn. SNAP-8 CORROSION PROGRAM Quarterly Progress Report, Period Ending 31 May 1965

H. W. Savage, E. L. Compere, R. E. Mac Pherson, W. R. Huntley, and A. Taboada Sep. 1965 20 p refs (NASA Order C-220-A; Contract W-7405-ENG-26) (NASA-CR-67272; ORNL-3859) CFSTI: HC \$1.00/MF \$0.50 CSCL 18N

Corrosion loops for the SNAP-8 system were studied to determine differences in corrosion and mass transfer rates resulting from continuous cold trapping, and to evaluate the effectiveness of cold trapping in reducing the hydrogen concentration in the NaK loop. Extraneous hydrogen was observed with both an on-stream mass spectrometer and gas sampling techniques, however the rate of extraneous hydrogen diminished with time. Deuterium was introduced into the loop to distinguish between extraneous hydrogen and that injected into the loop. Data indicated that the equilibrium pressure in the loop is approximately the same as the calculated hydrogen partial pressure for the SNAP-8 primary system in space. A study was made to determine the effects of decarburization on selected mechanical properties of Croloy 9M. Sheet tensile specimens were decarburized to a carbon content of approximately 0.002 to 0.01%, by exposure to N66-22327°# General Electric Co., Cincinnati, Ohio. Missile and Space Div.

ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM Quarterly Progress Report No. 3, Period Ending Jan. 15, 1966

R. W. Harrison, ed. 3 Feb. 1966 33 p refs (Contract NAS3-6474)

(NASA-CR-54911) CFSTI: HC \$2.00/MF \$0.50 CSCL 11F Work progress for a program to fabricate, operate for 10.000 hrs. and evaluate a potassium corrosion test loop constructed of T-111 (Ta-8W-2Hf) alloy is reported. The program status for procurement of materials; purification and handling of alkali metals; quality assurance; and loop design are given. All of the lithium purification system drawing revisions were completed. Assembly of the argon-vacuum manifold for the lithium purification system was begun, and a hot trap was fabricated. Minor design changes were made and specifications for the T-11 Corrosion Loop I are being written.

N66-22627# Douglas Aircraft Co., Inc., Santa Monica, Catif Missile and Space Systems Div.

IMPROVED ELECTRON FRACTOGRAPHIC TECHNIQUES, VOLUME II Second Quarterly Progress Report, 1 Oct.-31 Dec. 1965

B. V. Whiteson, V. Kerlins, and A. Phillips 14 Jan. 1966 38 p

(Contract AF 33(615)-3014)

(SM-49150; AD-626774) CFSTI: HC \$2.00/MF \$0.50 Improved techniques for use of the electron microscope in fractographic analysis are sought. The program is divided into 3 tasks: Determination of the direction of rapid-crack propagation in metal fractures; determination of the characteristics distinguishing stress corrosion from hydrogen embrittlement; and investigation of the correlation between fatigue striation spacing and stress environment. Most of the mechanical tests for the 3 tasks were completed. The most promising technique for correlation of fracture features with direction of crack propagation was replication of the fracture surface adjacent to the edge. Consistent orientation appears between tear dimple (a dimple open to the edge) and the fracture direction near the edge. Shear dimples which are closed to the fracture edge have inconsistent correlation to fracture direction. Dimples located near the center of the fracture are either equiaxed or randomly oriented so that they show no apparent correlation to fracture direction

N66-22684# Army Foreign Science and Technology Center, Washington, D. C.

CORROSION PROTECTION AND CLEANING OF TANKS AND CONTAINERS

I. V. Rozhkov Dec. 1965 122 p refs Transl. into ENGLISH of the book "Zaschita ot Korrozii i Zachistka Reservuarov i Tary" Moscow, 1963

(FSTC-381-T65-673: AD-627701) CFSTI: HC \$4.00/MF \$0.75

The book examines the new method of preservation of tanks and containers, based on the use of corrosion inhibitors, and its advantages over the old method of preservation of technical stock with oils and greases. A new technology is adduced for washing and preserving drums, tanks, and pipes, which increases 3-4 times the storage time of the preserved stock and decreases several times the cost of these operations. The book also examines briefly the paint-varnish coatings intended for protection of tanks and containers from corrosion. There is a detailed description of modern mechanized methods of cleaning tanks and tankers of residues of petroleum products, dirt, and rust, which decrease several times

the idle time of tanks and tankers during cleaning operations. An examination is made of the economy of the new cleaning methods in comparison with the old methods based on manual labor. This textbook is intended for officers and men, as well as for workers engaged in the operation of fuel tank yards and bases, and the tanker fleet. It will be useful also to the workers of plants manufacturing technical stock for the fuel supply service.

Author (TAB)

N66-22717# Mechanical Technology, Inc., Latham, N. Y. CONDITIONS FOR THE RUPTURE OF A LUBRICATING FILM

J. C. Coyne and H. G. Elrod, Jr. Dec. 1965 57 p refs (Contract Nonr-3731(00))

(MTI-65TR58; AD-629039) CFSTI: HC \$3.00/MF \$0.50

An analysis is made to determine the shape of the filmvapor interface when a thin liquid film separates from a stationary surface and is swept away on an opposing moving surface. Situations in which variations of this phenomenon occur include cavitation in bearings, the spreading of thin films, and the movement of bubbles in narrow spaces. The results of the analysis show that for a fixed attachment height the flow carried in the separating film decreases with decreasing $N = (3\mu U/T)^{1/3}$. Stagnation points occur on the interface (with upstream recirculation) at a film height of 3F/U where F is the flow per unit film width and U is the plate velocity. As N decreases, the flow decreases; and the stagnation point moves down the interface toward the moving plate. A second stagnation point always occurs at the point of film attachment. A second important result is that film separation occurs in a distance of about one plate clearance. Because this transition distance is very small, the analysis is applicable to situations in which the plate velocity is not normal to the film edge, e.g., striated cavitation in bearings. The upstream transition distance is shown to be a few plate clearances. TAB

N66-22759# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

PLASTICS Selected Articles

30 Sep. 1965 17 p refs Transl. into ENGLISH from Plasticheskiye Massy (Moscow), no. 9, 1964 p 18–20; 41–43 (FTD-TT-65-909/1+2+4; AD-622355) CFSTI: HC \$1.00/MF \$0.50

CONTENTS:

1. SELECTION AND APPLICATION OF SILICONE FLUIDS TO DECREASE THE ADHESION OF PLASTICS TO SOLID SURFACES L. M. Vinogradova, A. Ya. Korolev, P. V. Davydov, and R. V. Kuchenkova p 1-7 refs (See N66-22760 12-18)

2. THE EFFECT OF LOW TEMPERATURES ON THE ANTIFRICTION PROPERTIES OF POLYCAPROLACTAM Yu. A. Yevdokimov, A. F. Kotenko, and M. S. Popov p 8-13 refs (See N66-22761 12-18)

N66-22761 Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

THE EFFECT OF LOW TEMPERATURES ON THE ANTI-FRICTION PROPERTIES OF POLYCAPROLACTAM

Yu. A. Yevdokimov, A. F. Kotenko, and M. S. Popov *In its* Plastics 30 Sep. 1965 p 8-13 refs (See N66-22759 12-18) CFSTI: HC \$1.00/MF \$0.50

The antifriction properties of polyamides (polycaprolactams) at low temperatures were investigated. The wear and coefficient of friction of both capron and bronze on steel with and without lubrication, were determined: (1) at 20° to 25°C, without preliminary cooling of the samples, (2) at 20° to 25°C, with preliminary cooling of the samples at -50°C

for 10 and 20 days, and (3) at -50°C . Tests were conducted at a constant specific pressure of 30 kg/cm² and at different slip speeds of 0.25, 0.5, 0.99 and 1.95 m/sec; and at a constant slip speed and different specific pressures of 10, 30, 50, and 75 kg/cm². The tests were conducted on a lathe, and experimental details are described. Graphs are depicted, showing the dependence of both volume wear and friction coefficients for both capron and bronze during friction against a steel disc (from the lathe) at the varying slip speeds and pressures. The results are discussed.

N66-22765# Naval Research Lab., Washington, D. C. A SYSTEMATIC APPROACH TO THE BEHAVIOR OF METAL SOAP-OIL SYSTEMS

R. N. Bolster and R. C. Little 6 Jan. 1966 15 p refs (NRL-6361; AD-627856) CFSTI: HC \$1.00/MF \$0.50

Application of the solubility parameter concept to micellar and crystalline metal soap dispersions in low-polarity solvents can give some order to effects of the solvent in these systems. The ASTM dropping point temperature is shown to be a function of solubility parameter, and it is proposed that dropping points can be estimated when solubility parameters are known. A new method for estimating the solubility parameter of an oil, based on its interaction with soap, is also suggested.

Author (TAB)

N66-22779# Naval Research Lab., Washington, D. C.
ANALYSIS FOR ACYL COMPONENTS OF NEOPENTYL
POLYOL ESTER LUBRICANTS Interim Report

J. G. O'Rear and P. J. Sniegoski 5 Jan. 1966 10 p refs (NRL-6338; AD-628914) CFSTI: HC \$1.00/MF \$0.50

Methods of gas chromatography were applied to the analysis of acyl components in commercial neopentyl esters and in lubricant formulations derived from such esters. Analysis of the free acids produced by hydrolysis of the samples revealed that the ester lubricants were derived from normal acids ranging from C_5 to C_{10} ; isovaleric acid was present in a few samples. Average acid chain length varied from 5.1 to 7.5. From 20 to 83% of the acyl groups found in the lubricant formulations were from n-valeric acid. All results were in good agreement with previous results obtained by nuclear magnetic resonance spectroscopy. Author (TAB)

N66-23233# Oak Ridge National Lab., Tenn. Chemistry Div.
AN ALL-METAL CELL TECHNIQUE FOR THE MEASUREMENT OF THE EMF OF MOLTEM METAL-METAL HALIDE SOLUTIONS CORROSIVE TO CERAMICS

Harry R. Bronstein [1964] 3 p. Presented at the Electrochemical Soc. Meeting, San Francisco (Contract W-7405-ENG-26)

(ORNL-P-814; CONF-650502-3) CFSTI: HC \$1.00/MF \$0.50

The need for an all-metal cell technique for corrosive rare earth-rare earth halide solutions is pointed out. Such a technique, using Ta metal tubes with sintered porous Ta plugs welded in the sides, was applied to the Hg(s), HgSO₄ (saturated solution)/Ag(s), Ag₂SO₄ (saturated solution) cell. The potential was determined to be +41.5±0.1 mV at 25°C, in good agreement with previous values. The technique was also applied to the molten Cd-CdCl₂ system at 635°C. For 2 and 10 mole % Cd-CdCl₂ electrodes vs the saturated Cd-CdCl₂ electrode, the potentials were +111.0 and +33.0 mV, respectively, in good agreement with values (+113 and +35 mV) obtained in an all-glass apparatus.

N66-23371# Brookhaven National Lab., Upton, N. Y. HIGH-TEMPERATURE LIQUID-METAL TECHNOLOGY RE-VIEW Bimonthly Technical Progress Review, Volume 3, No. 4, Aug. 1965 Nov. 1965 52 p (Contract AT(30-2)-GEN-16) (BNL-953(PR-16)) CFSTI: HC \$3.00/MF \$0.50

Twenty-one reviews of current topical and progress reports on research and development programs concerned with liquid metals are presented. Subjects covered include: fluid dynamics, heat transfer, material development, corrosion, instrumentation, chemistry, chemical analysis, and component development.

N66-23394# Office of Naval Intelligence, Washington, D. C. Translation, Section.

PROTECTION OF STEEL AND LIGHT ALLOYS WITH POLYVINYL BUTYRAL PHOSPHATIZING PRIMERS VL-023 [ZASHCHITA STALI I LEGKIKH SPLAVOV POLIVINIL-BUTIRAL'NYMI FOSFATIRUYUSHCHIMI GRUNTAMI VL-023]

G. Ya. Terlo [1966] 8 p Transl. into ENGLISH from Lakokrasochnye Materialy i ikh Primeniye (Leningrad). no. 5, 1964 p 33-36

(ONI-TRANS-2060; TT-66-60554; AD-628185) CFSTI: HC \$1.00/MF \$0.50

It is shown that the newly developed phosphatized primers VL-023 based on medium-viscous polyvinylbutyral and modified phenol resins have high stability, water and atmosphere resistance, excellent covering capability and dispersion. It is also shown that the primers VL-023 can be used for protection of metal against atmospheric corrosion during the period of inter-operational preservation (replacing phosphatized salt 'mazhef' and oiling). Author (TAB)

N66-23581# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

EFFECT OF OIL OXIDATION ON THE PROCESS OF RUN-NING-IN A RING-SOCKET PAIR IN AN INTERNAL COM-BUSTION ENGINE

S. V. Ventsel', M. M. Chupis, and V. O. Lelyuk 26 Nov. 1965 11 p. refs. Transl. into ENGLISH from Dopovidi Akad. Nauk Ukr. RSR. (Kiev), no. 4, 1964 p. 499–501

(FDT-TT-65-1039/1+2+4; AD-624910) CFSTI: HC \$1.00/ MF \$0.50

A typical scheme of the running-in process was obtained on an experimental set-up simulating the work of a ring in a socket. It was found that stabilization of the temperature and the work of friction does not characterize the end of the running-in process, but the formation in the oil of oxidation processes and oxidative polymerization. The phenomenon of apparent' repeated running-in was observed on replacing the worked oil by fresh oil. The results farnish grounds for revising plant conditions of running-in.

Author (TAB)

N66-23647*# Southern Research Inst.. Birmingham, Ala. EFFECTS OF COMMERCIALLY AVAILABLE PROTECTIVE COATINGS ON STRESS-CORROSION PROPERTIES OF SUPERSONIC-TRANSPORT SKIN MATERIALS Final Summary Report, 1 Jun. 1964-31 Jan. 1966

J. O. Honeycutt, Jr. and A. Clyde Willhelm 22 Mar. 1966 143 p. refs

(Contract NASr-117)

(NASA-CR-74414) CFSTI: HC \$4.00/MF \$1.00 CSCL 11F

The experiments consisted of the exposure of self-stressed specimens, bare and coated, scratch damaged and undamaged, to environments of hot salt at 550°F and humid salt at 95°F for durations up to 7,000 hr. The substrates investigated were titanium alloy Ti-8-1-1 (titanium with 8% aluminum, 1% molybdenum, 1% vanadium), AM 350 SCT (a high-strength stainless steel in the sub-zero-cooled and

• tempered condition), and Rene 41 (a nickel-base superalloy in the heat-treated and aged condition). The coatings investigated on all three substrates were designated as aluminum-modified silicone, catalytically cured silicone, and zinc in silicate vehicle. The effects of the exposures were evaluated by means of visual examination, bend-ductility tests, and metallographic examination. In addition to the experimental work, survey was made of five airframe manufacturers to determine their latest opinions about SST coatings. The experimental results were interpreted with respect to the findings from this survey. A preliminary evaluation was made on five additional coatings that had not been included in this or the previous investigations.

N66-23655°# Aluminum Co. of America, New Kensington, Pa. Alcoa Research Labs.

INVESTIGATION OF THE STRESS-CORROSION CRACK-ING OF HIGH STRENGTH ALUMINUM ALLOYS Summary Report, May 6, 1963-Jul. 6, 1965

B. W. Lifka, W. Kinq, M. B. Shumaker, R. A. Kelsey, and D. G. Vandenburgh. 1 Aug. 1965. 181 p. refs. (Contract. NAS8-5340).

(NASA-CR-74443) CFSTI: HC \$5.00/MF \$1.25 CSCL 11F Stress corrosion cracking of several high-strength aluminum alloys was tested in various environments, after protective surface treatments and coatings, and after tempering and welding. Parent Al-Zn-Mg alloys were little affected; but in the as-welded condition, all investigated Alalloys suffered severe localized corrosions of the heat affected zones. Post-weld aging eliminated this effect greatly. Good stress-corrosion cracking resistance was obtained for all alloys when they were welded and stressed either in bending, or in tensions as high as 75% of their weldment strength. Post-weld aging decreased weld-strength to corrosion cracking markedly. Plate to forging combinations of alloys with different grain orientations showed the same resistance to stress-corrosion cracking as the plate. Direct tension loading caused more rapid failure of susceptible materials than bending on constant deformation fixtures; but severely corroded specimens showed long time failure modes. G.G.

N66-23670°# SKF Industries. Inc., King of Prussia, Pa. Research Lab.

BEARING-LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND HIGH TEMPERATURES Final Report, 1 Sep. 1962–31 Aug. 1965

C. J. Wachendorfer and L. B. Sibley [1965] 128 p refs (Contract NASw-492)

(NASA-CR-74097; AL65T068) CFSTI: HC \$4.00/MF \$1.00 CSCL 131

This study was performed to determine operability, critical mode of failure and life of angular-contact ball bearings of advanced design at high temperatures in excess of 500°F using the best available fluid lubricants in a recirculating system. Ball bearings made of vacuum-melted tool steels having high hot hardness were tested with a number of high-temperature fluid lubricants representing hydrocarbons, esters, and polyphenyl ethers. The results indicate that satisfactory operation is possible at bearing temperatures at least up to 600°F. Ten bearings made of M-1 tool steel with silver-plated cages and tested with a lubricant containing a synthetic paraffinic hydrocarbon with an anti-wear additive, ran at 600°F and 42,800 rpm without any sign of failure or lubrication distress to lives in excess of twice the computed L₁₀ life. A broad correlation was obtained between the occurrence of surface distress and low lubricant viscosity at the bearing operating temperature. This is believed to reflect an insufficient elastohydrodynamic lubricant film condition in the bearing. Insufficient boundary lubricant characteristics of some fluids were found to produce smearing (galling) type failures early in the tests.

Author

N66-23825°# National Academy of Sciences—National Research Council, Washington, D. C. Div. of Chemistry and Chemical Technology.

[INFORMATION SERVICES RELATING TO THE PREVEN-TION OR LIMITATION OF ENVIRONMENT-ASSOCIATED DEGRADATION OF MATERIALS AND EQUIPMENT] Final Report

Jan. 1966 14 p (Contract NASr-182)

(NASA-CR-71680) CFSTI: HC \$1.00/MF \$0.50 CSCL 111 Information services relating to the prevention or limitation of environment-associated degradation of materials and equipment were provided to the National Aeronautics and Space Administration. The contract provided partial support for the Prevention of Deterioration Center, an information center in this field of environmental and materials sciences, established and continued with primary support under a contract funded by the Army, Navy, and Air Force, The services provided to NASA included consultations on specific deterioration problems, abstracts of scientific and technical documents, bibliographies, document loans from the Prevention of Deterioration Center library and a stateof-the-art monograph related to the meteoroid environment. Another product of contract is a glossary of terms used in materials degradation studies in the hyperthermal environment. Author

N86-24253# Joint Publications Research Service, Washington, D.C.

RESISTANCE OF EP375 AND EP495 ALLOYS TO DEFORMATION

B. A. Kardonov, A. F. Mel'nikov, A. V. Pravdin, and A. S. Tikhonov *In its* Production of Bimetals. 30 Mar. 1966 p 79–84 refs (See N66-24246 13-17) CFSTI: \$6.00

High strength and anti-corrosion steel alloys from the nickel-chromium-molybdenum, and from the nickel-molybdenum base were evaluated for their applicability as clads in the production of bimetallic sheets by the pack method. Nickel-molybdenum based alloys displayed a 5 to 7 per cent greater resistance to hot deformation temperatures than the nickel-chromium-molybdenum based group. Temperatures below 1000° C led to structural transformation of the alloys. Rolling in the 900° to 1200° C temperature range increased deformation resistance of the alloys by 25 to 30 percent.

N66-24265# Joint Publications Research Service, Washington, D. C.

NEW STANDARD FOR HOT ROLLED THICK TWO-LAYERED CORROSION RESISTANT STEEL

T. K. Aleksandrova, I. A. Balakina, and A. M. Kanunnikova In its Production of Bimetals 30 Mar. 1966 p 197–205 refs (See N66-24246 13-17) CFSTI: \$6.00

Bimetallic sheet specimens, having a steel base layer and steel cladding, were manufactured by the pack-cladding method according to standard procedures for hot rolling. Safe layer criteria and corrosion stability were utilized to establish minimum thickness specifications for the cladding layer. Base thickness and clad layer ratios determined overall strength properties; plasticity of the base layer was checked by the flexure method with the base layer outward. It was concluded that resistance to shear did not depend on the brand of steel of the base layer, and that shear resistance along the border of the layer connections was somewhat higher than

shear resistance along the base metal. A list with the obtained standard specifications for hot-rolled thick two-layered corrosion resistant bimetal steel sheets was tabulated.

G.G.

N66-24268# General Electric Co., San Jose, Calif. Atomic Products Div.

GENERAL ELECTRIC SODIUM MASS TRANSFER PRO-GRAM

R. S. Young and R. W. Lockhart In AEC Proc. of Sodium Components Develop. Program Inform. Meeting, Chicago, Ill., Jun. 16-17, 1965 [1965] p 18-35 refs (See N66-24266 13-22) CFSTI: HC \$3.00/MF \$1.50

This report describes the status of a study being conducted on mass transfer and corrosion of materials in flowing sodium. The study is involved in evaluating the use of candidate materials in sodium cooled reactors in non-nuclear loop tests, and in developing a means of predicting corrosion or mass transfer rates in full sized systems. Included are discussions of the mass transfer results, localized corrosion effects, and corrosion mock-ups for large sodium systems.

N66-24419# General Electric Co., San Jose, Calif.
SPECIFIC ZIRCONIUM ALLOY DESIGN PROGRAM Summary Report

H. H. Klepfer Brussels, EURATOM, 1966 99 p refs

(Contract AT (04-3)-189)

(EURATOM-2683.e; EURAEC-1193) CFSTI: HC \$3.00/MF \$0.75

The results of selected basic experiments gave strong indications that the corrosion and corrosion hydriding of zirconium alloys is dependent on the chemical, mechanical, and electrical properties of the oxide film. The composition of corrosion films was found to be directly proportional to the alloy content of the substrate even in complex alloys. Excellent agreement was found between the activation energy for oxygen diffusion in ZrO_{1,994} and the activation energies for parabolic or cubic oxidation of zirconium in both air and water. Yttrium decreased the plasticity of zirconium oxide while chromium and iron increased plasticity, and thus accounted for the early spalling of oxide observed for Zr-Y alloys and the good adherence of films on Zr-Cr and Zr-Fe alloys. Corrosion hydriding may be controlled by whether electronic, or protonic, charge transport is promoted by the addition of a given alloying element to the zirconium oxide film. Corrosion rates, hydriding rates, and mechanical properties of 31 alloys containing selected additions of Nb. Cr. Fe, or Cu were measured at 300, 400, and 500°C. Author

N66-24442* Aerojet-General Corp., Azusa, Calif. Von Karman Center.

SNAP-8 MATERIALS REPORT Semiannual Report, 1 Jan.-

H. Derow and B. E. Farwell Jul. 1965-89 p. refs. /ts Rept.-3038

(Contract NAS5-417)

(NASA-CR-54719) CFSTI: HC \$3.00/MF \$0.75 CSCL 18N Investigations were conducted in support of the design, fabrication, and development testing of various SNAP-8 components. Investigation of a mercury forced-convection corrosion loop was continued with the aim of evaluating the corrosion resistance of 9Cr-1Mo alloy steel (the reference mercury-containment material) for 10.000-hour service. Rubidium is being evaluated as an additive to the mercury to promote boiler conditioning. Data were developed in a continued program to evaluate the effect of the SNAP-8 operating environment on 9Cr-1Mo steel.

N66-24451# Atomic Energy of Canada, Ltd., Chalk River, (Ontario)

AECL EXPERIMENTS ON THE CORROSION OF ZIRCONIUM ALLOYS UNDER IRRADIATION

B. Cox May 1965 82 p refs

(AECL-2257) CFSTI: HC \$1.50/MF \$0.75

The corrosion of zirconium alloys under irradiation has been examined at AECL by exposing corrosion specimens in the water-cooled loops in NRX and NRU reactors. The results of these experiments are reported here and are compared with evidence obtained from the examination of fuel cladding in the same experiments where this is available. The data on Zircaloy-2, the alloy for which most information is available, are compared with the results of experiments elsewhere, and it is concluded that the observations of oxidation and oxygen absorption are influenced considerably by conditions in the specimen's environment. Thus, loxidizing conditions in the loop coolant have often been accompanied by increased weight gains and reduced hydrogen uptake. Under reducing conditions the observed oxide film thickness is not mal.

N66-24474# National Academy of Sciences—National Research Council, Washington, D. C.

FINAL REPORT OF THE PANEL ON LUBRICATION TO THE AD HOC COMMITTEE ON METALWORKING PROCESSES AND EQUIPMENT

Sep. 1965 41 p refs

(Contract ARPA SD-118)

(MAB-220-M)

The state-of-the-art of knowledge in friction and lubrication as they relate to deformation processes and equipment utilization in metal working, was surveyed. Proper selection of a lubricant has to consider individual requirements of low friction and low wear characteristics for specific forming conditions: lubricants also control the temperature of a work piece or die in the deformation process. Equations, based on the law of adhesion, were used to determine the frictional force developing under loading conditions at the area of contact. Friction, size, and number of wear particles were influenced by the similarity as well as the hardness of the surface contact of dry, unlubricated metals and quantitative predictions on friction or wear of unlubricated metals under different sliding conditions were not obtained. Testing of unlubricated, contacting metal surfaces for friction, wear, metal transfer, and surface finish was found to be the best method to assure compatibility and proper lubrication.

N66-24550°# Tyco Labs., Inc., Waltham, Mass.

DEVELOPMENT OF CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE $\rm H_2/O_2$ FUEL CELLS WITH AN ALKALINE ELECTROLYTE Second Quarterly Report, Oct. 1-Dec. 31, 1965

A. C. Makrides, J. Giner, and R. J. Jasinski [1965] 124 p

(Contract NASw-1233)

(NASA-CR-70930) CFSTI: HC \$4.00/MF \$1.00 CSCL 07D

During this period 58 materials and 10 elements were tested for corrosion resistance and activity as oxygen electrodes in 2 N KOH at 75°C. The technique was used to measure the current potential curve with rotated compact electrodes immersed in KOH solutions saturated with nitrogen or oxygen. Of the tested elements. Pd shows good O₂ activity which is only slightly inferior to Pt. Graphite shows good intrinsic activity and iron with O₂ reduction at E=600 mv is more active than nickel. The experiments with intermetallic compounds show that under conditions of O₂ reduction, the fundamental factor determining the activity is the atomic factor. Compounds of Pt and Au show an i(E) curve for O₂ reduction

similar to those of pure Pt and Au. In some cases such as $TaPt_2$, the activity of the intermetallic compound is very close to the activity of pure Pt. The solid solution Co_2Ni shows a behavior which confirms the catalytic activity of Co^3+ containing oxide and the poor activity of the bivalent oxide. An iron carbide shows better activity for O_2 reduction than Fe. Metallographic characterization of 18 samples of prepared intermetallic compounds shows that where a simple phase was expected, a predominant phase with little or no second phase was obtained.

N66-24565# Douglas Aircraft Co., Inc., Santa Monica, Calif. Missile and Space Systems Div.

TITANIUM CORROSION IN AQUEOUS SOLUTIONS

Sam M. Weiman Feb. 1965 40 p refs Submitted for Publication Its Eng. Paper No. 1799

Experimental results on the corrosion behavior of titanium in aqueous solutions are reported. A corrosion mechanism is based on the capability of achieving and maintaining a critical tetravalent titanium ion equilibrium concentration, $\{{\rm Ti}^{+4}\}_{\rm c}$ The corrosion film appears to piay a part in this model. It is considered that the film may occur in two forms, one of which is soluble and the other is not. The soluble form is thought to be in equilibrium with $\{{\rm Ti}^{+4}\}_{\rm c}$ and thus contribute to the apparent corrosion resistance of the system as well as to explain some of the experimental results. A discussion of the implications, including practical applications of this mechanism, is presented.

N66-24604*# Mechanical Technology, Inc., Latham, N.Y. LUBRICANT LIFE TESTS ON BALL BEARINGS FOR SPACE APPLICATIONS Final Report

S. F. Murray and P. Lewis 28 Oct. 1965 85 p refs (Contract NAS5-9020)

(NASA-CR-71695; MTI-65-TR-55) CFSTI: HC \$3.00/MF \$0.75 CSCL 131

An experimental program has been conducted to compare the effective lives of ball bearings operating in vacuum with various types of MoS2 solid films, and with a special high vacuum oil, as lubricants. The test bearings were size 205 bearings running at 30 rpm under a ten-pound radial load. Two particular combinations were also evaluated in oscillating motion tests. Torque was used as the criterion for failure. The results showed that most of the solid film lubricated bearings were effective for the first several hundred hours, then gave high and erratic torque values as the result of debris being formed by wear of the lubricant film. A sodium silicate bonded solid lubricant film, which contained MoS2 and graphite, was found to be particularly promising in both rotation and oscillation. One particularly significant result was the finding that the oil-lubricated bearings showed a sudden, large increase in torque after running effectively for about 1400 hours in vacuum. This behavior has often been predicted but has apparently never been observed experimentally, at Author least for rolling contact bearings.

N66-24697°# General Electric Co., Cincinnati, Ohio. Space Power and Propulsion Section.

POTASSIUM CORROSION TEST LOOP DEVELOPMENT Quarterly Progress Report No. 9, 15 Jul.-15 Oct. 1965 E. E. Hoffman, ed. [1965] 48 p refs (Contract NAS3-2547)

(NASA-CR-54912) CFSTI: HC \$2.00/MF \$0.50 CSCL 20M

The boiling and condensing operation of the prototype corrosion test loop reached test conditions and the loop was run for 1785 hours of stable operation. The running operation procedures are outlined, and the temperature and pressure data are presented in graph form. The stability in the potassium cir-

cuit was attributed mainly to the pressure drop across the metering valve at the preheater inlet and to the wire wound plug section located in the first 12 inches of the boiler. Argon and nitrogen/carbon monoxide were the principal gasses in the chamber, and at the end of the test period were responsible for approximately 83% of the pressure. Argon instabilities in the getter-ion pump were reported. The test chamber environmental monitoring, boiler performance, and calibration of sodium and potassium flowmeters are discussed. Analysis of loop performance indicated that the variations between actual test and design test conditions were minor. No trends toward component degradation were detected.

N.E.N.

N66-24725# Battelle Memorial Inst., Columbus, Ohio. A STUDY OF SLEEVE BEARINGS IN AIRCRAFT SUPPORT STRUCTURES Summary Report

W. A. Glaeser, M. F. Amateau, and C. M. Allen. 1 Feb. 1966 47 p.

(Contract NOw-62-0432-c)

(AD-028937) CFST! HC \$2 00/MF \$0 50

A research program was conducted to develop design information and data for plain airframe bearings. The type of information developed in this program included bearing life, load-carrying ability, frictional characteristics, and bearing wear rates. Emphasis was placed on grease-lubricated, high-strength steel bearings and self-lubricating Telfon-fabric bearings. Prior to the experimental work, a survey was made of airframe manufacturers to determine the present and future needs for plain-bearing design information. Based on the results of the survey, bearing materials were selected and their operating characteristics measured in an airframe-bearing-evaluation apparatus.

N66-24732# Wisconsin Univ., Madison.

MECHANISM OF STRESS CORROSION CRACKING IN FACE-CENTERED-CUBIC METALS Final Technical Report R. A. Dodd [1965] 5 p refs

(Grant AF-AFOSR-221-63)

(AFOSR-65-2702; AD-628085) CFSTI: HC \$1.00/MF \$0.50 The work was designed firstly to examine the possi-

bility of the existence of a universal mechanism of transgranular stress corrosion cracking, originally postulated by Robertson and Tetelman, and later, when such a mechanism was substantially disproved, to examine possible cracking mechanisms in various alloy systems of interest. The experimental techniques employed included the determination of times to complete fracture under stress corrosion conditions, potentiostatic studies of polarization phenomena, etc., and electron microscope investigations of dislocation configurations and estimates of the related stacking fault energies.

N66-24781# IIT Research Inst., Chicago, III. Technology Center.

DEVELOPMENT OF A RUST-REMOVING CORROSION PRE-VENTATIVE Final Report, May 21, 1964-May 20, 1965 David B. Boies Aug. 1965 44 p refs

(Contract DA-11-070-AMC-481(W))

(IITRI-C6032-17; AD-626186) CFSTI: HC \$2.00/MF \$0.50

Removable corrosion preventatives were developed that, when applied to rusted steel or iron surfaces, remove or adsorb the rust during storage and prevent further deterioration. It was necessary to use semipolar wax-base materials in order to provide sufficient rust-removing activity. Fatty amides were used as the wax base in all of the formulations. The rust-removing activity was supplied by materials of an acidic nature, p-toluene sulfonic acid or salicyclic acid, or by chelating agents

of the beta-diketone class. The diamide of oleic acid and diethylenetriamine was added as a corrosion inhibitor. The formulations are effective in removing light rust films, and they provide protection against rerusting under inside storage Author (TAB) conditions.

N66-24820# Monsanto Research Corp., Everett, Mass. EFFECTS OF SELECTED STRAINS OF MICROORGANISMS ON THE COMPOSITION OF FUELS AND LUBRICANTS Final Report, 1 Sep. 1962-27 Nov. 1964

Glenn R. Wilson, John O. Smith, H. F. Martin, Dolph Klein. E. C. Harrington et al. Wright-Patterson AFB, Ohio, Res. and Technol. Div., Jan. 1966 154 p. refs (Contract AF 33(657)-9814)

(RTO-TDR-63-4117, Pt. ii; MRB-2023F, AD-628673)

A select number of aerobic bacterial and fungal cultures (isolates from contaminated fuel tank bottoms) were screened against a variety of jet fuels (JP-4 and JP-6) a lubricant, a liquid rocket propellant, and a spectrum of pure nydrocarbons (naphthenes and normal and branched alkanes) for growthsupporting properties. Variable growth support on all jet fuel samples was noted with the exception of one which was found to contain no detectable normal alkanes. Removal of normal alkanes from the other jet fuel samples significantly reduced their growth-supporting properties. The normal alkanes supported the most growth, the 2-methyl and 2.2-dimethyl alkanes lesser growth, and the naphthenes no growth support. After the prolonged incubation of several of the bacterial cultures on the initially resistant jet fuel sample, several cultures adapted to it. A variety of jet fuel additives were also screened against bacterial cultures and certain types were found to in-Author (TAB) hibit growth.

N66-25004*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPATIBILITY OF COLUMBIUM AND TANTALUM TUBING ALLOYS WITH REFLUXING POTASSIUM

Coulson M. Scheuermann and Charles A. Barrett Washington. NASA, May 1966 45 p refs

(NASA-TN-D-3429) CFSTI: HC \$2.00/MF \$0.50 CSCL 11F The corrosion resistance of potential columbium and tantalum tubing alloys to refluxing potassium was tested at temperatures bracketing the maximum expected use temperature of the advanced turboelectric space power systems, 1800° to 2400°F. Tests were conducted with reflux capsules. The capsule wall served as the test specimen. The initial oxygen content of the potassium was a maximum of 20 parts per million as determined by mercury amalgamation and vacuum distillation techniques. The oxygen content of the materials was generally 100 to 200 parts per million. The tests were performed in a vacuum of 10-7 to 10-8 torr for times up to 4000 hours. The materials studied were the columbium alloys B-33. SCb-291. Cb-1Zr. D-14. B-66. FS-85. AS-55. D-43. C-129, and Cb-752; and the tantalum alloys Ta-10W, T-111, and T-222. The gettered alloys containing the reactive elements zirconium or hafnium were found to be more resistant to corrosive attack than the ungettered alloys under the test conditions. A mechanism is proposed, based on experimental results, that describes the oxygen accelerated corrosive attack of columbium and columbium alloys by potassium under refluxing conditions, involving the formation and solution of complex oxides. This mechanism may be expected to be applicable, in principle, to the other refractory metal-alkali metal Author systems as well.

N66-25094# Bettis Atomic Power Lab., Pittsburgh, Pa. DEVELOPMENT OF ZIRCONIUM-BASE ALLOYS W. F. Bourgeois and J. N. Chirigos Nov. 1965 44 p refs (Contract AT(11-1)-GEN-14)

(WAPD-TM-546) CFSTI: HC \$2.00/MF \$0.50

An experimental program was conducted in order to develop an alloy having corrosion resistance superior to Zircaloy-2 in steam at temperatures greater than 750°F but with hydrogen pickup and corrosion resistance in water at least equal to that of Zircaloy-2. Corrosion results, hydrogen absorption, hardness, and some tensile data are presented for six zirconium-base alloys containing from 0 to 1 wt% tin, iron, and chromium after 311 days in 680°F water, 259 days in 850°F steam (1500 psi), 176 days in 950°F steam (1500 psi), and 30 days in 1150°F steam (15 psi). It was concluded that four alloys are particularly promising for high-temperature steam applications and, of these, a ternary alloy of sponge zirconium with 0.5 wt% iron and 1.0 wt% chromium appears to have the best combination of overall properties.

Author (NSA)

N66-25284# Joint Publications Research Service, Washington, D.C.

ANTICORROSIVE PLASTIC COATINGS

V. G. Samsonov, V. G. Kharakhash et al. 11 May 1966 71 p. refs Transl. into ENGLISH of the book "Protivokorrozionnyve Plastmassovyye Pokrytiya" Kiev, "Tekhnika" Publishing House, 1965 p 4-91 (JPRS-35452; TT-66-31888) CFSTI: \$3.00

The use of corrosion resistant polymeric materials for protective coatings on the inner surfaces of ferrous and stainless steel containers, pipes, and valves is discussed. Technological methods and pertinent data are presented for the economic and efficient use of these materials; and the results of a mechanical, chemical, and physical properties investigation are D.T. given.

N66-25289# General Dynamics Corp., Chicago, III. Liquid Carbonic Div.

DESCALING AND DECONTAMINATION STUDIES T. F. D'Muhala 8 Jun. 1965 199 p refs (SD-22)

A proprietary neutral descaling formulation designated RD16 was used in comparison with existing descaling agents for all tests conducted on presoiled laboratory test coupons. Formula modifications extended the utility and effectiveness of RD16 without grossly affecting desirable characteristics of neutrality, low metal loss and stability. Decontamination experiments were performed on metal coupons which had been precontaminated. RD16 surpassed the requirements for a radioactive soil decontaminant. Tests were conducted on actual reactor system components. Comparative tests were performed simultaneously with existing, approved, methods of decontamination. When used in a multi-step process, RD16 appears to be as effective a decontaminant as other processes tested. Further evaluation established the safety associated with RD16 for materials of construction and personnel. Formula modification resulted in a family of neutral decontaminating solutions, each for a specific purpose. Tests conducted in actual systems corroborated test data as to effectiveness, safety and economics.

N66-25768# Boeing Scientific Research Labs., Seattle, Wash. Mathematics Research Lab.

A STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COMPONENTS AND SYSTEMS

Z. W. Birnbaum (Washington Univ.), J. D. Esary, and A. W. Marshall Sep. 1965 26 p refs. Also issued as TR-46 by Washington Univ. Its Math. Note No. 420 (Contract Non-477(38)) (DI-82-0460)

It is well known that the future life distribution of a device remains the same regardless of the time it was previously in use, if and only if the life distribution of that device is exponential. For this reason exponential life distributions are accepted as characterizing the phenomenon of no-wear. The problem of finding a class of life distributions which would similarly reflect the phenomenon of wear-out has been under investigation for some time. In answer to this problem we introduce in this paper the class of IHRA (Increasing Hazard Rate Average) distributions and show that it has, among others, the following optimal properties: (i) it contains the limiting case of no-wear, i.e., all exponential distributions, (ii) whenever components which have IHRA life distributions are put together into a coherent system, this system again has an IHRA life distribution, i.e., a system wears out when its components wear out, and (iii) the IHRA class is the smallest class with properties (i) and (ii). Author

N66-25815# Netherlands Research Centre TNO for Shipbuilding and Navigation, Amsterdam. Engineering Dept. COMPARATIVE SHIPBOARD MEASUREMENTS OF SURFACE TEMPERATURES AND SURFACE CORROSION IN AIR COOLED AND WATER COOLED TURBINE OUTLET CASINGS OF EXHAUST DRIVEN MARINE DIESEL ENGINE TURBOCHARGERS [VERGELIJKENDE METINGEN VAN CORROSIE EN WANDTEMPERATUREN IN LUCHT- EN WATERGEKOELDE TURBINEUITLAATHUIZEN VAN DRUKVULGROEPEN VOOR SCHEEPSMOTOREN]

R. W. Stuart Mitchell and V. A. Ogale Dec. 1965 14 p ref /ts Rept.-77M

(TDCK-44575) CFSTI: HC \$1.00/MF \$0.50

This report deals with comparative surface temperature and surface corrosion measurements on the turbine outlet casings of an air cooled and of a water cooled exhaust driven turbocharger of a marine diesel engine using residual fuel. Results indicate that, for the turbocharger under investigation, air cooling is to be preferred to water cooling. Author

N66-25844# General Electric Co., Schenectady, N. Y. Materials and Processes Lab.

DEVELOPMENT OF HOT-CORROSION RESISTANT ALLOYS FOR MARINE GAS TURBINE SERVICE Final Summary Report

Paul A. Bergman, Chester T. Sims, and Adrian M. Beltran 21 Jan. 1966 146 p. refs

(Contract N600(61533)63218)

(MEL-131-66; AD-629786) CFSTI: HC \$4.00/MF \$1.00

A program was initiated to develop improved hot-corrosion-resistant alloys for Naval gas turbines. Two series of nickel-base alloys and one series of cobalt-base alloys plus appropriate commercial alloys were studied for possible service as blades and vanes, respectively. Hot-corrosion testing was conducted in two simulated gas turbine burner rigs, one designed particularly for this program. Test variables of temperature, air/fuel ratio, specimen configuration, and atomization effects have been studied using combusted diesel fuel and fixed amounts of sulfur and with salt injected. Proper conditions to achieve reproducible and discriminating hot-corrosion attack have been established. Relative behavior of both experimental and commercial alloys have been determined. The effects of individual element additions appear to have been identified in certain instances; in other cases, compositions were too complex for such separation. Thus, the effects of several elements in nickel-base alloys appear clear, but longer-time testing is recommended for cobalt-alloys Mechanical properties and microstructures of alloys designed for this program are studied and reported. Author (TAB)

N66-25851# Office of Naval Intelligence, Washington, D. C. Translation Section.

PLASTICS-BASED ANTICORROSIVE COATINGS. SYNTHETIC COATINGS FOR SHIPS' HULLS [SINTETICHES-KIYE MATERIALY V SUDOSTROYENIE I SUDOREMONTE] [1966] 7 p Transl. into ENGLISH from Morsk. Transp. (Moscow), 1962 p 150–158

(ONI-Transl.-2108; AD-629731) CFSTI. HC \$1.10/MF \$0.50

Anticorrosive synthetic paints for ship hulls are discussed. Painting procedures for ships with different sailing requirements are listed. The composition of various primers, and the application of ethanol paint are mentioned. Anticorrosive coverings of vinyl paints and paints based on epoxy resins are described, including the particular use and the number of layers recommended. It is pointed out that paints based on synthetic resins are most stable for ships sailing in tropical and subtropical waters. Paints are indicated for use as protection against molds, microorganisms, and insects such as termites. Paints for both the underwater and the above water sections of the hull are designated.

N66-25854# Mechanical Technology, Inc., Latham, N. J. FRICTION AND LUBRICATION IN HOT METAL DEFORMATION

Marshall B. Peterson and F. F. Ling. 20 Mar. 1966. 98 p. refs (Contract. NOw-65-0363-c)

(MTI-66TR18: AD-630204) CFSTI: HC \$3.00/MF \$0.75 A study was conducted to investigate the frictional behavior of metals in hot metal deformation. The purpose of the study was to gain a better understanding of friction at high pressures and temperatures characteristic of metalworking processes. A test technique was developed in which a thin foil was compressed between a hardened anvil and a flat plate. Friction was determined by applying a tangential force to one of the specimens. A technique was also developed to evaluate lubricants based upon the surface damage of various pure metals and alloys in both the lubricated and the unlubricated condition, at temperatures to 1800°F and pressures to 200,000 psi. It was found that this test uniquely yielded the friction coefficient of a given metal combination at a particular pressure and interface temperature The variables found to be most significant in the pressure range 8000 to 200,000 psi are the roughness, temperature. surface oxide, and tool materials. Over this pressure range. friction is primarily determined by the strength of the metal Adhesion effects modify the friction but primarily determine the extent of metal transfer. TAB

N66-25978# Ohio State Univ. Research Foundation, Columbus

A STUDY OF THE MECHANISM OF STRESS CORROSION CRACKING IN THE IRON-NICKEL-CHROMIUM ALLOY SYSTEM Quarterly Report, 17 Jun.-16 Sep. 1965 R. W. Staehle 12 Nov. 1965 54 p refs

K. W. Staehle 12 Nov. 1965 54 p. ref: (Contract AT(11-1)-1319)

(COO-1319-32) CFSTI: HC \$3.00/MF \$0.50

Developments are reported for experiments on: time to cracking as affected by alloy, stress, dissolved oxygen, and sodium chloride; tensile properties as affected by temperature and alloy content; frequency of annealing twins as affected by alloy, cold work, and annealing temperature; electron metallography; and electrochemical studies. Work is under way to modify the circulating autoclave system in order to improve monitoring of data and to obtain better control of variables.

Author (NSA)

N66-26038# , Commissariat a l'Energie Atomique, Saclay (France).

CONTRIBUTION TO THE STUDY OF PITTING CORROSION OF MAGNESIUM AND ITS ALLOYS [CONTRIBUTION A L'ETUDE DE LA CORROSION PAR PIQURES DU MAGNESIUM ET DE SES ALLIAGES]

Jean Blanchet (M.S. Thesis) 1965 51 p refs. In FRENCH (CEA-R-2815)

The pitting attack of magnesium and its alloys was studied by means of potentiokinetic polarization curves; the following parameters have been considered: structural state and composition of the metal; chloride concentration; and pH of the medium. The electrochemical data obtained demonstrate that at pH 12, a localized corrosion might appear as soon as a 10-3 M NaCl concentration is reached; on the other hand, at pH=13, a much higher concentration (five times) has no effect. In the same conditions, the coupling of magnesium with various noble materials (graphite, platinum, 18/10 stainless steel) also severely increases its susceptibility to pitting, but only when chloride ions are present in the solution. Usual corrosion tests confirmed these electrochemical results. A micrographic study of the pits showed that their morphology is connected with the metallurgical state of the specimens.

N66-26057# Societe d'Etudes, de Recherches et d'Application pour l'Industrie, Brussels (Belgium).

DYNAMIC CORROSION TESTS OF CARBON STAIN-LESS STEEL IN PRESSURIZED WATER [ESSAIS DY-NAMIQUES DE CORROSION D'ACIERS AU CARBONE ET INOXYDABLE DANS L'EAU PRESSURISEE]

M. Warzee, P. de Dorlodot, and J. Waty Brussels, EURATOM. Mar. 1966–32 p. refs. In FRENCH; ENGLISH summary (Contract EURATOM-089-62-7 RDB)

(EUR-2688.f; EURAEC-1546) CFSTI: HC \$2.00/MF \$0.50 A grade of austenitic 18-10 stainless steel (AISI 304) with 0.04% C and a grade of low alloy steel used in boiler manufacturing have served as basic material for the tests. Four quite different surface treatments have been compared: tool machining, grinding, mechanical polishing up to grade 600 and electrolytic polishing in an aceto-perchloric bath. It has been examined if the influence of the surface state upon corrosion at 300°C, which appeared in static conditions, still persisted under dynamic conditions at flow speeds comprised between 2 and 18 m/sec. In the case of AISI 304 steel, it appears that the advantage gained with electrolytic polishing remained provided the speed did not exceed 5 m/sec. At higher flow speeds, (10 and 18 m/sec.), a levelling of corrosion results for all surface states appears, together with an appreciable lowering of corrosion at 18 m/sec. As concerns boiler steel, it is noted that the advantage gained by electropolishing, appearing under static conditions, disappeared in dynamic tests, even at 2 m/sec. This must probably be explained by important erosion-corrosion phenomena characterizing this type of steel under dynamic conditions. A proportion of 90 to 99% of total corrosion is due to the re-

N66-26104# Joint Publications Research Service, Washington, D. C.

lease of oxide to the system, with almost linear kinetics rating

from 150 to 400 mg/dm²/month for flow speeds of 2 to

10/sec.

MOTION OF AN INTEGRATING GYROSCOPE WITH DRY FRICTION

N. V. Butenin and A. M. Lestev *In its* Izv. VUZov: Instr. Bldg.. No. 6 12 May 1966 p 112-121 refs (See N66-26086 14-14) CFSTI: \$6.00

The motion of the axis of an integrating gyroscope which is experiencing dry friction is considered. Expressions are given which define the system, and equations are derived which satisfy the specified parameters. It is stated that the forces

of dry friction introduce a number of peculiarities into the motion of the axis of the integrating gyroscope, and that a critical value of the angular velocity of the base exists. Additionally it was found that for certain relationships between the parameters of the gyroscope and the vibration, the dry friction forces cause a new type of motion—motion with long pauses. It was concluded that the unsymmetrical dry friction forces cause a systematic deviation of the axis from the initial position, and the greatest errors due to the dry friction forces are caused when the axis moves with long pauses.

H.S.W.

N66-26118# Joint Publications Research Service, Washington, D. C.

A COMPARATIVE ANALYSIS OF THE TURNED, GROUND, BURNISHED AND VIBRO-BURNISHED SURFACES FOR WEAR AND SEIZURE

L. A. Bunga *In its* Izv. VUZov: Instr. Bldg., No. 6, 12 May 1966 p 194–201 refs (See N66-26086 14-14) CFSTI: \$6.00

Steel bearing specimens were used and the experimental procedures are described in detail. The results of the investigations into the effects of the size of the bearing surface on the resistance to seizure are illustrated in a diagram. In analyzing this diagram, it is stated that the resistance to seizure is determined by the size of the bearing surface and by the shape of irregularities and their uniformity. Friction with and without lubrication was also considered, and it was determined that the character of the change in the moment of friction in the seizure is analogous to the change in the specific pressure. Fluid friction does not change the character of the relationships, but delays the instant of the seizure approximately 2.5 times. Additional conclusions are drawn and evaluated.

N66-26152# Joint Publications Research Service. Washington, D. C.

THE METHOD AND EQUIPMENT FOR THE INVESTIGA-TION OF ELECTRIC EROSION BY REPEATED DISCHARGES A. A. Namatevs and G. A. Ostroumov In its Electron. Treat. of Mater. 2 May 1966 p 11–15 refs (See N66-26150 14-34) CFSTI: \$4.00

This report describes a method and its associated equipment for determining the electric erosion of metals by repeated discharges. The method involves the successive oscillographing of the discharge processes taking place under the same initial energy conditions which are taken from the statistical distribution of the breakdown voltage with the aid of a differential amplitude discriminator. The oscillograms show only the properties of those sections of the electrode surfaces between which the discharge appears directly. The oscillographing can be performed by using an OK-17M two beam oscillograph and Negativ-DK type photographic material. The voltage from the discharge gap is supplied directly to the deflecting plates of the electron beam tube. The discharge current is fixed with the aid of a shunt with its inductance compensated up to frequencies of 1 to 1.2 megacycles through the amplifier of the oscillograph's first channel. The integral erosion of the electrodes, the value of the microroughness. the composition and the mass of the products of pyrolysis, etc., are then all determined by the serial method. A more detailed description of the equipment and some of the oscillograms obtained with this method are included.

N66-26154# Joint Publications Research Service, Washington, D. C.

THE MEDIA FOR ELECTRO-EROSION TREATMENT OF METALS

A. N. Merkur'yev, N. S. Pechuro, L. A. Royter, V. N. Gol'din, and O. Yu. Pesin In its Electron. Treat. of Mater. 2 May 1966 p 21-38 (See N66-26150 14-34) CFSTI: \$4.00

This report examines the results of experimental investigations on the effect of the composition of certain organic and inorganic media on the process of erosion. The study showed that the electro-erosion process of making apertures in a medium composed of various organic compounds illustrates the effect of their physical and chemical properties on the output of the process of treatment. In making apertures, a maximum erosion is observed when aromatic compounds and polyethyl-silozanes are used as the media between the electrodes. In the cutting of metals, the use of aqueous solutions of electrolytes as media between the electrodes makes it possible to improve the cleanliness of the surface of the treated parts by the joint action of the electro-erosion and electrochemical processes.

N66-26219# Air Force Systems Command, Wright-Patterson AFB. Ohio Foreign Technology Div.

FLOW OF A NONLINEAR VISCO-PLASTIC MEDIUM BETWEEN TWO PLATES

A. A. Tamonov *In its* Invest of Elasticity and Plasticity 11 Jan. 1966 p 244-254 refs (See N66-26206 14-32) CFSTI: HC \$7.05/MF \$1.75

This article presents a generalization to the problem of flow between inclined plates for the case of a medium with a power dependence of plastic viscosity on strain rates, and also a generalization to the problem of a non-Newtonian liquid with an analogous dependence of effective viscosity on velocity gradient, i.e., when limiting shear stress is absent.

R.N.A.

N66-26483# General Electric Co., San Jose, Calif. Atomic Power Equipment Dept.

STAINLESS STEEL FAILURE INVESTIGATION PROGRAM Second Quarterly Progress Report, 1 Jul.–30 Sep. 1965

T. J. Pashos. comp. Oct. 1965 57 p refs (Contract AT(04-3)-189)

dence of mechanical fracture.

(GEAP-4968: EURAEC-1541) CFSTI: HC \$3.00/MF \$0.75 Results of 24 hrs stainless steel in boiling HNO₃-K₂Cr₂O₇ indicate that irradiation exposure increases susceptibility to corrosion. The weight loss of irradiated cladding samples was consistently higher than that of unirradiated control specimens by a factor of two. Autoclave testing in high temperature FeCl₂ solutions was improved to reproducibly produce intergranular cracking of type 304 stainless steel. There was a marked difference in results of corrosion tests in FeCl2 solution between unirradiated commercial type 304 stainless steel cladding and the cladding from co-extruded UO2 in stainless steel fuel rod. Commercial tubing cracked intergranualarly in from 1 to 2 days whereas the co-extruded specimen had not failed after 8 days exposure. Tensile tests at 650°F and at strain rates of 0.024 and 0.0024 in/in/min and at constant load were performed on irradiated cladding samples. The tensile fractures were all transgranular and ductile with no evidence of intergranular separation. Electron microscopy was performed on an incipient crack that extended one-third of the way through the cladding. The tips of the crack were observed to be rounded with no evi-

N66-26504# Air Force Systems Command, Wright-Patterson AFB. Ohio. Foreign Technology Div.

MOLTEN METALS AS HIGH-TEMPERATURE LUBRICANTS N. M. Fialko and A. I. Dintses 20 Jan. 1966 11 p refs Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow), no. 3, 1964 p 54–58

(FTD-TT-65-1447/1+2+4; AD-629415) CFSTI: HC \$1.00/MF \$0.50

Investigations of molten metals for use as lubricants is reported. The procedures of the experiments to determine corrosive aggressiveness and diagrams of the apparatus are included. The corrosive aggressiveness of bismuth, cadmium,

tin, lead, zinc, and two eutectic alloys were evaluated. A method of predicting the metallic interactions was devised. It was pointed out that at 500° C all metals oxidize in air, and that therefore the metals must be placed in an inert atmosphere or a high vacuum. The interaction of liquid metals with construction alloys, the high specific gravity of metals, and their relatively high cost were mentioned. On the basis of these considerations, it was concluded that the development of liquid lubricants for use at 400–700° C should be done with inorganic salts.

N86-28576# Southwest Research Inst., San Antonio, Tex. Dept. of Aerospace Propulsion Research.

RESEARCH ON MITIGATION OF SPLINE WEAR BY MEANS OF LUBRICATION Quarterly Progress Report No. 3, 15 Nov. 1965-15 Feb. 1966

W. D. Weatherford, Jr., M. L. Valtierra, and P. M. Ku $\,$ 15 Feb. $\,$ 1966 $\,$ 27 p $\,$ refs

(Contract NOw-65-0224-f)

(RS-485; AD-639938) CFSTI: HC. \$2.60/MF \$0.50

Experiments were made to investigate the effect of hydrocarbon antioxidants on the spline wear observed when operating submerged in mineral oil. The results indicate that certain hydrocarbon antioxidants provide periods of negligible wear which otherwise do not occur in air-saturated mineral oil. The observed antioxidant effect and previously reported influences of environment composition are tentatively interpreted in terms of postulated wear mechanisms.

Author (TAB)

N66-26654*# IIT Research Inst., Chicago, III. Technology Center

ENVIRONMENTAL STUDY OF MINIATURE SLIP RINGS Quarterly Report No. 11, 1 Jan.-1 Apr. 1966

O. M. Kuritza [1966] 15 p (Contract NAS8-5251)

(NASA-CR-75119; E6000-32) CFSTI: HC \$1.00/MF \$0.50 CSCL 13H

Work was begun on a sublimation technique to lubricate slip rings in a high vacuum. A run-in test of a hard gold overlay was conducted in a nitrogen atmosphere; and sufficient debris was collected to perform a qualitative spectrographic analysis for determination of organic constituents. In an attempt to improve noise performance, the brush was redesigned; no substantial improvement was obtained, however. Nickel-soft gold plated rings were prepared for testing in a nitrogen atmosphere; and preparations were completed for testing in a high vacuum using an ion pump.

N66-26759°# Tyco Labs., Inc., Waltham, Mass.
DEVELOPMENT OF CATHODIC ELECTROCATALYSTS
FOR USE IN LOW TEMPERATURE H₂/O₂ FUEL CELLS
WITH AN ALKALINE ELECTROLYTE Third Quarterly Report, Jan. 1-Mar. 31, 1966

J. Giner, A. C. Makrides, and R. J. Jasinski [1966] 102 p (Contract NASw-1233)

(NASA-CR-75199) CFSTI: HC \$4.00/MF \$0.75 CSCL 07D A variety of metals; alloys; intermetallics; refractory metal compounds; and dispersed metals, alloys, and carbides were tested for corrosion resistance and activity as oxygen electrodes in potassium hydroxide at 75°C as part of an effort to improve the over-all efficiency of hydrogen-oxygen fuel cells. The preparations of specimens as solid ingots, cones, or as dispersed powders are outlined. Both rotating disk and floating electrode assemblies were used for the testing. Current-potential curves were measured for the one piece ingot type specimens. Of the elements tested, manganese showed activity for the reduction of O₂ above +800 mv. In general the performances of electrodes prepared directly from platinum blacks were inferior to commercial electrodes; but a porous silver electrode which was constructed proved

superior in performance at high potentials (925mv-975mv) to the best of the commercial platinum electrodes. Severe corrosion was observed in all cases where borides, and silicides of the group IVB, VB, and VIB were tested. TiN showed significant activity for the reduction of O_2 , being more active and more corrosion resistant than titanium metal. Current-potential curves obtained from the various tests are presented.

N66-27009# Naval Research Lab., Washington, D. C. FACTORS AFFECTING THE ICING RESISTANCE OF LUBRICANTS FOR AIRCRAFT ORDNANCE

H. R. Baker and R. N. Bolster *In its* Rept. of NRL Progr. Jan. 1966 p 1-5 refs (See N66-27008 15-15)

Recent samples of the all-weather semifluid lubricant for aircraft ordnance, obtained both from manufacturers and from Navy stocks, have failed to meet the cold-sweat-cold gun firing test required by Military Specification MIL-L-19701 (NOrd). These failures were due to ice adhesion attendant on the poor water resistance of the lubricants. The probable cause of the loss in water resistance was the presence of surface-active impurities, such as sodium soaps and soaps of myristic and oleic acids, in the lithium stearate thickener. A lubricant of altered formulation has been developed that is superior to the original. Variations in consistency over a wide temperature range are much less, and resistance to water and to ice adhesion are increased. It has been used successfully to lubricate the Mk 12 machine gun equipped with the Mk 7 pneumatic feeder under ambient temperature and coldsweat-cold conditions.

N66-27083*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

COMPONENT HARDNESS DIFFERENCES AND THEIR EFFECT ON BEARING FATIGUE

E. V. Zaretsky, R. J. Parker, and W. J. Anderson [1965] 17 p refs. Presented at the Lubrication Conf., San Francisco, 11-13 Oct. 1965. Sponsored by ASME and Am. Soc. of Lubrication Engr.

(NASA-TM-X-52087) CFSTI: HC \$1.00/MF \$0.50 CSCL 131

The five-ball fatigue tester and full-scale rolling-element bearings were used to determine the effect of component hardness differences of SAE 52100 steel on bearing fatigue and load capacity. Maximum fatigue life and load capacity are achieved when the rolling elements of a bearing are one to two points (Rockwell C) harder than the races. There appears to be an interrelation among compressive residual stresses induced in the races during operation, differences in component hardness, and fatigue life. Differences in contact temperature and plastically deformed profile radii could not account for differences in fatigue life. Author

N66-27101# Battelle-Northwest, Richland, Wash. Pacific Northwest Lab.

AN EVALUATION OF THE CORROSION RESISTANCE OF SEVERAL HIGH TEMPERATURE ALLOYS FOR NUCLEAR APPLICATIONS

T. T. Claudson and R. E. Westerman Nov. 1965 32 p refs (Contract AT(45-1)-1830)

(BNWL-155) CFSTI: HC \$2.00/MF \$0.50

The results showed the comparative oxidation resistance of 10 high-temperature alloys in an oxidizing environment of helium and water vapor. It was found that large weight gains are primarily associated with intergranular corrosion and internal oxidation of the alloy. At 815°C in an atmosphere of low pressure water vapor, Hastelloy C, Hastelloy N, Hastelloy X-280, Inconel 600, Inconel 625, and Haynes 25 have more superior corrosion resistance than the other four materials tested. Weight gains of less than 0.3 mg/cm² were observed for these better materials after 300 hr of exposure. Inconel 718, Inconel 702, and Incoloy 800

were more resistant to corrosion than Hastelloy R-235, the least corrosion resistant of all the alloys tested at this temperature. At 930°C, the same relative grouping was found as in the 815°C data. However, more definite evidence of intergranular attack was found in Haynes 25, Inconel 718, and Inconel 600 at 930°C than at the 815°C test temperature. At 1038°C, definite and gross intergranular attack and internal oxidation was found in alloys. Hastelloy C, Hastelloy N, Hastelloy X-280, and Haynes 25 exhibit the best resistance to oxidation, and Inconel 600, Inconel 702, Incoloy 800, and Inconel 625 followed in order. At all test temperatures, Hastelloy R-235 showed the worst attack. Inconel 625 exhibited increasing amounts of grain boundary attack and subsequent internal oxidation with increasing test temperature.

N66-27134# Atomics International, Canoga Park, Calif. SNAP REACTOR MATERIALS DEVELOPMENT, ULTRA-HIGH-VACUUM FRICTION STUDIES

L. G. Kellogg 8 Jun. 1964 74 p refs (Contract AT(11-1)-GEN-8)

(NAA-SR-9644) CFSTI: HC \$3.00/MF \$0.75

Experimental studies were conducted to determine what materials can be used in SNAP design to provide bearing compatibility. Screening tests were conducted on sixtyseven material pairs in sliding couple at ultrahigh vacuum. The friction couples are categorized into seven groups: metal vs metal, metal vs metal with dry lubricants, metal vs carbon, ceramic vs ceramic, ceramic vs ceramic with dry lubricants, metal vs ceramic, and ceramic vs carbon. Special tests were conducted using contaminant films with all groups. The theory is discussed together with practical applications. Data are presented to illustrate the effects of vacuum on sliding friction and the effects of vacuum on surface film formation. Results indicate that carbongraphites and sodium-silicate bonded dry-film lubricants provide relatively low friction in vacua at 100°F when coupled with Al₂O₃ (flame sprayed) surfaces. Data are when coupled with Al₂O₃ (flame sprayed) surfaces. Data are presented to show how both the carbon-graphites and dry films may be used together to provide a low friction couple through the temperature range of 70° to 800°F while operating in high vacuum. Results also indicate that sintered carbon materials provide relatively high friction in vacua at 1000°F when coupled with metallic surfaces. Several possible brake materials are discussed. Data of friction coefficient vs temperature and friction coefficient vs 1000-in travel are presented for possible brake material couples. The test facility and the test method by which these studies were conducted is also included to provide insight into the technique employed Author (NSA) and the results of the data.

N66-27232*# Westinghouse Electric Corp., Pittsburgh, Pa. Research Labs.

LUBRICANT STUDY IN ULTRAHIGH VACUUM AND IN VARIOUS GAS ENVIRONMENTS Final Report, 26 Jan. 1965-15 Mar. 1966

P. H. Bowen, D. J. Boes, K. W. Grossett, and E. S. Bober [1966] 155 p $\,$ refs

(Contract NAS9-3815)

(NASA-CR-65374) CFSTI: HC \$5.00/MF \$1.00 CSCL 11H

Wear and friction characteristics of lubricated and unlubricated hardened stainless steel couples in sliding and rolling contact were studied in an ultrahigh vacuum environment and in an UHV environment degraded by outgassing products known to exist in spacecraft. The lubricants were of the fluid, laminar film, and solid composite types. The UHV environments were degraded by high purity CO₂, O₂, and H₂O vapor. Results are compiled and presented in graphic form. Lubrication effectiveness is presented by a comparison of measured

friction values and of the metal component wear rates. Selected wear surfaces were analyzed by various laboratory techniques. The best overall lubrication was obtained with a Na₂SiO₃ bonded WSe₂ laminar film, followed by chlorophenyl methyl silicone oil. A self-lubricating composite wiper material was satisfactory to marginal lubrication and was more effective on rolling surfaces than on sliding contact surfaces. The H₂O vapor degraded UHV environment provided the most beneficial effect to lubricants. The composite lubricated surfaces received the least benefit and in several tests the effect was slightly detrimental.

N66-27392# Societe d'Etudes, de Recherches et d'Applications pour l'Industrie, Burssels (Belgium).

DYNAMIC CORROSION TESTS ON CARBON AND STAINLESS STEELS IN PRESSURIZED WATER

M. Warzee, P. De Dorlodot, and J. Waty 6 Dec. 1965 28 p refs Transl. into ENGLISH from French /ts Spec. Rept.-4 (Contract EURATOM-089-62-7 RDB)

(EURAEC-1546; EUR-2688) CFSTI: HC \$2.00/MF \$0.50 Type 304 stainless steel with 0.04% C and Creusof 1.2 MDO7 steel were used as the basic materials for the tests. Four quite different surface treatments were compared: milling, grinding, mechanical polishing up to grade 600, and electrolytic polishing. The research was designed to determine whether the influence of the surface state on corrosion at 300°C, which had appeared under static conditions. persisted under dynamic conditions at flow rates between 2 and 18 m/sec. In the case of AISI 304 steel, it appears that the advantage gained with electrolytic polishing remained, provided the water flow rate did not exceed 5 m/sec. At higher flow rates (10 and 18 m/sec.), a leveling of corrosion results for all surface states appears, together with an appreciable lowering of corrosion at 18 m/sec. As regards Creusot 1.2 MDO7 steel, it is noted that the advantage gained by electrolytic polishing, which appeared under static conditions, disappeared in dynamic tests, even at 2 m/sec. This is undoubtedly due to the intense oxidation-erosion phenomena characterizing the behavior of this type of steel under dynamic conditions. A proportion of 90 to 99% of total erosion is due to the release of oxide to the system, which follows almost linear kinetics at the rate of 150 to 400 mg/dm²/month, depending on whether the rate is 2 or 10 Author (NSA) m/sec.

N66-27404# Rocky Flats Div., Dow Chemical Co., Golden, Colo.

THE EFFECT OF COMPOSITION ON THE CORROSION OF PLUTONIUM METAL

M. A. Thompson 3 Feb. 1965 5 p refs (Contract AT(29-1)-1106)

(RFP-511) CFSTI: HC \$1.00/MF \$0.50

Detailed spectrographic analysis, metallography, and electron microscopic examinations were conducted on a large number of plutonium samples that had been stored under approximately the same conditions for periods up to several years. The samples were stored in 1 atm of helium and generally outgassed 1 to 2 mm of gas, primarily hydrogen. Storage time was up to 2 yr. The results for allowed delta phase plutonium showed that Cr, Fe, Mn and the total impurity contents were significantly higher in the corroded samples. Just the opposite was found to be true for the unalloyed metal.

Nè6-27561# Combustion Engineering, Inc., Windsor, Conn. Nuclear Div.

CORRELATIONS BETWEEN SENSITIZATION AND STRESS CORROSION CRACKING OF 300 SERIES STAINLESS STEELS Progress Report, 1 Jul.-30 Sep. 1965

J. J. Koziol and S. S. Christopher Oct. 1965 37 p refs (Contract AT(30-1)-3256)

(CEND-3256-250; EURAEC-1508) CFSTI: HC \$2.00/MF \$0.50

Efforts were concentrated on procurement and installation of the test equipment, procurement of specimen materials, and design and fabrication of the test specimens. Checkout of the test system and chemical sampling procedures are currently underway. Arrangements for drawing, swaging, and application of a nickel surface layer to the tubing are belng made.

Author (NSA)

N66-27598# Army Foreign Science and Technology Center, Washington, D. C.

EXPERIMENTAL STUDY OF THE EFFECT OF VIBRATIONS ON FRICTION IN THE CYLINDRICAL GUIDE-BEARINGS FOR A BALANCE-WHEEL SPINDLE

A. P. Isayev Mar. 1966 16 p refs Transl. into ENGLISH from Izv. Vysshikh Uchebn. Zavedenii, Priborostr. (Leningrad), no. 4, Jul.-Aug. 1961 p 101-108

(FSTC-HT-23-40-66; AD-630853) CFSTI: HC \$1.60/MF \$0.50

The article presents the results of an experimental study pertaining to the effect of vibration on the friction torque in balance-wheel spindles and bearings of chronometers in general but 'Pobeda' and aviation instruments in particular. The effect of rotational speed and radial clearance between spindle journal and bearing bore, also the effect of the magnitude of a vibrational overload were tested. The significance of the position of the spindle relative to the earth's gravitational field is discussed. It is shown that the frictional torque can be made constant regardless of the angle of inclination of the spindle. The mutual relation between frictional torque and impact torque due to vibration is analyzed, and it is explained why, at vibrational overloads larger than 1 g, the impact torque becomes equal to zero. The impact torque refers to the spindle journal striking the inner bearing surface, while between strikes the spindle is in a suspended po-Author (TAB)

N66-27661# Naval Research Lab., Washington, D. C. THE EFFECTS OF THREE AQUEOUS ENVIRONMENTS ON HIGH STRESS LOW-CYCLE FATIGUE OF 18% NICKEL MARAGING STEELS

C. D. Beachem and T. C. Lupton Feb. 1966 33 p refs (NRL-Memo-1685; AD-631545) CFSTI: HC \$3.60/MF \$0.50

Base plate and weld specimens of 200 ksi and 250 ksi (nominal yield) grades of 18% Ni maraging steels were tested as side-grooved plane-strain cantilever beam specimens in distilled water, water 'inhibited' with NaCrO4, and 3-1/2% NaCl solution, to determine the susceptibilities of these steels to both corrosion fatigue and sustained load crack growth. Stress intensities below which negligible crack growth occurred during twenty cycles were found to be about 95% of $\rm K_{lc}$ for 250 grade base plate in distilled water, 73% of $\rm K_{lc}$ for 250 grade tested in either the salt water or the sodium chromate solution, 88% of K_{Ic} for the 200 ksi grade base plate in all three environments, and essentially 100% of K_{Ic} for the 200 ksi weld metal in all three environments. Crack extension was found to be negligible in twenty cycles at a K_I of 65 ksi $\sqrt{\text{in}}$. in the 250 ksi grade welds in all en-Author (TAB) vironments.

N66-27676# Rensselaer Polytechnic Inst., Troy, N. Y. SURFACE TEMPERATURES AT SLIDING INTERFACES IN VACUA AND METAL ADHESION Technical Documentary Report, 15 Nov. 1963-15 Feb. 1964

F. F. Ling Wright-Patterson AFB, Ohio, AF Mater. Lab., Mar. 1964 58 p refs

(Contract AF 33(657)-10058)

(ML-TDR-64-97; AD-631342) CFSTI: HC \$3,00/MF \$0.50 A friction and wear apparatus is described for use in vacua which has no supporting bearings other than the sliding surfaces whose friction and wear characteristics are to be investigated. The moving specimen is suspended and rotated magnetically, external to a vacuum chamber enclosing the test section. Typical temperature, friction and wear data are shown. Moreover, a mechanism of metal adhesion is postulated and a formula on the coefficient of adhesion derived. The experimental equipment to confirm the validity of the theory, at least phenomenologically, is described. The experimental equipment permits loading of predetermined amounts under varied temperatures and durations in vacua; the force of separation is then measured. The simple theory indicates the parameters of the problem: contact load, duration of loading, temperature at the interface, and cleanliness of the interface. The last item is measured through two quantities: (a) a reduced activation energy; and (b) a reduced time exponent of the process. The relationship between adhesion and friction is Author (TAB) discussed.

N66-27777# Societe d'Etudes, de Recherches et d'Applications pour l'Industrie, Brussels (Belgium).

STUDIES OF STEEL CORROSION IN HIGH TEMPERATURE WATER AND STEAM Quarterly Report No. 13, 1 Jul.-31 Oct. 1965

26 Nov. 1965 80 p. Transl. into ENGLISH from French (Contract EURATOM-089-62-7RDB)

(EURAEC-1500; EUR-2658) CFSTI: HC \$3.00/MF \$0.75 The study of surface work-hardened stainless steels oxidized in steam at 400°C and above was continued. Morphological examination of the work-hardened metal zone under the fine oxide skin, formed by lengthy residence in superheated steam, showed the presence of precipitates, even where precipitation of chromium carbides is ruled out. It was previously supposed that this might be an internal oxidation phenomenon. Use of an electron microprobe did not reveal a regular oxygen-enriched zone. However, local oxygen concentrations were observed that may be attributed to discontinuous oxide penetrations which are, undoubtedly, connected with surface tearing by rough machining. The hypothesis identifying the precipitates seen under the microscope with internal oxides must therefore be rejected. X-ray diffraction examinations, with the grazing emergence of the diffracted rays corresponding to interreticular distances of close to 2 \AA , showed the presence of σ -phase in the work-hardened zone of a milled sample of type 304 stainless steel oxidized for 1000 hr in steam at 500°C. This alteration in the work-hardened zone is the result of lengthy heat treatment in the 400° to 500°C temperature zone. When the precipitates were identified, the factor responsible for behavior on re-oxidation after scaling the initial oxide skin had still to be determined. Prior studies showed that the benefit of work-hardening treatment is partly preserved after initial oxidation for 1000 hr at 500°C, whereas it disappears after initial oxidation for 1000 hr at 600°C. It was established that, with type 410 stainless steel, 1000 hr at 500°C is enough to remove all benefits of surface workhardening. The X-ray diffraction examinations, which identified the σ -phase, revealed that the work-hardened zone underwent partial or complete recrystallization according to the type of steel and the temperature of the initial 1000-hr oxidation treatment. The degree of recrystallization revealed in this way is in complete agreement with the relatively degraded behavior on re-oxidation. Author (NSA)

N66-27803# Army Foreign Science and Technology Center. Washington, D. C.

CORROSION PROTECTION BY COLD PHOSPHATIZATION V. S. Lapatukhin 23 Feb. 1966 21 p refs Transl into ENG-LISH from Zh. Prikl. Khim. (Moscow), v. 24, no. 4, 1951 p 373-382 (FSTC-HT-23-24-66- AD-630848) CFSTI: HC \$2.60/MF

(FSTC-HT-23-24-66- AD-630848) CFSTI: HC \$2.60/MI \$0.50

Following a discussion of the shortcomings of the hot method of coating iron and steel with a phosphate solution for protection against corrosion, the author describes a method of cold phosphatization involving the use of zinc dihydrophosphate, fluorine compounds, and accelerators to decrease free acidity and promote depolarization of the hydrogen liberated by phosphatization. The high corrosion resistance and strength of the phosphate coatings were demonstrated in laboratory and industrial tests.

Author (TAB)

N66-27871# Rock Island Arsenal Lab., III. Research and Engineering Div.

EVALUATION OF REMOVABLE FILM CORROSION PRE-VENTIVES Final Technical Report

William F. Garland Mar. 1966 28 p refs

(RIA-66-774; AD-631326) CFSTI: HC \$2.00/MF \$0.50

Twelve pressure-sensitive tapes and one strippable vinyl plastisol material are evaluated for possible use as removable film corrosion-preventive materials. The materials were tested for fungus resistance and adhesion as well as for their ability to protect metals from corrosion and weathering. The tape backings were of three types: paper, plastic, and fabric. All materials were found to be fungus proof, and the tapes were tack-free during adhesion testing. A plastic-backed tape provided the best combination of protection (accelerated weathering, corrosion, and fungus resistance) and ease of removal of any of the tapes tested. A weather-resistant polyvinyl-fluoride-backed tape and the strippable vinyl plastisol were the two most corrosive materials tested.

Author (TAB)

N66-27891# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

CORROSION STUDY XXIV: THE INFLUENCE OF TEM-PERATURE ON THE PASSIVATION CHARACTERISTICS OF STAINLESS STEELS

M. Prazak and J. Spanily 17 Mar. 1966 15 p refs Transl. into ENGLISH from the Publ. "Korrosionsstudium XXIV. Einfluss der Temperatur auf die Passivierungs-Charakteristik Korrosions-Bestandiger Stahle" 10 Aug. 1960 p 2828–2837

(FTD-TT-65-1223/1+2+3+4; AD-630974) CFSTI: HC \$1.60/MF \$0.50

The temperature dependence of the corrosion reaction in the range of the critical passivation current, in the range of passivity, transpassivity, and of secondary passivity were determined for two typical chrome-nickel stainless steels; the dependences were quantitatively expressed by the Arrhenius equation. Certain conceptions of the mechanism of the processes concerned were built up on the basis of the activation energy values of the respective reactions. From the results it can be seen that the corrosion, in a passive state, rises very steeply with increasing temperature (in the range of 20-210°C in a ratio of 1:10,000,000), so that it may become technically significant in the case of higher temperatures. The stability of the passive state and the passivation tendency of the material decrease with equal rapidity with increasing temperature. It has been found that the effectiveness of corrosion inhibition by means of passivating Author (TAB) inhibitors decreases as a result of this.

N66-27931*# SKF Industries, Inc., King of Prussia, Pa. Re-

BEARING-LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND HIGH TEMPERATURES Report, Sep. 1-Aug. 31, 1965

C. J. Wachendorfer and L. B. Sibley [1965] 129 p refs (Contract NASw-492)

(NASA-CR-75582; AL65T068) CFSTI: HC \$4.00/MF \$1.00 CSCL 11H

This study was performed to determine operability, critical mode of failure and life of angular-contact ball bearings of advanced design at high temperatures in excess of 500°F using the best available fluid lubricants in a recirculating system. 205-size 25mm-bore angular-contact ball bearings made of vacuum-melted tool steels having high hot hardness were tested with a number of high-temperature fluid lubricants representing hydrocarbons, esters, and polyphenyl ethers. The test machine was designed to simulate a typical aerospace accessory drive system with nitrogen blanketing to minimize lubricant exidation at high temperature. Bearing design parameters and cage materials were developed for successful operation under the test conditions. Results were obtained from over 300 bearings tested with 17 different lubricants at high load (300 to 500 lbs. thrust) and speeds from 20,000 to 45,000 rpm. These results indicate that satisfactory operation is possible at bearing temperatures at least up to 600°F.

N66-28018* # National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

A REVIEW OF BALL MOTION IN AN ANGULAR CONTACT **BALL BEARING**

R. J. Parker, E. V. Zaretsky, and W. J. Anderson. Washington, NASA, 1966 37 p. refs. Presented at the Am. Soc. of Mech. Engr. Spring Lubrication Symp., New Orleans, 6 Jun. 1966 (NASA-TM-X-52207) CFSTI: HC \$2.00/MF \$0.50 CSCL 13I

A significant portion of total ball-bearing friction results from friction due to sliding or spinning in the contacts of the balls and races. A brief review of the nature of this ball-race contact including analyses of ball spin and microslip and the factors contributing to the problem are presented in this paper. Author

N66-28033*# National Aeronautics and Space Administration. Manned Spacecraft Center, Houston, Tex.

STATUS OF LUBRICANTS FOR MANNED SPACECRAFT Frans G. A. de Laat (TRW Systems, Redondo Beach, Calif.), R. V. Shelton (N. Am. Aviation, Downey, Calif.), and J. H. Kimzey Jun. 1966 26 p refs. Presented at the 21st Ann. Meeting of the Am. Soc. of Lubrication Engr., Pittsburgh, 2 May 1966 (NASA-TM-X-58002) CFSTI: HC \$2.00/MF \$0.50 CSCL 11 H

This paper reports the status of lubricants selected for use on manned spacecraft such as Apollo. The selection of lubri-

cants was based on four major test programs: lubricant compatibility with oxygen-rich environment for crew-compartment toxicity-order hazard evaluations; lubricant-propellant compatibility investigations for long-exposure endurance; soliddry-film lubricant compatibility with various anodic coatings; and studies of lubricant sliding-friction behavior in vacuums such as are encountered in space. These tests resulted in the selection of several solid-dry-film lubricants, such as a completely inorganic, electrophoretic, bonded material containing molybdenum disulfide, graphite, and lead sulfide as the major lubricity. Among the greases, a completely polymeric perfluorinated material with a fluorocarbon-telomer thickener showed an unsurpassed compatibility with propellants and, in the Author oxygen-compatibility tests, a remarkable inertness.

N66-28244# Argentina. Comision Nacional de Energia Atom-

RADIOACTIVE TRACERS IN THE STUDY OF THE WEAR OF HARD NICKEL ALLOY BALLS [TRAZADORES RADIO-ACTIVOS EN EL ESTUDIO DEL DESGASTE DE BOLAS DE ALEACION NI-HARD)

Mario Pio Gomez, Basilio Rapaport, and Walsoee de Reca 1966 32 p refs in SPANISH

(CNEA-187) CFSTI: HC \$2.00/MF \$0.50

This study was conducted to demonstrate the wear resistance of chromium-nickel-iron alloy grinding balls used in the fabrication of cement. Cobalt 60, added to the iron melt prior to alloying, was used as a tracer to measure the amount of wear on the grinding balls. The tracer dissolves easily in the melt and its distribution is uniform in the balls. The recovery of the labelled balls is easily accomplished as the doses used are low enough so that there is no radiation danger. There was no evidence of fracture in the specimens used. It was verified that the alloy's resistance to abrasion was increased with the percentage of martensite which also increased its hardness. The wear resistance of the chromium-nickel-iron alloy balls is considerably greater than that of conventional steel balls. Transl. by R.N.A.

N66-28246# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

THE CHANGE OF PROPERTIES OF DISPERSION MEDIA OF PLASTIC LUBRICANTS UNDER THE EFFECT OF RADIATION

Ye. D. Makeyeva, L. A. Kumleva et al. 23 Mar. 1966 9 p. refs Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow), no. 9, 1964 p 38-40

(FTD-TT-65-1731/1+4; AD-631448) CFSTI: HC \$1.00/MF

The change in properties of a series of oils, used in role of dispersion media of plastic lubrications, under the effect of gamma-radiation was investigated. The anti-radiation properties on these oils of admixture of two types were determined: binding free radicals (e.g. dialkylselenides) and absorbing radiation energy on account of resonance adsorption in the molecules of condensed aromatic compounds (for example, acenaphthene). TAB

N66-28277# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

PREPARATION OF LOW-FREEZING-POINT OILS BY DE-PARAFFINING WITH CARBAMIDE

M. G. Mitrofanov and O. A. Artem'yeva 23 Mar. 1966 9 p. Transl, into ENGLISH from the publ. "Uluchsheniye Kachestya i Sovershenstvovaniye Proizvodstva Smazochnykh Masel" Moscow, Gostoptekhizdat., 1963 p 173-176

(FTD-TT-65-1509/1+4; AD-631449) CFSTI: HC \$1.10/MF \$0.50

Results are described of studies concerning the preparation of low-freezing-point transformer and spindle oils by extracting paraffins from various petroleum distillates with carbamide. TAB

N66-28337# Atomic Energy of Canada, Ltd., Chalk River (Ontario).

THE USE OF AMMONIA TO SUPPRESS OXYGEN PRO-DUCTION AND CORROSION IN BOILING-WATER RE-**ACTORS**

J. E. Le Surf, P. E. C. Bryant, and M. C. Tanner Apr. 1966 18 p refs Presented at the 22d Ann. Conf. of Natl. Assoc. of Corrosion Engr., Miami Beach, Fla., Apr. 1966 (AECL-2562) CFSTI: HC \$1.00/MF \$0.50

Radiolysis of the coolant in nuclear reactors cooled by boiling water results in oxygen in the steam and recirculated water phases. This has dictated the use of stainless steels as the major circuit materials for these reactors. It is shown that ammonia additions to the coolant eliminate oxygen production, permitting the use of mild steel for circuit construction with consequent savings in capital cost. Corrosion data are presented for various out-reactor materials (carbon steel, low alloy steels, stainless steels, Monel alloy 400, Inconel alloy 600) exposed to the coolant of two phase in-reactor loops when operated neutral and with ammonia addition. The elevation in pH resulting from ammonia addition is a further advantage for low temperature parts of the circuit.

N86-28339# Metaalinstituut TNO, Delft (Netherlands). COMPARATIVE RESEARCH OF NINE SAMPLES OF CAR-BON REMOVERS [VERGELIJKEND ONDERZOEK VAN NEGEN MONSTERS ONTKOLINGSMIDDEL]

L. M. Rientsma 18 Feb. 1966 10 p. In DUTCH (C66-155; TDCK-45012) CFSTI: HC \$1.00/MF \$0.50

Comparative tests were conducted on several carbon removers to evaluate their efficiency for use in clogged oil pumps. Among the criteria considered were the boiling and firing points, solubility, appearance, emulsifying properties, corrosion effect, oil removing and cleaning properties, ease of rinsing, and poison content. Copper, steel, and aluminum plates, heat treated at 175°C, were used in the investigations. Tabulated data are included to show the results for each product tested.

Transl. by J.O.

N66-28345# Bureau of Mines, Bartlesville, Okla. Bartlesville Petroleum Research Center.

SYNTHESIS OF ALKYL CYCLOALKYL AND DICYCLOALKYL SULFIDES

R. W. Higgins, R. L. Hopkins, H. J. Coleman, C. J. Thompson, and H. T. Rall (Tex. Woman's Univ.) 1966 20 p refs

Fifteen alkyl cycloalkyl sulfides and three dicycloalkyl sulfides were synthesized to provide reference compounds in the search for these classes of sulfur compounds in crude oils. In synthesizing sulfides by alkaline alkylation the order in which the reactants were added was shown to determine the yield and purity of the product.

Author

N66-28357# Phillips Petroleum Co., Idaho Falls, Idaho. Atomic Energy Div.

REACTOR FUELS AND MATERIALS DEVELOPMENT FOR FY 1965 Annual Progress Report

W. C. Francis, ed. Feb. 1966 138 p refs (Contract AT(10-1)-205)

(IDO-17154) CFSTI: HC \$4.00/MF \$1.00

Progress is reported on developments in the uranium intermetallic fuel systems and on corrosion properties of several aluminum and aluminum-beryllium alloys. Microprobe examinations on irradiated and unirradiated fuel materials located fission products in fuel particles and matrix and were extremely helpful in evaluating fuel-matrix and fuel-cladding compatibility. The results of compression, impact and gas release measurements on beryllium irradiated at reactor ambient and at high temperatures are reported and compared with fractography studies. Fatigue studies on pressure vessel steels are summarized and the status is given on construction of an in-pile fatigue loop. The results are given of ultrasonic and metallographic examinations of a Fiberglas-fueled, aluminum-clad MTR fuel element. Developments in nondestructive testing, electron microscopy, fuel failure mechanisms, stress analysis, and prototypical irradiations are also reported. Author (NSA)

N66-28679# General Electric Co., Schenectady, N. Y. Research and Development Center.

HOT CORROSION MECHANISM STUDIES Final Report 15 Feb. 1966 121 p refs (Contract N600(61533)63219)

(AD-629598) CFSTI: HC \$4.00/MF \$0.75

CONTENTS:

- 1. THE ROLE OF SODIUM SULFATE IN THE ACCEL-ERATED OXIDATION OF NICKEL J. R. Gambino 41 p refs (See N66-28680 16-17)
- 2. OBSERVATIONS ON THE HIGH-TEMPERATURE SULFUR-OXYGEN CORROSION OF NICKEL A. U. Seybolt 18 p. refs. (See N66-28681 16-17)
- 3. THE BEHAVIOR OF COBALT IN HIGH-TEMPERA-TURE SULFUR-OXYGEN CORROSION OF NICKEL A. U. Seybolt 18 p refs (See N66-28681 16-17)
- 4. HOT CORROSION BEHAVIOR OF NICKEL AND COBALT BINARY AND TERNARY ALLOYS P. A. Bergman 32 p. ref. (See N66-28683 16-17)

N66-28680# General Electric Co., Schenectady, N. Y. THE ROLE OF SODIUM SULFATE IN THE ACCELERATED OXIDATION OF NICKEL

J. R. Gambino Jan. 1966 *In its* Hot Corrosion Mech. Studies 15 Feb. 1966 41 p. refs. (See N66-28679 16-17). CFSTI: HC \$4.00/MF \$0.75

Thermogravimetric monitor methods of high temperature nickel oxidation by sodium sulfate showed that nickel oxidized initially: (1) independent of sodium sulfate concentrations; (2) dependent upon oxygen pressure; (3) dependent upon temperature; and (4) dependent upon the moisture content of the oxygen environment. High initial nickel oxidation rates in the presence of small sodium sulfate amounts were somehwat delayed when oxide films formed on the nickel specimens prior to sulfidation attack; in all cases vigorous corrosion occurred eventually. Correlation between the amount of nickel oxidation and the amount of sodium sulfate indicated sulfur expenditure during oxidation.

N66-28681# General Electric Co., Schenectady, N. Y. OBSERVATIONS ON THE HIGH-TEMPERATURE SUL-FUR-OXYGEN CORROSION OF NICKEL

A. U. Seybolt Jan. 1966 *In its* Hot Corrosion Mech. Studies 15 Feb. 1966 18 p. refs. (See N66-28679 16-17). CFSTI: HC \$4.00/MF \$0.75

Sodium sulfate corrosion of nickel and nickel alloys largely concentrated at the grain boundaries; at high temperatures and enough available sulfur concentrations molten nickel-nickel sulfide eutectic compositions developed. Gas turbine alloys containing chromium eroded by forming CrS as the principal sulfide; low melting $N_{i3}S_2-N_i$ eutectic or Co_4S_3 -Co eutectic did not develop in larger quantities as long as unreacted chromium was present. G.G.

N66-28682# General Electric Co., Schenectady, N. Y. THE BEHAVIOR OF COBALT IN HIGH-TEMPERATURE SULFUR-OXYGEN ENVIRONMENTS

A. Beltran and A. U. Seybolt Jan. 1968 *In its* Hot Corrosion Mech. Studies 15 Feb. 1966 11 p refs (See N66-28679 16-17) CFSTI: HC \$4.00/MF \$0.75

Exposure of cobalt and cobalt-chromium alloys to Na₂SO₄ under an oxidizing atmosphere showed a reduction of the salt followed by sulfide formation. Liquid Co-Co₄S₃ eutectic (above 877°C) formed in the case of pure cobalt, and CrS developed in the presence of chromium; the rapid corrosive attack of the metal structure occurred by oxidation of the sulfide. It was concluded that optimal amounts of chromium in commercial gas turbine cobalt-base alloys

* form an adherent $\operatorname{Cr}_2\operatorname{O}_3$ surface oxide and thus assist in blocking sulfur penetration; this method can also prevent formation of the liquid sulfide eutectic.

N66-28683# General Electric Co., Lynn, Mass.
HOT CORROSIVE BEHAVIOR OF NICKEL AND COBALT
BINARY AND TERNARY ALLOYS

P. A. Bergman Jan. 1966 $\it In its$ Hot Corrosive Mech. Studies 15 Feb. 1966 $\it 32~p$ ref. (See N66-28679 16-17). CFSTI: HC \$4.00/MF \$0.75

Nickel and cobalt and their binary and ternary alloys were studied for their hot corrosion behavior by exposure to combustion products of sulfur enriched (1%) diesel fuel, and a high concentration of sea salt (200 ppm) for 100 hours at 1675°, 1750°, and 1900°F. Metallographic and X-ray diffraction analyses of the exposed specimens found chromium additions to nickel and cobalt beneficial. Cobalt and titanium in nickel alloys, and nickel and tantalum in cobalt alloys did not effect the corrosive process significantly. Tungsten, molybdenum, and aluminum in nickel alloys and tungsten and molybdenum in cobalt alloys increased sulfur corrosion effects under high temperature conditions. In general, cobalt alloys showed more sulfur attack resistance than nickel alloys; nickel, cobalt, and chromium-rich spinels proved as much corrosion protective as Cr_2O_3 . G.G.

N66-28854# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

PLASTICS Selected Articles

18 Jun. 1965 25 p refs Transl into ENGLISH from Plasticheskiye Massy (Moscow). no. 8, 1964 p 20–23; 31–33 (FTD-TT-65-319/1+2+4; TT-65-63105; AD-619482) CFSTI: HC \$1.00/MF \$0.50

CONTENTS:

- 1. STRENGTH OF GLASS PLASTICS AND ITS DEPEND-ENCE UPON THE CHANGE IN WETTING ANGLE WITH BIND-ING OF WATERPROOFED GLASS FIBERS Ye. B. Trostyanskaya, A. M. Poymanov, and Yu. N. Kazanskiy p 1-11 refs (See N66-28855 16-18)
- 2. MECHANICAL AND FRICTION PROPERTIES OF POLYAMIDE AND POLYETHYLENE COATINGS A. A. Kut'kov and D. T. Avdeyev p 12–17 refs (See N66-28856 16-18)

N66-28856# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

MECHANICAL AND FRICTION PROPERTIES OF POLYAMIDE AND POLYETHYLENE COATINGS

A. A. Kut'kov and D. T. Audeyev $\it In its$ Plastics 18 Jun. 1965 p 12–17 refs (See N66-28854 16-18) CFSTI: HC \$1.00/MF \$0.50

The dependence of mechanical strength and friction resistance of polyamide and polyethylene coatings upon the method of application and cooling was investigated. The coatings were tested for shear, bending, and impact strengths, and wear resistance. Gas flame dusting and vortex dusting were used, and the cooling was in open air, water at room temperature, and oil at 180°C. Among the conclusions are: (1) The vortex dusting method assures much higher adhesion of the film to metal, offers much higher and more stable strength values of the film at shear, bending, and impact load than gas flame dusting. (2) Thermal processing changes the structure of polyamide coating; and films cooled in water have an amorphous structure, are more elastic and remain intact at greater deformation. (3) Polyethylene coatings are recommended for machine parts absorbing shock loads, but are unsuitable under deformations. (4) Polyamide coatings can be used for antifriction coatings at small loads. (5) With increase in load the friction coefficient of polyamide on steel decreases, but also the stability of the friction moment decreases considerably.

N.E.N.

N66-28939# Pratt and Whitney Aircraft, Middletown, Conn.
CORROSION STUDIES OF REFRACTORY METAL ALLOYS
IN BOILING POTASSIUM AND LIQUID NaK

K. J. Kelly, S. S. Blecherman, and J. E. Hodel 22 Apr. 1965 22 p refs Presented at the AEC-NASA Liquid Metals Information Meeting, Oak Ridge, Tenn. (Contract AT(30-1)-2789)

(CNLM-6246; CONF-650434-1) CFSTI: HC \$1.00/MF \$0.50 Compatibility evaluations were made in gravity-feed potassium loops at temperatures up to 2000°F on the following materials: Nb-1 Zr, PWC-533 (C-Mo-Nb-Ti-Zr), PWC-11 (C-Nb-Zr), Type 316 stainless steel, and Mo-TZM. The evaluations were based on weight changes, chemical analyses, metallographic examinations, and mechanical strengths. A study was also made of interactions of Nb-1 Zr specimens in a Type 316 stainless steel-eutectic NaK loop operated at 1250°F.

N66-28987# Virginia Polytechnic Inst., Blacksburg Dept. of Metals and Ceramic Engineering.

THE RELATIONSHIP OF NITROGEN CONTENT OF AUSTENITIC STAINLESS STEELS TO STRESS CORROSION Quarterly Report No. 438-6, Oct. 1-Dec. 31, 1965

B. N. Ferry and J. F. Eckel Jan. 1965 17 p refs (Contract AT(40-1)-3208)

(EURAEC-1579) CFSTI: HC \$1.00/MF \$0.50

A N_2 concentration range of 0.06 to 0.09 % was obtained in wires of type 304 stainless steel by nitriding in different ratios of H_2 -N H_3 at 1000°F for 24 hr. Nitrides were not metallographically observed in any of the wires. A dilatometer specimen holder was built and calibrated. Author

N66-29157# Rock Island Arsenal Lab., III.
GALVANIC SERIES OF METALS AS RELATED TO CORROSION

Ervin C. Tinsley Feb. 1966 22 p refs (RIA-66-469; AD-631962). CFSTI: HC \$1.00/MF \$0.50

A revised electromotive series has been prepared for use by design engineers. Tables were prepared from experimental data and from available literature references. The experimental work indicated many variables were present in the half-cell potential measurement procedure. Many factors that could have caused deviations in results are discussed. This work provides information as to the location of various alloys previously not included in the electromotive series. The use of the improved table will be of value to the designer for his selection of compatible materials, and enable him to hold the possibilities of galvanic corrosion to a minimum.

N66-29292*# General Dynamics/Convair, San Diego, Calif.
CENTAUR TANK CORROSION TESTS AND X-RAYS
1 Aug. 1965 147 p refs
(Contract NAS3-3232)

(NASA-CR-72000; GD/C-BNZ-65-032) CFSTI: HC \$4.00/MF \$1.00 CSCL 20K

It is found that tank corrosion can be deterred or prevented by the following method; (1) elimination of the corrosive elements from the tank fabrication processes; (2) fabrication of the tank under stringently clean conditions, and the providing of protection from contamination during storage; and (3) the application of a corrosion inhibitor to the outside surfaces of the tank structure and to the parts and assemblies as early in the fabrication process as is compatible with manufacturing operations. The effectiveness of these measures was demonstrated by the low quantity of corrosion found on Centaur tanks 7D, 8D, and 9D.

Author

N86-29401°# National Aeronautics and Space Administration. Langley Research Center, Langley Station, Va.

SALT STRESS CORROSION OF TI-BAI-1Mo-1V ALLOY SHEET AT ELEVATED TEMPERATURES

G. J. Heimerl, D. N. Braski, D. M. Royster, and H. B. Dexter [1965] 28 p refs Presented at the 5th Pacific Area Natl. Meeting of the Am. Soc. for Testing and Mater., Seattle, 31 Oct.-5 Nov. 1965 /ts Paper No. 42

(NASA-TM-X-56881) CFSTI: HC \$2.00/MF \$0.50 CSCL 11F

In the investigation of the salt stress corrosion of Ti-8Al-1Mo-1V alloy sheet, many small self-stressed and residual stress specimens were salt coated, exposed up to 6400 hours at 400°F to 600°F (477°K to 589°K), and tested at room temperature to determine the extent of the stress corrosion cracking. Coatings of NaCl were more corrosive than CaCl2, MgCl2, or sea salt, and thin coatings were more damaging than thick. Environmental tests showed that a decrease in oxygen and air pressure reduced stress corrosion, but that the role of moisture and air velocity still remained in doubt. Stress corrosion cracks were intergranular, and a correlation was obtained between the results of the room-temperature corrosion tests and the crack penetration. TiCl2 appeared to be one of the corrosion products. Surface treatments such as shot peening, nickel plating, vibratory cleaning, and polyimide coatings proved effective in preventing corrosion for exposures up to 2000 hours at 600°F.

N66-29548# Aerojet-General Corp., Sacramento, Calif. REON Div.

METALLURGICAL INVESTIGATION OF HYDROGEN PRE-HEATER TUBE FAILURE

D. J. Lamuermeyer Mar. 1966 38 p refs (RN-TM-0312)

An investigation was conducted to determine (a) the cause of gaseous hydrogen preheater tube failure, (b) extent of damage from overheating, and (c) actions necessary to qualify the preheater for operation. The primary fracture was caused by zinc contamination, which penetrated the grain boundaries under elevated temperature conditions. Cracks were progressively formed causing reduction of tube wall thickness and rupture. Overheating damage was indicated by measuring the OD of all tubes, and revealed that tubes numbered 31 through 40 and 99 in the north arch were bulged. The remaining tubes were not adversely affected by the overheating as evidenced by satisfactory elevated and room temperature tensile, sensitization, degradation, and bulge test results. Recommendations were made to (a) inspect all tubes by shear-wave ultrasonic tests for detection of cracks prior to the initial test run and periodically there-after. (b) proof and leak test and preheater at a pressure equivalent to onehalf of the material yield strength, and (c) independently support the sine-wave spacers to prevent sagging during future heater operations.

N66-29690# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

NEW METHOD OF EVALUATING THE EFFECTIVENESS OF ACTION OF ANTI-SCORING ADMIXTURES TO OILS AND FUELS

K. I. Klimov, A. V. Vilenkin, and G. I. Kichkin. 23 Mar. 1966 15 p. refs. Transt. into ENGLISH from Tr. Vsesoyuznoye Nauchno-Tekhn. Soveshch. po Prisadkam k Maslam i Toplivam, 1960 (USSR), 1961. p. 273–278

(FTD-TT-65-1491/1+2+4; AD-631838) CFSTI: HC \$1.00/MF \$0.50

To evaluate anti-scoring properties of lubricating materials an essentially new type of friction machine having a pair of intersecting cylinders and periodic surface contact was developed and proposed. The necessity of relative evaluation of anti-scoring properties of oils containing admixtures on

friction machines in order to model the testing conditions by the sliding rate, contact periodicity and temperature in a wide range of their changes is shown. A method was developed for the relative evaluation of anti-scoring properties of lubrication materials in conditions that model real conditions of oil operation. Anti-scoring properties of certain petroleum products in pure form, and with admixtures were investigated. It was shown that the proposed instrument and evaluation method have a high sensitivity incomparison with other methods and instruments.

Author (TAB)

N66-29818# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

AN ADDITIVE FOR SUPPRESSING VANADIUM CORROSION OF FUELS

R. A. Lipshteyn and A. S. Avetisyan. 20 Sep. 1965. 6 p. Transl. into. ENGLISH from Soviet Patent No. 162269 (Appl. No. 849707/23-4, 29 Jul. 1963). 1 p.

(FTD-TT-65-505/1+4; TT-65-64042; AD-621778) CFSTI: HC \$1.00/MF \$0.50

The object of the invention is an additive for suppressing vanadium corrosion of fuels on the basis of green oil. For the purpose of improving the additive's properties tetraethoxysilane or the bottoms in the production of tetraethoxysilane is added to the green oil.

Author (TAB)

N66-29866*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, Ohio.

EFFECT OF ORIENTATION ON FRICTION CHARACTERISTICS OF SINGLE-CRYSTAL BERYLLIUM IN VACUUM (10^{-10} TORR)

Donald H. Buckley Washington, NASA, Jul. 1966 20 p. refs (NASA-TN-D-3485) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F

Studies were conducted to determine the influences of the crystallographic orientation of single-crystal beryllium on its friction characteristics when in sliding contact with sapphire and polycrystalline beryllium and aluminum oxide. Experiments were conducted in a vacuum of 10-10 torr with a 3/16-inch hemispherical-radius beryllium crystal sliding on a flat of beryllium and aluminum oxide. The rider was loaded against the flat with various loads from 100 to 1500 grams and the flat disk was rotated to give a sliding speed of 0.013 centimeter per second. The results of the investigation showed that the basal plane exhibited lower friction than the prismatic slip plane. With the basal plane parallel to the interface, lower friction coefficients were observed in the $(11\overline{20})$ than in the $\langle 10\overline{10} \rangle$ directions. The lowest friction coefficient for basal orientation was obtained with the basal plane inclined 135° to the sliding interface. The friction coefficient of singlecrystal beryllium sliding on sapphire was lower than that of single-crystal beryllium sliding on polycrystalline aluminum oxide. With sapphire, brittle fracture of sapphire was observed, while with polycrystalline aluminum oxide, shear of beryllium Author was observed.

N66-29944# SKF Industries, Inc., King of Prussia, Pa. Research Lab.

A BASIC STUDY OF THE SLIDING CONTACTS IN ROLLER BEARINGS Quarterly Progress Report No. 4, 16 Jan.-15 Apr. 1966

Chester J. Belsky, M. Cocks, and W. E. Schmidt [1966] 86 p. refs.

(Contract NOw-65-0182-f)

(AL66L026; AD-632493) CFSTI: HC \$3.00/MF \$0.75

A study was made of the kinematics of a flat washer to roller test configuration. Author (TAB)

N66-29945# Naval Air Engineering Center, Philadelphia, Pa. Aeronautical Materials Lab.

CHEMICAL MILLING OF ALLOY STEELS Sara J. Ketcham 9 Mar. 1966 22 p refs

(NAEC-AML-2418; AD-631952) CFSTI: HC \$1.00/MF \$0.50

Experiments were conducted to determine the effect of chemical milling on susceptibility of high strength steels to hydrogen embrittlement and stress corrosion cracking. Alloys studied included H-11, 4340 and 17-7 PH. Results indicated that the acid baths used for chemical milling do initially embrittle these alloys, but recovery of ductility takes place at room temperature within one week if there is no barrier to the escape of hydrogen (such as a plating). A recovery treatment of 48 hours at room temperature followed by 4 hours at 375°F is recommended. A high strength steel with a chemmilled surface is more susceptible to stress corrosion cracking than one with a machine ground surface.

Author (TAB)

N66-30236# Laboratoires du Centre d'Etude de l'Energie Nucleaire Mot (Belgium).

IMPERFECTIONS IN METALS. II: CORROSION AND OXI-DATION Quarterly Report No. 11, 1 Apr. -30 Jun. 1965

Brussels, EURATOM, [1965] 24 p refs (Contract EURATOM-054-64-4 TEEB)

(EURAEC-1457; EUR-2386; R-2355) CFSTI: HC \$1.00/MF \$0.50

Transmission electron microscopy of corrosion-oxidation films formed on both Van Arkel zirconium and Zircalloy-2 in air from 250° to 450°C and in water from 225° to 325°C showed that gross differences existed in the film morphology depending on the environment and surface preparation. Annealed Zr, oxidized in air, formed monoclinic zirconia films which replicated the metal grain structure but which also contained finegrain regions, pseudo-amorphous areas, pustules, and preferentially oxidized grain boundaries. Etched Zr, oxidized under the same conditions, formed uniform films having only one heterogeneity, viz. preferentially oxidized twins. Oxidation of annealed Zr in water produced a high density of oxide nuclei (monoclinic oxide) on a single crystal monoclinic matrix. Longer oxidation produced pustules which were much more numerous than those formed by air oxidation. Zircaloy-2 generally formed more uniform films than Zr in both air and water and did not exhibit the preferential grain boundary oxidation so prevalent in Zr oxidation films. Annealed Zircaloy-2 formed mottled films, whereas etched Zircaloy-2 oxidized similarly, showed unmottled grains which were sharply delineated and which clearly showed local areas corresponding to the intermetallics.

N66-30272# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

TRANSACTIONS OF THE MOSCOW INSTITUTE OF PETRO-CHEMICAL AND GAS INDUSTRY [MOSKOVSKIY ORDENA TRUDOVOGO KRASNOGO ZNAMEINI INSTITUT] Selected Articles

20 Jul. 1965 31 p refs Transl. into ENGLISH from the publ. "Petrochemistry, Processing of Oil and Gas" no. 28, Moscow, Gostoptekhizdat, 1960 p 44-55, 56-67

(FTD-MT-64-512; AD-619476) CFSTI: HC \$2.00/MF \$0.50

CONTENTS:

1. INFLUENCE OF CHEMICAL NATURE AND STRUCTURE OF HIGH-POLYMER ADDITIVES ON VISCOSITY PROPERTIES OF OILS OF DIFFERENT CHEMICAL COMPOSITION D. S. Velikovskiy and L. V. Chervova p 1–13 refs (See N66-30273 17-06)

2. SYNTHESIS OF NEW ANTIOXIDANT ADDITIVES V. I. Isagulyants and N. A. Favorskaya p 14-26 refs (See N66-30274 17-06)

N66-30273# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

INFLUENCE OF CHEMICAL NATURE AND STRUCTURE OF HIGH-POLYMER ADDITIVES ON VISCOSITY PROPERTIES OF OILS OF DIFFERENT CHEMICAL COMPOSITION

D. S. Velikovskiy and L. V. Chervova In its Trans. of the Moscow Inst. of Petrochem. and Gas Ind. 20 Jul. 1965 p 1–13 refs (See N66-30272 17-06) CFSTI: HC \$2.00/MF \$0.50

The viscosity properties of polymers of unsaturated hydrocarbons, and polymers of unsaturated esters or esters of unsaturated acids were investigated. These were polyisobutylene and polymethacrylates of normal and isostructure. The properties of the three oils tested, and the viscositytemperature numbers of the oils with and without the additives, and with the additives in separate fractions are presented. Viscosity-temperature curves are also included. Among the conclusions are: (1) High polymer additives lead to sharp improvement of viscosity-temperature properties. (2) The chemical composition of the initial oils has little eftect on the viscosity-temperature properties but does influence the viscosity. (3) The additives possess the least thickening effect in the naphthene-paraffin fractions of the oils, and polymethacrylates produce a larger thickening effect in the heavy aromatic fractions. (4) The thickening effect of the polymers is greater in the oils with small viscosity, and the thickening effect decreases with increase of temperature. N.E.N.

N66-30274# Air Force Systems Command, Wright-Patterson AFB, Ohio. Foreign Technology Div.

SYNTHESIS OF NEW ANTIOXIDANT ADDITIVES

V. I. Isagulyants and N. A. Favorskaya In its Trans. of the Moscow Inst. of Petrochem. and Gas Ind. 20 Jul. 1965 p 14–26 refs (See N66-30272 17-06) CFSTI: HC \$2.00/MF \$0.50

The steps in the synthesis of bisphenol additives and their effectiveness in insulating oils and motor fuels are reviewed. The stages are identified as the alkylation of phenols of olefins in the presence of catalysts, and the condensation of alkylphenols with formaldehyde in the presence of hydrochloric acid. The synthesis of 2,2'-methylene-bis-(6-tert-butyl-4-methylphenol) and the synthesis of 2,2'-methylene-bis(4.6-di-tert-butyl-3-methylphenol) are given as illustrations. It was found that the new additives are as effective as the standard in most cases, and exceed the standard in some. It was also concluded that the synthesized additives almost double the yield of anitoxidant additives by utilizing a by-product in the production of the standard additive.

N.E.N.

N66-30409# Aerojet-General Nucleonics. San Ramon, Calif. ARMY GAS-COOLED REACTOR SYSTEMS PROGRAM. STUDIES OF HASTELLOY X CORROSION IN AIR AT 1900 AND 2000°F

J. S. Brunhouse Dec. 1965 31 p refs (Contract AT(10-1)-880)

(AGN-TM-414) CFSTI: HC \$2.00/MF \$0.50
An evaluation of the corrosion resists

An evaluation of the corrosion resistance of Hastelloy X sheet and tubing materials at 1900° and 2000°F in air was undertaken to establish limiting oxidation rates and physical metallurgical changes in an effort to define the limiting lifetime/temperature characteristics of this material. Test specimens were to be exposed in air for 100, 1000, 2500, 5000, 7500, and 10,000 hr durations or until the time limitations were established. It appears that Hastelloy X would probably be useful as a fuel cladding for reasonably long periods of time in 1900°F air although specific limiting criteria need to be developed. At 2000°F, however, rapid oxidation and strength decreases would probably limit the service life of the material to a few thousand hours.

N66-30414# Battelle Memorial Inst., Columbus, Ohio. Columbus Labs

DEVELOPMENT OF THORIUM-U²³³ IRRADIATION SPECI-MENS

Sidney G. Nelson and Ellis L. Foster, Jr. 10 Feb. 1966 24 p (Contract W-7405-ENG-92)

(BMI-1761) CFSTI: HC \$0.50/MF \$0.50

Fabrication techniques were developed and employed in the preparation of irradiation and calibration samples to be used in a program designed to obtain equilibrium values of 233U buildup in thorium in both fast and slow neutron-flux spectra. Twenty-two standard-calibration and 60 irradiation samples consisting principally of cores of thorium or thorium with additions of 233U, gold, or boron surrounded by reactorgrade zirconium cladding metallurgically bonded to the core were prepared. All specimens were evaluated after their preparation. The results of fabrication, ultrasonic and autoclave (corrosion) testing of samples, and metallographic examination of core materials are discussed.

Author (NSA)

N66-30679# Westinghouse Electric Corp., Pittsburgh, Pa. Atomic Power Div.

STRESS CORROSION IN ALLOYS FOR FUEL ELEMENT CLADDING-STAINLESS STEEL AND ZIRCALOY

K. C. Thomas and R. J. Allio Sep. 1965-136 p. refs (Contract AT(30-1)-3269)

(WCAP-3269-50) CFSTI: HC \$4.00/MF \$1.00

Studies were made to determine the factors responsible for the stress corrosion failure of stainless steel and Zircalov-4 fuel element cladding so that they can be controlled and the susceptibility to failure minimized. At room temperature, Zircalov-4 and crystal bar zirconium were found to be susceptible to brittle failure when stressed at 30,000-50,000 psi (2,109-3,515 kg/cm²) in aqueous solutions of up to 20 wt % ferric chloride, having a pH of 0.6. The time of failure decreased with increases in stress, increase in chloride solution concentration, and increase in hydrogen content of the metal. The failures observed in zirconium alloys containing hydrogen are explained by a mechanism that involves the initiation of cracks in the hydride phase by piled-up groups of dislocations. Increase in strain at a given temperature, and increase in temperature at a given strain increased the dislocation density of 304 stainless steel and Incoloy 800. The time to failure of 304 stainless steel, in boiling magnesium chloride solution, at 40,000 psi was less than 1 hr, whereas failure did not occur in Incoloy 800 in less than 350 hr under similar conditions.

N66-30771# Los Alamos Scientific Lab., N. Mex.
CORROSION TEST OF HASTELLOY N. INCONEL 600, AND
Hymu-80 EXPOSED TO UCI₃-KCI AT 900°C

B. J. Thamer 4 Feb. 1966 14 p refs
(Contract W-7405-ENG-36)

CFSTI: HC \$1.00/MF \$0.50

Static, isothermal tests up to 84 days in length were performed in the UCI₃-KCI eutectic of the highest uranium concentration at 900°C. The maximum penetration in any case was approximately 2 mils. The corrosion was impeded by a metallic reaction layer, the composition of which was principally uranium and nickel.

Author (NSA)

N66-30970# Pennsylvania State Univ., University Park. Mineral Industries Experiment Station.

THE STRESS CORROSION SUSCEPTIBILITY OF HIGH STRENGTH STEELS Final Report

John H. Hoke Jun. 1965 65 p (Contract AT(30-1)-3257)

(NYO-3257-1) CFSTI: HC \$3.00/MF \$0.75

A study was made of stress-hydrogen cracking problems for type 410 stainless steel. The results show that a general correlation exists between resistance to stress hydrogen cracking and notch sensitivity. However, considerable variability in behavior is possible in apparently similar materials and direct conversion of impact data to stress-hydrogen cracking susceptibility is not reliable. Thermal treatments which increase fracture toughness also increase resistance to stress-hydrogen cracking. High-purity vacuum-melted alloys have much higher resistance to stress hydrogen cracking than commercial air-melted alloys. The specific ingredients present responsible for such degradation are not known, but general steel making alloy additions may contribute in part.

N66-30971* # Oak Ridge National Lab., Tenn.
SNAP-8 CORROSION PROGRAM Quarterly Progress Report, Period Ending May 31, 1965

H. W. Savage, E. L. Compere, R. E. Mac Pherson, W. R. Huntley, and A. Taboada. Sep. 1965–22 p. refs (NASA Order C-220-A. Contract W-7405-ENG-26)

(NASA-CR-76382; ORNL-3859) CFSTI HC \$2 00/MF \$0.50 CSCL 18N

Operation of the final loop (14-4) in the present phase of the corrosion program with continuous cold trapping and deuterium injection was completed. The objectives were to ascertain differences in corrosion and mass transfer rates resulting from continuous cold trapping and to evaluate the effectiveness of cold trapping in reducing the H2 concentration in the NaK and thus the H2 effluent from the loop. The loop operated for 2659 hr at design temperature prior to shutdown. The hydride trap for collecting extraneous H2 operated for 500 hr, and the deuterium trap operated for 676 hr. The introduction of deuterium into the loop successfully served to distinguish between extraneous H2 and that injected into the loop. The deuterium data indicated that the equilibrium pressure in the loop is approximately the same as the calculated H₂ partial pressure for the SNAP-8 primary system in space $(2.4 \times 10^{-5} \text{ atm})$. Results of analytical examinations on all but loop 14-4 generally confirmed previous observations. Very little metal migration occurred in low-O2 content NaC at both temperature levels investigated; however, C migration was severe. Corrosion of the Fe-base alloys in the low-O2 content NaK was very low, as compared with corrosion of the chromized Hastelloy N, which ranged from three to seven times as great. Sheet tensile specimens of Croloy 9M were decarburized to a C content of approximately 0.002 to 0.01%. As shown previously, there was general deterioration of me-NSA chanical properties.

N66-31045# Ceskoslovenska Akademie Ved. Rez. Ustav Jaderneho Vyzkumu.

RADIATION RESISTANCE OF NaNO 2 SOLUTION USED TO INHIBIT CORROSION OF STEEL IN WATER [RADIACNI ODOLNOST ROZTOKU DUSITANU SODNEHO JAKO INHIBITORU VODNI KOROZE OCELI]

V. Zajic and V. Rypar 1965 26 p refs In CZECHOSLOVAKIAN (UJV-1453/65)

The radiation resistance of aqueous sodium nitrite, used to inhibit the corrosion of steel in solution, was studied in the VVR-S research reactor. After 50 hr in the reactor the sodium nitrite concentration of the solution decreased to a constant level and remained at that level for another one-hundred hours. The constant level depended on the initial concentration, but was always sufficient to inhibit corrosion (i.e., greater than 1 g/liter) when the initial concentration was greater than 7 g/liter. In some cases there was a slight regeneration of nitrite, with the NaNO2 concentration rising slightly after reaching a minimum value. For the VVR-S

fluxes the radiation intensity had little effect on the results.
 The volume of the solution likewise was not significant.
 The nature of the gas phase affected the results somewhat, with hydrogen and oxygen being better than nitrogen in protecting the sodium nitrite from the irradiation.

N66-31065# Rocky Flats Div., Dow Chemical Co., Golden, Colo.

THE CORROSION OF UNALLOYED AND ALLOYED PLU-TONIUM IN MONOBROMOBENZENE AND FREON-113 FLUOROCARBON

M. R. Dringman 14 May 1965 5 p (Contract AT(29-1)-1106) (RFP-744) CFSTI: HC \$1.00/MF \$0.50

The specimens were exposed for 26, 72, and 140 hr at 25°C. For the 26-hr period, monobromobenzene was 2.5 times more corrosive to the unalloyed Pu and 2 times more corrosive to the Pu-1 Ga alloy than the Freon-113.

N66-31070# Oak Ridge National Lab . fenn A STUDY OF LEAD AND LEAD-SALT CORROSION IN THER-MAL-CONVECTION LOOPS

G. M. Tolson and A. Taboada Apr. 1966 18 p refs (Contract W-7405-ENG-26)

(ORNL-TM-1437) CFSTI: HC \$1.00/MF \$0.05

Thermal-convection loop tests of several structural alloys were operated using circulating molten Pb. Screening tests were run to evaluate Croloy 2-1/4. ASTMA-106 carbon steel. AISI-type 410 stainless steel, and Nb-1%Zr. Two of the test loops contained surge tanks in which fluoride salts, Nb-1% Zr alloy, and graphite were placed in contact with the Pb to determine the compatibility of these materials in a direct-cooled lead system. All of the steel loops tended to plug in the cold regions because of formation of dendritic crystals of Fe and Cr. The hot-leg attack consisted of general surface removal with a few large pits extending to a greater depth. The Nb-1% Zr alloy showed no measurable attack; however. Nb crystals were found in the cold leg of a loop which operated 5000 hr at 1400°F with a ΔT of 400°F. Author (NSA)

N66-31092# Ohio State Univ. Research Foundation, Columbus.

MICROTOPOLOGY OF STRESS CORROSION CRACKING

T. J. Smith and R. W. Staehle Mar. 1966–14 p. refs. Presented at the 3d Intern. Conf. on Metallic Corresion, Moscow. May 1966

(Contract AT(11-1)-1319)

(COO-1319-36, CONF-660514-1) CFSTI: HC \$1.00/MF \$0.50
Thin films of four iron-nickel-chromium base alloys were examined in the electron microscope, exposed to boiling MgCl₂, and examined again. Compositions were as follows

were examined in the electron microscope, exposed to boiling MgCl₂, and examined again. Compositions were as follows (atomic per cent): Fe-15Ni-2OCr. Fe-15Ni-2OCr-1.5Si, Fe-15Ni-2OCr-0.1N. Fe-45Ni-2OCr. Each alloy was treated to obtain structures in the annealed, strained, and aged condition. Examination of specimens exposed to boiling MgCl₂ showed that stress exerts an important influence on the mode of cracking. In the absence of stress, attack tended to take the form of pitting; whereas, with stress the attack was highly oriented with the pitting being aligned in parallel crystallographic directions. The alloy containing phosphorus exhibited pitting having definite geometric shapes. Defect structure in the thin films appeared to have little correlation with established trends in cracking susceptibility nor with the mode of dissolution of thin films.

Author (NSA)

N66-31108# Southwest Research Inst., San Antonio, Tex. LUBRICATION RESEARCH FOR AERO PROPULSION SYSTEMS Phase Report No. 1, 1 Feb.-1 Sep. 1965 E. L. Anderson, B. B. Baber, and P. M. Ku Oct. 1965 42 p (Contract AF 33(615)-2384)

(Contract AF 33(615)-2384) (AFAPL-TR-65-118; AD-625485) CFSTI: HC \$2.00/MF \$0.50

Investigations were conducted to determine the possible effect of selected aircraft gas turbine engine lubricants and various solvents on the removal of carbonaceous deposits which had accumulated during service on the No. 2 bearing rear support of the J-57 engine. Six MIL-L-7808 type and one MIL-L-23699 type lubricants and six solvents were included in this program. Under the test procedures used, the deposits on the bearing support specimens were found to be quite stable in the presence of all seven lubricants investigated; no loosening or sloughing of the deposits was observed. Of the six solvents evaluated, only Cities Service 26 was found to be effective in removing significant amounts of deposits from the specimen. Flashing of liquid water, which had penetrated the deposit covered surface, loosened crinkled, blistered, and flaked deposits, but had no effect on smooth carbon or varnish. Author (TAB)

N66-31111# Ampex Corp., Redwood City, Calif. INTERACTION BETWEEN SELF-ACTING AND EXTERNALLY PRESSURIZED EFFECTS IN A FOIL BEARING Edward J. Barlow Oct. 1965 24 p. refs

(Contract Nonr-3815(00)(X))

(RR-65-12; AD-625762) CFSTI: HC \$1.00/MF \$0.50

For a foil bearing, the interaction between the flow of lubricant from feed holes and the flow in from the surrounding environment is calculated numerically. The results are applicable for a partial arc foil bearing whenever the feed holes are far from both ends of the warp angle. The report extends the linearized solution into the nonlinear range.

Author (TAB)

N66-31169# Titanium Metals Corp. of America, New York, DEVELOPMENT OF A STABLE-BETA TITANIUM ALLOY Tenth Quarter Report, 1 Oct.-31 Dec. 1964

D. B. Hunter [1964] 28 p refs (Contract DA-30-069-ORD-3743)

(WAL-TR-405/2-9; AD-623600) CFSTI: HC \$1.00/MF \$0.50

Evaluation of ageable beta alloys Ti-17V-2Fe-2Co-3Al, Ti-17V-7 .5Co-3Al and Ti-8Mo-8V-5Co-3Al continued with room and elevated temperature smooth and notched tensile tests, creep stability, oxidation and stress-corrosion tests. Ti-17V-7 .5Co-3Al aged more rapidly than Ti-8Mo-8V-5Co3Al; after aging for 8 hours at 900°F, Ti-17V-7, 5Co-3Al had a yield strength of 198,000 psi, whereas that of Ti8Mo-8V-5 Co-3 Al was only 158,000 psi. In smooth and notched tensile tests at 600°F, Ti-17V-7.5 Co-3Al displayed more strength than Ti-8Mo-8V-5Co-3AI because of its faster aging response in a given time. However, in creep stability tests and oxidation tests, Ti-8Mo-8V-5Co-3AI was the better alloy. Stress corrosion tests performed upon all five ageable beta alloys developed in this project showed that, in the annealed condition, Ti-8Mo-8V-2Fe-3Al was the most resistant to stress corrosion and Ti-17V-7 .5Co-3Al and Ti-8Mo-8V-5Co-3Al the most susceptible. Author (TAB)

N66-31323# Franklin Inst., Philadelphia, Pa. Research Labs.
AN ANALYTICAL AND EXPERIMENTAL STUDY OF THE
STRUCTUREBORNE AND AIRBORNE VIBRATION OF
ROLLING ELEMENT AND SLIDING SURFACE BEARINGS
Final Report

H. C. Rippel and J. H. Rumbarger 31 Mar. 1966 148 p refs (Contract NObs-77184)

(F-A2321; AD-633146) CFSTI: HC \$5.00/MF \$1.00

An analytical and experimental study was made of bearing noise and vibration generation and transmission. Presented herein is: summary of previously reported work, report

of most recent progress, conclusions drawn from all of the work accomplished, and recommendations for additional work. This final technical report coupled with the numerous periodic progress reports and special interim reports issued during the course of the program treats all aspects of the following three phases of effort: (a) analytical study of bearing noise and vibration generation and transmission. (b) design and construction of a test device to experimentally evaluate bearing structureborne and airborne vibration. and (c) experimental evaluation of bearing structureborne and airborne vibration.

Author (TAB)

N66.31332# Naval Research Lab., Washington, D. C. INVESTIGATION OF THE INTERGRANULAR CORROSION OF LEAD-ANTIMONY GRID ALLOYS Interim Report A. C. Simon 7 Apr 1966 28 p. refs

(NRL-6387; AD-633078) CFSTI: HC \$2.00/MF \$0.50

Microscopic examination of grid sections that had been in service for periods up to 10 years indicated that the ultimate cause of grid failure was an intergranular type of stress corrosion. While the overall corrosion resistance indicated the possibility of many additional years of service, this intergranular corrosion at isolated points had in many cases completely severed the grid member. It appeared that this corrosion was caused by a combination of stress developed in the corrosion product and microporosity in the casting. Two distinct corrosion mechanisms were observed. One type depended upon fairly acidic conditions, and the corrosion product was a hard film of lead dioxide which appeared to offer some protection to the underlying metal. The other type was generated where acid concentrations were low and was much more destructive. The corrosion product formed in this case varied from black to white and did not protect the underlying metal. Author (TAB)

N66-31544# Pennsylvania Univ., Philadelphia. Electrochemistry Lab.

HYDROGEN EMBRITTLEMENT RESULTING FROM CORROSION, CATHODIC PROTECTION AND ELECTROPLATING Quarterly Report, Dec. 1965-Feb. 1966

E. Gileadi and M. Fullenwider 7 Mar. 1966 13 p refs (Contract N156-46659)

(QR-3: AD-633402) CFSTI: HC \$1.00/MF \$0.50

The concentrations of hydrogen determined by the method of charging-up followed by pulling-out of hydrogen with the Barnacle Electrode were found to vary between 2 and 6×10^{-6} moles cm $^{-3}$, depending upon the conditions of polarization, these concentrations were calculated with an approximation, good for small times, the mathematics of which is outlined briefly.

N66-31686*# Mechanical Technology, Inc., Latham, N. Y. APPROACHES TO THE MEASUREMENT OF THE STEADY STATE AND DYNAMIC PERFORMANCE CHARACTERISTICS OF LIQUID-METAL LUBRICATED BEARINGS

E. B. Arwas, F. K. Orcutt, and B. Sternlight *In* Argonne Natl. Lab. Proc. of the Conf. on Appl. of High Temp. Instrumentation to Liquid-Metal Expt. [1965] p 331-364 refs (See N66-31671 18-33) CFSTI: HC \$6.75/MF \$3.25

(Contracts NASw-771; NASw-1021; AT(30-1)-3363)

This paper presents a discussion of the instrumentation necessary for fundamental investigations, as well as for bearing development and for monitoring of bearing performance in turbomachinery. It points out through examples, that considerable advances applicable to liquid metal lubrication can be accomplished with easy to use fluids that simulate some of the important properties of liquid metals and making use of instrumentation that is already developed. Indirect meas-

urements which, in conjunction with accepted theoretical relations, provide meaningful interpretation of bearing performance are also discussed. Author

N66-31864# Library of Congress, Washington, D. C. Aerospace Technology Div.

MOLYBDENUM DISULFIDE-BASE SOLID LUBRICANTS Surveys of Foreign Scientific and Technical Literature

Charles Blomberg 11 May 1966 15 p refs Transl. into ENGLISH from Khim. i Tekhnol. Topliv i Masel (Moscow). no. 11, 1965 p 41-45

(ATD-66-52) Since ordinary oils and greases cannot be used in these conditions of new technology, lubricants with new properties are now needed, i.e., solid lubricants. These are substances which possess a laminar structure and which ensure a sufficiently low friction coefficient between the coupled elements. Of the solid lubricants molybdenum disulfide, because of its special structure and a number of valuable properties, is finding increasingly wider application. The properties of molybdenum disulfide are discussed. The forms (powder, paste, solid lubricant coating and compact) in which solid lubricants can appear are listed and types which have been developed are enumerated. Paste concentrates are more convenient to use. Investigations are presented of the life and antifriction properties of solid film lubricants which are now industrially manufactured. The investigations were conducted in air, vacuum, and argon at extremely low temperatures and under radiation. The solid film lubricants which had the longest life are cited, as well as those in which the limit of working temperatures is increased to 500-600°C while in a vacuum of 10^{-5} torr and in argon; It was concluded that exposure to low temperatures and radiation with an integrated dose of $10^8 - 10^9$ radiation does not shorten the life of solid film lubricants.

N66-31918# Royal Aircraft Establishment, Farnborough (England)

FILLER REINFORCEMENT IN SILICONE POLYMERS. PART I: THE EFFECT OF FINELY DIVIDED MATERIALS ON LIQUID POLYMERS

D. K. Thomas and B. B. Moore Feb. 1966 26 p refs (RAE-TR-66061) CFSTI: HC \$2.00/MF \$0.50

The effect of finely divided materials on a polydimethyl silicone oil has been studied in the temperature range from 30° to 130°C using a variable shear viscometer. The results are consistent with the view that fine powders become solvated on being dispersed in the oil; if a sufficient number of particles are present per unit volume of mixture and if the interactions between them are sufficiently large, aggregation can occur to give a micro-gel structure. Those materials which are highly reinforcing in silicone elastomers show evidence of micro-gel structure at volume concentrations below 4%. For fillers of a given chemical type there are indications that the viscosity increment is dependent solely on mean particle size: there are further indications that carbon black is more effective in raising the viscosity than silica providing they are Author of comparable particle sizes.

N66-32126# Thompson Ramo Wooldridge, Inc., Cleveland, Ohio, TRW Electromechanical Div.

MERCURY RANKINE POWER CONVERSION PROGRAM: MERCURY MATERIALS EVALUATION AND SELECTION GFY 1964 Topical Report No. 29

James F. Nejedlik May 1965 53 p refs Prepared for Atomics International

(NAA-SR-6321; TRW-ER-6265) Available from AEC, Oak Ridge, Tenn.: \$3.45 (Declassified)

Reflux capsule corrosion screening tests were made of several nickel-, cobalt-, and iron-base alloys at 400–900°F. Classifications were made for use of these materials in a mercury environment on the basis of weight changes and penentration. Metal capsule tests at 800-1200°F indicated diffusion controlled corrosion for Haynes Alloy 25, PH15-7Mo and Croloy 9M. Weight losses and penetrations generally ranged on the average about four-fold greater than corresponding glass reflux capsule results. A thermal convection two-phase Haynes Alloy 25/PH15-7Mo loop which duplicated an earlier test substantiated corrosion data obtained previously. This showed that corrosion obtained in loop tests is reproducible. Inhibition of corrosion in a Haynes Alloy 25 loop was shown to be feasible. This was accomplished by two methods: a titanium-magnesium pretreatment; and a titanium source in a cold leg. Materials corrosion test results indicate a one-year life capability for the present MRPC reference materials.

N66-32137*# Sherwin-Williams Co., Cleveland, Ohio.
DEVELOPMENT OF IMPROVED CONVERSION COATING
FOR USE WITH CORROSION-INHIBITING WHITE PRIMER
Final Technical Report, 1 Mar.-15 Sep. 1965

Charles R. Martens and Roger S. Downing 6 Jun. 1966 16 p refs

(Contract NAS8-11788)

(NASA-CR-76638) CFSTI: HC \$1.00/MF \$0.50 CSCL 11F

An improved chromate conversion coating was developed to increase the corrosion resistance in a white paint primer, and to withstand testing in a salt spray atmosphere. Experimental results on preliminary data obtained were checked by a statistically designed experiment, and reinforced the conclusion that a suitable chemical pre-treatment of the aluminum alloy improves the performance of a subsequently applied chromate conversion coating. A salt spray life of 237 hours for the optimum coating schedule was predicted, which suggests the process described could be the means of satisfactorily protecting the alloy.

N66-32514# Rensselaer Polytechnic Inst., Troy, N. Y. Corrosion Research Lab.

PREDICTING THE INTERGRANULAR CORROSION OF AUSTENITIC STAINLESS STEELS

W. D. France, Jr. and N. D. Greene Oct. 1965 29 p refs Presented at 21st NACE Conf., St. Louis, 15-19 Mar. 1965 (Contract Nonr-591-17)

(TR-3; AD-624017) CFSTI: HC \$2.00/MF \$0.50

The precise environmental conditions necessary for the intergranular corrosion of austenitic stainless steels have been determined by potentiostatic methods. Intergranular corrosion of sensitized 18Cr–8Ni stainless steel only occurs in limited potential regions. These results have been used to develop a new method for rapidly predicting the intergranular corrosion tendencies of various sulfuric acid environments. It is also shown that sensitized stainless steels may be used in many media without the occurrence of intergranular attack.

Author (TAB)

N66-32538# Lockheed Missiles and Space Co., Sunnyvale, Calif.

LUBRICATION EVALUATION

Francis J. Clauss Apr. 1966 125 p refs

The performance of various types of lubricants on ball bearings operating in a simulated space environment was evaluated, including oils, greases, bonded films of solid lubricants, and composites of self-lubricating materials. The lubricants were evaluated on lightly loaded, instrument sized ball bearings operating at 8000 rpm. Simulated space conditions included vacuum to 10-9 torr, temperatures up to 300°F.

and radiation doses up to 4×10^7 R. General conclusions reached include: operation in vacuum can drastically reduce lubricant lifetime below that obtained for operation in air; oils and greases provide the best type of lubrication for ball bearings exposed to vacuum; ball bearing lifetime with oil lubrication increased with viscosity, which was most pronounced at low viscosities: bearing failures were preceded by lubricant failures; and ball bearings with retainers of reinforced Teflon operated successfully in vacuum for over 10,000 hr with light bearing loads. Tests were also conducted to evaluate the performance of various bonded solid film lubricants under conditions of sliding friction in air, and results were tabulated. The friction and adhesion of metals is also discussed, in reference to cold welding under vacuum conditions of space.

1965 IAA ENTRIES

A65-13892 =

SUPERCONDUCTIVE BEARINGS.

Theodor Buchhold (General Electric Co., Advanced Technology Laboratory, Schenectady, N.Y.).

American Society of Mechanical Engineers, Winter Annual Meeting, New York, N.Y., Nov. 29-Dec. 4, 1964, Paper 64 - WA/PID-9. 5 p.

Members, \$0.50; nonmembers, \$1.00.

Comparative study of two superconductive magnetic-bearing principles. The first principle keeps the total flux constant as current changes with a changing bearing gap. The leakage flux of the coil circuit limits the bearing stiffness. The second principle keeps the total amperestures constant when an additional fixed reluctance is inserted in the magnetic path. The bearing stiffness, which can be made large by using small gaps easily incorporated into the bearing design, is not seen to be influenced by the coil leakage.

(Author) M. L.

A65-14065 =

LUBRICATION REVIEW.

(American Society of Mechanical Engineers, Winter Annual Meeting, Philadelphia, Pa., Nov. 17-22, 1964.)
ASME, Transactions, Series D - Journal of Basic Engineering, vol. 86, Dec. 1964, p. 883-906. 461 refs.

Review of information in publications relating to several aspects of the field of lubrication, summarizing many of the results of current theoretical and experimental investigations. A list of 462 references is presented. Themes or patterns of current programs relating to lubrication are indicated. Each reviewer presents comments on the essential elements or results reported by the investigators. The areas reviewed include fluid-film lubrication, developments in lubricants, metalworking lubricants, automotive lubricants, gear lubrication, boundary lubrication, rolling element bearings, and friction and wear.

A65-14459

PREDICTING PART FAILURES.

Ray C. Johnson (Worcester Polytechnic Institute, Worcester, Mass.).

Machine Design, vol. 37, Jan. 7, 1965, p. 137-142. 20 refs. Summary of certain conservative policies for predicting modes of failure and selecting reasonable values to be used in design equations. Criteria for the avoidance of fatigue breakage and excessive wear are presented under theories of failure for ductile and brittle materials. Correction factors for the fatigue strength in reversed bending and in shear are given. A table shows typical values of the ratio $y = S_{\rm gc}/S_{\rm e}$ (where $S_{\rm gc}$ is the sheariff fatigue strength, corrected for surface finish, size, and miscellaneous effects, and $S_{\rm e}$ is the endurance limit from reversed bending tests of a ferrous metal, or the fatigue strength from reversed bending tests of a nonferrous metal for 500×10^6 cycles, corrected for surface finish, size, and miscellaneous effects) and its inverse for a number of brittle cast irons and ductile steels, as calculated from the data of Sines and Waisman.

A65-14622

A STRESS CORROSION TEST FOR STRUCTURAL SHEET MATERIALS.

G. J. Heimerl and D. N. Braski (NASA, Langley Research Center, Hampton, Va.).

Materials Research and Standards, vol. 5, Jan. 1965, p. 18-22.

Discussion of a self-stressed sheet specimen (that does not require fixtures), developed for stress-corrosion testing of titanium-alloy and stainless-steel sheet materials proposed as skin materials for a supersonic transport. A compression test developed for early detection of stress-corrosion cracking is described, and some results obtained with salt-coated titanium-alloy sheet materials exposed to temperatures of 550°F over a period of 10,000 hrs are presented.

V.P.

A65-14713

ON THE DETERMINATION OF STACKING FAULT ENERGIES IN AUSTENITIC STAINLESS STEEL BY THE METHOD OF EXTENDED NODE MEASUREMENTS.

A. Rönnquist and D. Dulieu (Swedish Institute for Metal Research, Stockholm, Sweden).

British Journal of Applied Physics, vol. 15, Dec. 1964, p. 1569-1571, 6 refs.

Investigation of the accuracy with which small changes in stacking fault energy may be detected. Extended nodes formed in two l8:ll austenitic steels were measured. From the high-purity steel the nodes have a mean radius of $1600 \pm 350 \text{ Å}$. Addition of 0.2% P did not produce a significant change in the radius. A systematic correlation was found between the radius of the curved partial and its orientation in the slip plane. (Author) F.R.L.

A65-14748

MAGNETIC AND ELECTROSTATIC BEARINGS.
J. D. McHugh (General Electric Co., Advanced Technology Laboratories, Schenectady, N.Y.).

Machanical Engineering, vol. 87, Jan. 1965, p. 45-48. 12 rets.

Review of bearings that rely on forces created by magnetic and electrostatic fields to provide load suspension in the absence of lubricants. Operation in vacuum and at extremes of temperature is thus readily afforded. Diamagnetic, magnetic, superconducting, and electrostatic bearings are discussed. As dictated by Earnshaw's theorem, a key problem in most of these systems is stability. Furthermore, the absence of solid contact or of fluid films between the surfaces does not ensure zero friction. Magnetic losses due to eddy currents and hysteresis are found to impede rotation just as conventional friction forces do, albeit somewhat more slowly. One estimate of the friction force in a well-designed magnetic-bearing suspension predicts that ten years of elapsed time is required for the system to coast down to 37% of its initial speed.

W. M. R.

A65-14788

EFFECTS OF CONTACT FRICTION ON THE ENERGY CRITERIA FOR CYCLIC STRENGTH AND THE PHYSICAL FATIGUE LIMIT. I. A. Oding and V. N. Stepanov. (Akademiia Nauk SSSR, Doklady, vol. 156, June 21, 1964, p. 1333 1335.)

Soviet Physics - Doklady, vol. 9, Dec. 1964, p. 501, 502. 7 refs. Translation.

Discussion of contact friction as a factor influencing: (1) fatigue physical limit; and (2) cyclic-strength energy criteria α and N_k , on the basis of which the fatigue destruction diagram is plotted. Tests with different types of steel show that contact friction significantly reduces the cyclic strength of the metal. A diagram of testing results is presented.

A65-14875

THERMAL STABILITY OF ANTIWEAR ADDITIONS IN LUBRICATING OILS [TERMICHESKAIA STABIL'NOST! PROTIVOIZNOSNYKH PRISADOK V SMAZOCHNYKH MASLAKH],

A. M. Ravikovich, E. I. Petiakina, and P. P. Bagriantseva. Khimiia i Tekhnologiia Topliv i Masel, vol. 9, Dec. 1964, p. 44-47. 14 refs. In Russian.

Testing of the antiwear properties and thermal stability of: (1) 50% zinc dialkyl dithiophosphate (DF-11); (2) 50% zinc dialkyl dithiophosphate with alkyls Cg to C12 from a propylene-butylene polymer (VNII NP-354); (3) zinc dialkyl dithiophosphate, an industrial product (Santaliub-493); and (4) 25% concentrate of zinc arylphosphinate (EFO-Zn). The procedure is described and the results are discussed. It is shown that the temperature of decomposition of these additions, ranging from 170 to 250°C, depends on the nature of the lubricant and the presence of other additions.

A65-14877

PROBLEM OF THE METHODS OF ESTIMATING THE ACIDALKALINE PROPERTIES OF OILS WITH ADDITIONS [K VOPROSU O METODAKH OTSENKI KISLOTNO-OSNOVNYKH SVOISTV MASEL S PRISADKAMI].
V. S. Luneva.

Khimiia i Tekhnologiia Topliv i Masel, vol. 9, Dec. 1964, p. 56-61. 17 refs. In Russian.

Discussion of the relative efficiency of titration with indicators, and potentiometric titration in determining the reaction of oils with additions which have often diverse acid-alkaline properties. The effects of a large number of additions, used in the USSR, on the pH of motor oils are examined and the suitability of both titrations for a pH determination is assessed.

V. Z.

A65-14886

SEALING IN ENGINEERING.

Karel Holan (National Shipbuilding Enterprise, Czechoslovakia). IN: INTERNATIONAL CONFERENCE ON FLUID SEALING, 2ND, CRANFIELD, ENGLAND, APRIL 6-8, 1964, PROCEEDINGS. [A65-14878 05-15]

Edited by B. S. Nau, H. S. Stephens, and D. E. Turnbull. Harlow, British Hydromechanics Research Association, p. E5-73 to E5-88. 5 refs.

Presentation of the theory and design of screw-type clearance seals. Clearance and contact seals in general are discussed. A hydrostatic seal design is described in detail, and calculations of the flow of liquid through the seal and of friction losses are presented. It is stated that such a seal should be suitable for a turbo-compressor, for example. (Author) M.M.

A65-14894

EFFECT OF SHAFT ECCENTRICITY ON OIL SEAL.
H. Ishiwata (Nippon Oil Seal Industrial Co., Ltd., Tokyo, Japan)
and F. Hirano (Kyushu University, Fukuoka, Japan).
IN: INTERNATIONAL CONFERENCE ON FLUID SEALING, 2ND,
CRANFIELD, ENGLAND, APRIL 6-8, 1964, PROCEEDINGS.
[A65-14878 05-15]

Edited by B. S. Nau, H. S. Stephens, and D. E. Turnbull. Harlow, British Hydromechanics Research Association, p. H2-17 to H2-32; Discussion, p. H-73, H-76 to H-81.

Experimental investigation of the occurrence of leakage through the oil seal due to the wobbling caused by shaft eccentricity. It is stated that the results obtained clearly indicate the followable limit of the oil seal lip with the eccentric motion. In addition, it is noted that the followable limit is independent of shaft speed in the practical range and that it cannot be estimated quantitatively, unless the visco-elastic property of the seal material is taken into consideration. In addition, it is found that the shape, material, and interference of the seal lip have great influence on the depression of the sealing ability caused by the dynamic behavior of the seal lip.

(Author) M.M.

A65-15126

PRINCIPLES OF STRESS CORROSION CRACKING AS RELATED TO STEELS.

J. F. Bates and A. W. Loginow (United States Steel Corp., Applied Research Laboratory, Monroeville, Pa.). (National Association of Corrosion Engineers, Northeast Regional Conference, Niagara Falls, N.Y., Oct. 22, 1963.) Corrosion, vol. 20, June 1964, p. 1891-1971. 31 refs.

Teneral discussion of stress-corrosion cracking phenomena. Possible mechanisms causing the cracking or embrittlement are considered to be electrochemical dissolution, alloying, and hydrogen embrittlement of steels in solutions and liquid metals. Aspects of the electrochemical mechanism and the alternate mechanical-electrochemical mechanism are examined. Stress corrosion cracking in ferrous alloys and proposed stress corrosion mechanisms as they relate to these alloys are considered. The effects of steel composition, mechanical properties, heat treatment stress level, cold work, welding, and corrosive environment on the susceptibility to stress corrosion cracking are discussed. It is considered that stress relieving, cathodic protection, alloy selection, and modification of environment are useful preventive measures.

F.R.L.

A65-15517

BRUSHES OF AIRCRAFT ELECTRIC GENERATORS [SZCZOTKI DO SAMOLOTOWICH MASZYN ELEKTRYCZNYCH].

Kwiryn Zuchowicz.

Instytut Lotnictwa, Prace, no. 23, 1964, p. 55-62. 10 refs. In

Discussion of the performance of brushes of airborne electric generators. The causes for the rapid wear of brushes in high-altitude conditions are examined, and the protection of the commutator surface is discussed. Various types of friction-diminishing agents are noted.

V.P.

A65-15679

FUNDAMENTALS OF HYDRODYNAMIC LUBRICATION AND THEIR CONSEQUENCES IN DESIGN ENGINEERING. II.

F. H. Theyse (Delft, Technological University, Machine Elements

Laboratory, Delft, Netherlands). Wear, vol. 7, Nov. -Dec. 1964, p. 477-497.

Second part of a review of hydrodynamic lubrication, emphasizing that lubricant films, extremely thin relative to the principal dimensions of the shaft and bearing, can be produced by this technique. The scale effect, an optimum cylindrical bearing, the instability of radial, hydrodynamic, fully lubricated slider bearings, and the power loss and heat balance in the standard radial hydrodynamic sleeve bearing are discussed at length. Vogelpohl's volume law is considered essential for a rapid determination of whether a full film lubrication can be achieved in a particular radial bearing.

A65-15680

THE BURNISHING OF MOLYBDENUM DISULPHIDE ON TO METAL SURFACES.

R. R. M. Johnston and A. J. W. Moore (Commonwealth Scientific and Industrial Research Organization, Div. of Tribophysics; Melbourne, University, Melbourne, Australia).

Wear, vol. 7, Nov.-Dec. 1964, p. 498-512. 13 refs.

Research supported by H. C. Sleigh, Ltd.

Discussion of the process of burnishing MoS2 onto copper surfaces under controlled conditions of load, surface finish of the substrate, and relative humidity of the surrounding atmosphere. The film density measured by X-ray fluorescence is found to increase first approximately exponentially and then linearly with the number of strokes. The exponential portion depends on the surface finish and represents the filling of surface asperities with MoS2. The slope of the linear portion depends on the load and relative humidity and represents the deposition of MoS2 on itself. Prediction of the size of surface irregularities is seen possible from film growth rates. X-ray diffraction shows that the films obtained in dry air have fewer particles oriented parallel to the basic plane, which agrees with the lower bulk density for such films as predicted from the burnishing results. Observations are made concerning the occurrence of different types of bonding between MoS, particles in dry and humid conditions.

A65-15681

BOUNDARY LUBRICATION OF CHROME STEEL. Robert S. Owens and Richard W. Roberts (General Electric Co., Research Laboratory, Schenectady, N. Y.). Wear, vol. 7, Nov. -Dec. 1964, p. 513-515.

Discussion of the use of iodine-anisole and iodine-anisole-turbine oil as boundary lubricants for chrome steel, instead of turbine oil alone. A reduction of the coefficient of friction and a marked decrease in wear are found to result from the substitution. The surface profiles of wear obtained with the lubricants are diagramed.

V. 2

A65-15683

THE BEHAVIOUR OF FILMS ON SLIDING SURFACES.

R. T. Spurr (Ferodo, Ltd., Chapel-en-le-Frith, Derby, England), (Institute of Physics and Physical Society, Conference on Some Aspects of Surface Behavior, Bristol, England, Sept. 17, 1963.)

Wear, vol. 7, Nov.-Dec. 1964, p. 551-557. 11 refs.

Discussion of effects of surface films on seizure, pressure welding, sintering, friction, and boundary lubrication of metals. The experiments, conducted for the most part on small-scale equipment, are amplified by tests with wheeled 20-ton trolleys in the later stage of the study. The materials tested as lubricants tend by their effects and behavior to fall into three groups: (1) water, carbon tetrachloride and n-heptane, slightly reducing μ ; (2) fatty acids, causing a drastic μ drop, down to about 0.1; and (3) polar materials like nitropropane, producing intermediate reduction of friction. The work is presented as a small part of a larger study of rail-wheel adhesion.

A65-15941

SOLIDS AND SOLID LUBRICATION.

M. J. Devine, E. R. Lamson, J. P. Cerini, and R. J. McCartney (U. S. Naval Air Engineering Center, Aeronautical Materials Laboratory, Philadelphia, Pa.). Lubrication Engineering, vol. 21, Jan. 1965, p. 16-26. 44 refs.

Navy-sponsored research.

Presentation of a review covering solid-lubricant classification, methods of preparation, examples of engineering applications, and techniques for studying the different properties of solid lubricants, with extensive literature references. The results of new laboratory research are described, showing the degree of influence exerted by bearing design, lubricant-bearing interaction, and metal surface pretreatment on the wear properties of solid-lubricated surfaces (Author) F.R.L.

A65-16168

PROTECTION AGAINST CORROSION OF ROTATING ASSEMBLIES OF REACTOR UNITS OF TURBOMECA MARBORE II ON NORD 2500 [PROTECTION CONTRE LA CORROSION DES ENSEMBLES TOURNANTS DES GROUPES REACTEURS D'APPOINT TURBOMECA MARBORE II SUR NORD 2500].

M. Vialatte (Services Techniques de l'Armée, Paris, France), J. Szydlowski (Turboméca S.A., Bordes, Basses-Pyrénées, France), and A. Mihail (Bureau Véritas; Génie Maritime, Paris, France). Technique et Science Aéronautiques et Spatiales, May-June 1964, p. 211-220, 8 refs. In French.

Experimental investigation of the corrosion-proofing of the rotating assemblies of reactor units. The subjects considered are: (1) requirements of corrosion protection, (2) tests of reproducibility of the phenomenon, (3) protective coating tests on specimens, (4) protective coating tests on cylinders, (5) coatings adopted, (6) preparation of parts to corrosion protection, (7) bench testing, (8) flight testing of parts protected by chromium-plating, (9) flight testing of parts protected by nickel- and chromium-plating, (10) testing of parts protected by aluminum-plating, and (11) other applica-

A65-16238

STUDY OF STRUCTURAL ALLOYS BELONGING TO THE Al-Zn-Mg SYSTEM.

Yoshio Baba and Yoshihiko Sugiyama (Sumitomo Light Metal Industries, Ltd., Technical Dept., Tokyo, Japan). Light Metals (Tokyo), Nov. 1964, p. 371-393. 8 refs. In Japanese, with summary in English.

Experimental investigation of the welding crack sensitivity, strength, and resistance to stress corrosion cracking of an Al-Zn-Mg system containing $4\sim8\%$ Zn, $0.6\sim3.0\%$ Mg and a small amount of Cr or Zr when welded with three types of filler metals (Al-5% Zn-2% Mg-2% Si-0.1% Ti, 5056 and same alloy). The findings are: (1) among the three, the products welded by a filler metal of 5056 alloy show the least tendency to zone cracking from welding heat. Regardless of filler metal, the welding cracks increase in inverse proportion to the decrease of Mg content in the parent metals, but are not influenced by the Zn content in the above-mentioned range. Welds of the Al-Zn-Mg alloy in the range of higher content of Zn and Mg are apt to crack under bending stress; (2) all of the welded products can make almost maximum recovery of strength within 90 days of natural aging after welding; (3) the resistance to stress corrosion cracking of the welds in the alloy containing both 0.17%Cr and 0.10% Zr is rather superior to that of 0.2% Cr alone. It seems that the resistance to stress corrosion cracking of the welds is lower than that of the parent metals. M. M.

A65-16273

NEW FORMS OF BEARING - THE GAS AND THE SPIRAL GROOVE BEARING.

E. A. Muijderman (Philips' Gloeilampenfabrieken, Philips Research Laboratories, Eindhoven, Netherlands). Philips Technical Review, vol. 25, Oct. 2, 1964, p. 253-274. 14 refs.

Discussion of types of bearing in which friction and wear are reduced to very small proportions by the agency of a viscous fluid (lubricant) that serves to maintain a small and more or less constant clearance between the bearing surfaces. A "contactless" bearing of this kind does not necessarily have to be lubricated with

a liquid, such as oil; a gas is also effective. Particular attention is given to gas-lubricated bearings which have been a practical possibility for the past 15 years or so. Examples of gas bearing applications may be found in turbojet engines, gyroscopic compasses, nuclear reactors, and dentists drills. On the basis of the self-acting contactless bearing, a new type - the spiral groove bearing - has been developed. Its main advantage is its very low coefficient of friction. A flat thrust bearing of the spiral groove type has a friction coefficient only about one-seventh that of a Michell bearing under comparable optimum conditions. Besides a low coefficient of friction, a variant in which the grooves are cut into a spherical cap has a load-carrying capacity about 25 times greater than that of a corresponding Michell bearing. Small spiral groove bearing having diameters of a few millimeters, and lubricated with grease, promises to be useful in small domestic and other appliances. (Author) D. H.

A65-16350

FLOW OF A NONLINEARLY VISCOPLASTIC MEDIUM BETWEEN TWO PLATES [TECHENIE NELINEINO-VIAZKO-PLASTICHESKOI SREDY MEZHDU DVUMIA PLASTINKAMI].

A. A. Tamonov.

IN: INVESTIGATIONS OF ELASTICITY AND PLASTICITY. II [ISSLEDOVANIIA PO UPRUGOSTI I PLASTICHNOSTI. SBORNIK 2]. Edited by L. M. Kachanov.

Leningrad, Izdatel'stvo Leningradskogo Universiteta, 1963, p. 203-211. In Russian.

Discussion of the problem of a flow between two unparallel plates, generalized to cover the case of a medium whose plastic viscosity is exponentially dependent on the deformation rate. The discussion is motivated by the observed fact that curved flows of viscoplastic lubricants may not obey the Shvedov-Bingham equation when the relationship between strains and deformation rates is relatively weak. Expressions for pressure in lubricant layers are derived, and an analysis of lubricant behavior is carried out showing that a nonlinearly viscoplastic lubricant is superior to common viscous lubricants in lessening and leveling the pressure in the lubricating layer.

A65-16468

BALL AND ROLLER BEARINGS.

Lubrication, vol. 1, Dec. 1964, p. 149-164.

Extensive discussion and description of types of anti-friction bearings and their lubrication. Following a brief description of principles, several types of ball, roller, and needle bearings are described and illustrated. The functions of lubricants, either oil or grease, are listed, and methods of maintaining lubricant levels are discussed, as well as factors affecting choice of oil or grease for the lubricant. Oil-jet lubrication is used for aircraft gas turbines. Grease lubrication involves selection of types of grease, all of which have various advantages and limitations. Ball, roller, and needle bearing maintenance is considered. Bearing materials, and shields and seals, are discussed, and the methods of manufacturing antifriction bearings are briefly examined.

A65-16663

MOLECULAR PHYSICS OF BOUNDARY FRICTION [MOLEKULIAR-NAIA FIZIKA GRANICHNOGO TRENIIA]. A. S. Akhmatov.

Moscow, Gosudarstvennoe Izdatel'stvo Fiziko-Matematicheskoi Literatury, 1963. 472 p.

The monograph, first of its kind in Russian, seeks to fill the gap in the literature on the subject, by summarizing modern knowledge of the phenomena occurring on the surface of solids (metals) known as boundary friction. Both the theoretical and technological aspects of the subject are treated in the eleven chapters devoted to the discussion of molecular forces, the structure and behavior of metallic surfaces, the structure and deformation of hydrocarbon chain molecules, crystalline hydrocarbons, the classical theory of transition layer, liquid and solid boundary layers, the physical properties of lubricant boundary layers, boundary friction as such, applications of the molecular physics of boundary layers to technological problems, and technique and equipment used in the study of boundary friction. An extensive list of literature, tables of physical properties of normal paraffins, saturated fatty acids, primary normal alcohols, and a table of molecule dipole momenta of some

hydrocarbons are supplied. The monograph is intended for scientists engineers, postgraduates, and advanced students dealing with the physics of metals or working in related fields.

A65-16816

LUBRICATION.

Dudley D. Fuller (Columbia University, Dept. of Mechanical Engineering, New York, N.Y.; Franklin Institute, Philadelphia,

International Science and Technology, Jan. 1965, p. 18-27.

Review of the principles underlying the application of exotic lubricants that are neither slippery nor viscous but are able to withstand the extremes of temperature, high vacuum, and ionizing radiation encountered in the space environment. Most involve fluid film lubrication in which the sliding surfaces are completely separated by the lubricant. There is a trend toward the use of fluids or gases already present in a system - e.g., the same mercury that drives a turbine designed to produce electricity from solar heat lubricates the bearings, and a nuclear reactor pump that circulates a slurry of acid and hard radioactive particles uses a slurry of nitric acid and 5% sand for lubrication. Such methods eliminate seals, the need for servicing, and the risk of contamination. However, problems arise in connection with the generally low loadbearing capacity, operation at high speed, unstable motion of the shaft within its bearing clearance, and turbulence in the fluid film. Several design solutions for appropriate bearings are presented. W. M. R.

A65-16908

AIRCRAFT MATERIALS [AVIATSIONNOE MATERIALOVEDENIE]. A. E. Leikin, E. S. Porotskii, and B. I. Rodin. Moscow, Izdatel'stvo Mashinostroenie, 1964. 460 p. In Russian.

This textbook is designed as an aid to technicum students in the selection of various aircraft materials for a specific application. It describes the characteristics of the principal metallic and nonmetallic materials used in aircraft structures and reviews the methods used to investigate the properties of alloys, radiographic and other flaw-detection methods, methods of thermal and thermochemical treatment, and methods of protection against corrosion.

A65-16986

IMPROVING ULTRASONIC MACHINING RATES - SOME FEASIBILI-TY STUDIES.

W. Pentland and J. A. Ektermanis (Therm, Inc., Ithaca, N.Y.). (American Society of Mechanical Engineers, Production Engineering Div., and American Society of Tool and Manufacturing Engineers, Conference and Exposition, Detroit, Mich., Apr. 20-24, 1964, Paper 64 - Prod-4.)

ASME, Transactions, Series B - Journal of Engineering for Industry, vol. 87, Feb. 1965, p. 39-46; Discussion, Paul Rosenthal (Cornell Aeronautical Laboratory, Inc., Buffalo, N.Y.), p. 46.

Contract No. AF 33(600)-42921.

Investigation of the effects that several different work material and process variables have on removal rates for ultrasonic machining. The phenomena considered include hardness and applied stress of work material, slurry temperature, grit size, slurry application, tool vibration amplitudes, low-temperature and stress-corrosion embrittlement of work material, and liquid-metal corrosion effects on work material. It is postulated that three basic mechanisms are involved in ultrasonic machining: (a) microchip removal due to plastic deformation by shear; (b) microparticle removal by fracture of hard or work-hardened material; and (c) displacement of material at the treatment surface without removal, by plastic deformation.

A65-17005

A NEW SMALL-SCALE METHOD FOR MEASURING FUEL THER-MAL STABILITY.

F. Burggraf and M. Shayeson (General Electric Co., Flight Propulsion Div., West Lynn, Mass.).

Society of Automotive Engineers, International Automotive Engineering Congress, Detroit, Mich., Jan.- 11-15, 1965, Paper 987A.

Members, \$0.75; nonmembers, \$1.00.

Research supported by the USAF, Coordinating Research Council, NASA, and FAA.

Discussion of a miniature single-tube heat exchanger, termed Minex, for making precise measurements of the fuel-side heattransfer coefficient. The conditions of turbulent flow, temperature level, and heat flux are maintained to simulate flight at high Mach numbers. The decay of the fuel-side coefficient, due to the deposition of varnish film at high temperatures, is measured over extended time intervals. The rate of decay of the coefficient as a function of temperature is a quantitative measurement of the thermal stability of the fuel.

A65-17229

THE MECHANISM OF OXIDATION, HYDROGENATION, AND ELECTROCHEMICAL OXIDATION ON SOLID CATALYSTS. IX -FUNCTIONING OF MEMBRANE ELECTRODES (MEMBRANE-TYPE CATALYSTS) IN THE ELECTROCHEMICAL OXIDATION OF GASES AND IN OTHER HETEROGENEOUS PROCESSES. O. K. Davtian (Odesskii Gosudarstvennyi Universitet, Odessa, Ukrainian SSR).

(Zhurnal Fizicheskoi Khimii, vol. 38, Apr. 1964, p. 825.) Russian Journal of Physical Chemistry, vol. 38, Apr. 1964, p. 449-7 refs. Translation.

Examination of the principles of operation of membrane gas electrodes (membrane-type catalysts). Two methods of producing an active three-phase boundary are considered: (1) by applying a water-repellent treatment to the electrode, and (2) by creating a pressure difference between reactant gases and electrolyte. It is noted that the artificial water-repellent treatment must be carried out so that the electrode acquires a definite wettability gradient; the greatest concentration of hydrophobic substance in the electrode must be on the gas side. When an electrode operates on the basis of a pressure difference between gas and liquid, a single-layer electrode and an electrode having an inactive sealing layer must be "nonhomoporous." The mechanism of the successive stages in current-producing processes (chemisorption of gas, migration of chemisorbed species to active portions of three-phase boundaries, and ionization of chemisorbed species) is discussed. A precise definition of the concept of an active three-phase boundary is given.

A65-17481

FRICTION OF SOLID FILM LUBRICANTS BEING DEVELOPED FOR USE IN SPACE ENVIRONMENTS.

Vern Hopkins and Donald Gaddis (Midwest Research Institute, Engineering Materials Section, Kansas City, Mo.).

(American Society of Lubrication Engineers, Annual Meeting, 19th. Chicago, Ill., May 26-28, 1964.)

Lubrication Engineering, vol. 21, Feb. 1964, p. 52-58; Discussion, M. J. Devine (U.S. Naval Air Engineering Center, Aeronautical Materials Laboratory, Philadelphia, Pa.), p. 58. Contract No. NAS 8-1540.

Description of the evaluation of inorganic solid-film lubricants being developed for space environments. Friction coefficients are given for many potential lubricants subjected to a light load and temperature from 80 to 400°F in both a normal air atmosphere and in a vacuum at 10-6 torr. The principal criterion for judging the performance of a potential lubricant film was the friction coefficient, which must be less than that obtained for a 0.001-in. -thick film of gold. It is stated that the following lubricant films exhibited lower overall friction coefficients than a 0.001-in.-thick gold film: (1) MoS₂ + graphite + bismuth/sodium silicate; (2) MoS₂ + graphite + gold/sodium silicate; (3) MoS₂ + graphite + molybdenum/sodium silicate; (4) MoS₂ + graphite/sodium silicate; and (5) MoS₂ + graphite/sodium phosphate. (Author) M. M.

A65-17527

CAVITATION IN THIN FILMS OF LUBRICANT.

J. B. Hunt (Southampton, University, Dept. of Mechanical Engineering, Southampton, England).

The Engineer, vol. 219, Jan. 29, 1965, p. 221, 222. 5 refs. Proposal that the pitting that causes the wear of gear teeth, the wear in bearing materials, or any wear of the "pitting" nature found where thin films of lubricant are employed, could be due to cavitation. It is shown that cavitation and the resulting damage can occur when lubricant films of similar thickness to those existing between gear teeth and bearing faces are subjected to amplitudes and frequencies of vibration similar to those caused by the expansion of the hydraulic wedge as two gear teeth faces separate, or by the

natural vibration of the gear teeth, or by the radial oscillation of shafts in bearings. (Author) D.H.

A65-17805

ELECTROCHEMICAL SEPARATION OF TUNGSTEN AND TITANIUM CARBIDE.

L. A. Mashkovich, A. F. Kuteinikov, and T. P. Maslova. (Zavodskaia Laboratoriia, vol. 30, July 1964, p. 788-791.)
Industrial Laboratory, vol. 30, Feb. 1965, p. 987-989. Translation.

Investigation of polarization processes occurring during electrochemical phase analysis of cermet alloys containing tungsten metal and titanium carbide. It was found that the best medium for separation is 5% NaOH. The effect of anions on the potentials of tungsten metal and titanium carbide was also investigated.

(Author) A. B. K.

A65-17897

LUBRICANTS FOR RAPID FIRE AUTOMATIC WEAPONS.

J. Messina, L. F. Peale, H. Gisser (U. S. Army, Frankford Arsenal, Philadelphia, Pa.), and K. R. Fisch (USAF, Materials Central, Wright-Patterson AFB. Ohio).

(NLGI Annual Meeting, 31st, Pittsburgh, Pa., Oct. 1963.)

NLGI Spokesman, June 1964. 6 p.

Description of a semifluid grease and an oil blend which permit satisfactory operation of the multibarrel, high-speed, rapid-firing M61 gun over the temperature range -65° to +260°F. The composition of the semifluid grease is: 89.0% bis (2-ethylhexyl) sebacate, 1.5% barium dinonyl naphthalene sulfonate, 0.5% 2,6, di-tert-butyl-p-cresol, 1.0% diisopropyl phosphite, and 8.0% lithium stearate. The oil blend contains 94.5% bis (2-ethylhexyl) sebacate, 1.5% barium dinonyl naphthalene sulfonate, 0.5% 2,6, di-tert-butyl-p-cresol, 0.5% diisopropyl phosphite, and 3.0% tricresyl phosphate. In laboratory evaluations both lubricants exhibit effective anti-wear and extreme-pressure properties, as well as oxidation and storage stability and rust-protection ability. Extensive firing tests over the temperature range from -65° to +260°F showed that both lubricants permitted adequate functioning. The semifluid lubricant, however, permitted a longer relubrication cycle and, as a result, was selected over the oil blend for lubrication of the M61 gun.

(Author) A.B.K.

A65-1805

THE LUBRICATION MECHANISM OF TRICRESYL PHOSPHATE ON STEEL.

Douglas Godfrey (California Research Corp., Richmond, Calif.). (American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D.C., Oct. 13-16, 1964, Paper 64 LC - 1.)

ASLE Transactions, vol. 8, Jan. 1965, p. 1-10; Discussion, Michael J. Furey (Esso Research and Engineering Co., Linden, N. I.) and Chrance Alberton (Borga-Warner, Corp., Roy C., Ingers

ASLE Transactions, vol. 8, Jan. 1965, p. 1-10; Discussion, Michael J. Furey (Esso Research and Engineering Co., Linden, N.J.) and Clarence Albertson (Borg-Warner Corp., Roy C. Ingersoll Research Center, Des Plaines, Ill.), p. 10, 11; Author's Closure, p. 11. 45 refs.

Discussion of the results of a literature survey showing that the lubricating mechanism of tricresyl phosphate (TCP) is not clear. The theory of polishing by formation of an iron-iron phosphide eutectic is not supported. Wear reduction by the formation of iron phosphate is seen to be a more likely explanation. Experimental work is discussed which shows that, when steel sliding on steel is lubricated with TCP, a film consisting of a mixture of FePO4 and FePO4 ·2H2O is formed. Other friction and wear experiments, as well as film analyses, are shown to support the phosphate mechanism. (Author) M. L.

A65-18052

EFFECTS OF P^{32} IMPURITIES ON THE BEHAVIOR OF TRICRESYL PHOSPHATE-32 AS AN ANTIWEAR ADDITIVE.

E. E. Klaus and H. E. Bieber (Pennsylvania State University, Dept. of Chemical Engineering, Petroleum Refining Laboratory Div., University Park, Pa.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D.C., Oct. 13-16, 1964, Paper 64 LC - 2.)

ASLE Transactions, vol. 8, Jan. 1965, p. 12-19; Discussion, Louis R. Stark (Monsanto Chemical Co., St. Louis, Mo.) and Michael J. Furey (Esso Research and Engineering Co., Linden, N.J.), p. 19, 20; Authors! Closure, p. 20. 14 refs. Contract No. AF 33(657)-10374.

Investigation using commercial tricresyl phosphate-32 (TCP-32) to illustrate the involvement of P³² in physical adsorption and chemical reaction at the bearing surface. Chromatographic analyses of three commercial batches of TCP-32 indicate the presence of appreciable quantities of polar P³² impurities. Thin-layer and iron-powder chromatography are studied as analytical tools for the quantitative measurement and separation of TCP-32 from its P³² impurities. The effect of the polar P³² impurities on physical adsorption on the bearing surface is illustrated as a function of polar P³² impurity concentration. The effect of a variety of surface-active additives on P³² adsorption at the bearing surface is also studied. The wear properties of TCP, acid phosphates, and acid phosphites in several base stocks are investigated to illustrate the effects of polar impurities on the antiwear properties of TCP. The presence of P³² chemically combined with the bearing metal is suggested by the wear studies with TCP-32. A definite relationship is shown to exist between effective antiwear behavior and a high level of P³² chemically combined with the worn bearing surface.

(Author) M. L. (Author) M. L.

A65-18053

CHEMISTRY OF BOUNDARY LUBRICATION OF STEEL BY HYDRO-CARBONS.

R. S. Fein and K. L. Kreuz (Texaco, Inc., Research Center, Beacon, N.Y.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D.C., Oct. 13-16, 1964, Paper 64 LC - 4.)

ASLE Transactions, vol. 8, Jan. 1965, p. 29-37; Discussion, R. S. Owens, L. E. St. Pierre, and R. W. Roberts (General Electric Co., Research Laboratory, Schenectady, N.Y.), p. 37; Authors' Closure, p. 37, 38. 21 refs.

Investigation of boundary lubrication by hydrocarbons using a

Investigation of boundary lubrication by hydrocarbons using a four-ball machine with 52100 steel specimens at 0.35 cm per second sliding velocity. The chemical type of the hydrocarbon and the amount of oxygen dissolved in it are found to be important. Low molecular weight liquid-aromatic hydrocarbons exposed to ambient air are found as effective as straight mineral oils in controlling wear, while saturated hydrocarbons are found to be generally poorer. Benzene and cyclohexane are used as model lubricants in the study of oxygen concentration in vapor and liquid phase. Both high and low oxygen-to-hydrocarbon ratios favor high wear and inorganic wear products. Certain intermediate ratios are seen to result in low wear and the formation of an oxygenated organic "friction polymer" which prevents metallic contact. The results are discussed in the light of available information concerning catalytic reactions at clean metal surfaces. (Author) M. L.

A65-18054

BOUNDARY LUBRICATION BEHAVIOR OF ORGANIC FILMS AT LOW TEMPERATURES.

J. A. Russell, R. A. Burton, P. M. Ku (Southwest Research Institute, San Antonio, Tex.), and W. E. Campbell (Rensselaer Polytechnic Institute, Troy, N.Y.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D.C., Oct. 13-16, 1964, Paper 64 LC - 6.)

ASLE Transactions, vol. 8, Jan. 1965, p. 48-57; Discussion, H. Gisser (U.S. Army, Frankford Arsenal, Pitman-Dunn Institute for Research, Philadelphia, Pa.), p. 58; Authors' Closure, p. 58. 12 refs.

Contract No. AF 33(657)-11088.

Discussion of sliding experiments on metals lubricated with thin films of hydrocarbons, fatty acids, and synthetic lubricants in helium and air. The temperature range -195 to +200°C is investigated. For copper and iron pairs lubricated with pure organic compounds, a marked rise in friction and wear is found to occur at the melting point of the film material. From just below the melting point down to -195°C, there is an increase in friction but negligible wear, indicating increased shear strength of the solid film. This is substantiated by contact-resistance measurements. The behavior of fatty acids in dry air indicates that oxygen promotes the formation of higher-melting soap and defers the friction rise to the melting point of the soap. Humidity is found to displace the friction rise to an even higher temperature. (Author) M. L.

A65-18055

EFFECTS OF LUBRICANTS ON TRANSITION TEMPERATURES.
R. S. Fein (Texaco, Inc., Research Center, Beacon, N.Y.).
(American Society of Lubrication Engineers and American Society
of Mechanical Engineers, Lubrication Conference, Washington,
D.C., Oct. 13-16, 1964, Paper 64 LC - 7.)

ASLE Transactions, vol. 8, Jan. 1965, p. 59-66; Discussion,
David Tabor (Cambridge, University, Cavendish Laboratory,
Cambridge, England) and Vern Hopkins (Midwest Research Institute,

Kansas City, Mo.), p. 66, 67; Author's Closure, p. 67, 68.

22 refs. Confirmation and extension of studies of transitions between low and high friction and wear in the four-ball machine, using lubricants consisting of noncyclic hydrocarbons and dilute solutions of stearic acid and cetane and squalane. These materials show transition temperatures which are the same for AISI 4140 and 52100 steels and which increase with increasing ratio of speed to load. Hydrocarbons with cyclic structures are found to show similar performance with 4140 steel and, at high speed-load ratios, with 52100 steel. However, with the 52100 steel at low speed-load ratios. there is a speed-load ratio independent transition temperature. Neat stearic acid with 52100 steel is found to show similar performance to the cyclic hydrocarbons with the speed-load ratio independent transition temperature agreeing with pin-on-disk machine results on other steels in the literature. These results and results obtained from the literature are discussed using a mechanism involving viscous trapping of lubricant between interacting load-

A65-18057

supporting asperities.

NEW METHODS OF INVESTIGATION OF LUBRICANT PROPERTIES.

Iu. S. Zaslavskii, G. I. Shor, I. A. Morozova, F. B. Lebedeva, E. V. Evstigneev, and R. N. Shneerova (All-Union Scientific Research Institute for Oil Refining, Moscow, USSR).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D.C., Oct. 13-16, 1964, Paper 64 LC - 9.)

ASLE Transactions, vol. 8, Jan. 1965, p. 78-84. 6 refs.

Investigation of the mechanism of the true detergent action of motor-oil additives. The sorption of the charged additive particles on the surface of the carbonaceous products of fuel combustion and oil oxidation, as well as on the surface of engine metal parts, is studied. The data confirm the impression that the charged additive particles characterized by low E₀ values should have a greater relative sorption ability as compared to the particles with higher \mathbf{E}_0 values. The conclusion is reached that oil solutions of the tested additives possessing true detergent and deflocculating properties are anhydrous electrolytes, as their dissociation degree sharply increases with the decrease in the additive concentration. They obey Ohm's law, and they are electrolyzed, practically all of the additive depositing on the electrodes as decomposition products. A greater mobility of the cation particles as compared with the anion particles has been found. A radiotracer method for the simultaneous evaluation of antiwear and detergent properties of motor oils and a radiotracer method for the evaluation of the chemical activity of EP additives are discussed.

A65-18331

FRICTION AND WEAR.

E. Rabinowicz (Massachusetts Institute of Technology, Cambridge, Mass.).

Product Engineering, vol. 36, Mar. 15, 1965, p. 95-99.

Extension of the adhesion-plastic deformation theory by the addition of quantitative surface energy terms. The existence of surface attraction forces at the junctions is acknowledged but not taken into account in the conventional theory. The predictions of the modified theory are found to be accurate for a number of metals and nonmetals. Numerical examples are given and a friction chart is presented from which the general rule emerges that, for low friction, lubricated surfaces should be metals, while unlubricated surfaces should be nonmetals.

W.M.R.

A65-18627

ADHESION BETWEEN FRETTING STEEL SURFACES.

B. Bethune and R. B. Waterhouse (Nottingham, University, Dept. of Metallurgy, Nottingham, England).

Wear, vol. 8, Jan. -Feb. 1965, p. 22-29.

Experimental investigation of the effects of the hardness, varied both by composition and heat treatment, of the steel bridges on their adhesion to, and their damaging effect, vis a vis fatigue, on a cold-drawn mild steel, in view of the importance of this initial stage of the fretting process in the initiation of fatigue cracks. It is stated that, from the photomicrographs, it would appear that the extensive welds formed in the early stages occur as a result of disruption of surface oxide films. These are then broken by fatigueproducing distortion of the surfaces. It is stated that the severe fatiguing in this operation probably initiates the fatal fatigue crack. The two roughened surfaces then continue to rub together, and the asperities butt against one another forming the smaller but quite strong welds, which are in turn broken by fatigue, initiating further fatigue cracks. It is noted that the 0.56% C steel in both conditions, although it showed no adhesion in the early stages of fretting as measured by the rather crude experimental method, probably did in fact develop small welded areas which were sufficient to initiate fatigue cracks.

A65-18628

(Author) M. I

FRETTING CAUSES FAILURE OF A WC-Co-COATED SLIDE BEARING.

J. F. Hildebrand and W. H. Watson (General Dynamics Corp., General Dynamics/Fort Worth, Fort Worth, Tex.).
Wear, vol. 8, Jan. -Feb. 1965, p. 34-42. 7 refs.

Description of a leakage problem encountered in hydraulic actuators because of wear in the rod-gland bearing which consisted of a chromium-plated steel rod and a silver-plated steel gland. To improve the actuator life, the gland was changed to 440C stainless steel and the rod was plasma arc-coated with WC-Co. It is stated that this combination of materials gave a marked improvement in the wear resistance under long-stroke cycling but created a new problem associated with rapid short-stroke cycling. Fretting induced by the rapid short-stroke cycling caused the cobalt-rich phase of the rod coating to cold-weld to the gland. Then fatigue failures in the WC-Co coating allowed metal transfer in the bearing and subsequent scoring of the rod. An economical remedy was found in a woven Teflon-fiber liner bonded to the bearing surface of the gland. (Author) M.M.

A65-18629

A NOTE ON THE RELATION BETWEEN THE ABRASION RESISTANCE AND THE HARDNESS OF METALS.

C. Rubenstein (Manchester College of Science and Technology, Dept. of Mechanical Engineering, Manchester, England).

Wear, vol. 8, Jan. - Feb. 1965, p. 70-72.

Presentation of comments on the results reported in 1958 by Khruschov of an investigation to determine the dependence of the wear resistance of metals on their hardness by rubbing them against an abrasive surface. The metal specimens traversed a spiral path over the abrasive surface so that contact between specimen and unused abrasive was maintained throughout. To eliminate the influence of fluctuations in the abrasive ability of different regions of the abrasive surface, the wear of any specimen was determined simultaneously with that of an arbitrarily chosen standard material tested on a different part of the same abrasive surface under identical conditions. It is stated that Khruschov chose as standard material a lead-tin alloy, the composition of which was not quoted. From the reciprocal of the slope of the resulting $\mathbf{E_m}$ vs $\mathbf{H_m}$ line, the hardness of this alloy may be deduced to have been 7.2 kg/mm², which is said to be of the right order of magnitude but rather lower than the hardness quoted by Tabor for Pb 30: Sn 70 solder (BHN = 12 kg/mm²). An analysis is performed which is said to provide an explanation of the experimental observations quoted by Khruschov and to suggest that a better presentation of data would be given by plotting $E_{\rm m}$ against the relative hardness defined by $H_{\rm m}/H_{\rm g}$ which would yield a straight line passing through the origin and having a slope of unity, this relation being independent of the material chosen as standard. It is pointed out that the wear behavior of heat-treated steels does not conform with the equation M.M. given by Khruschov for these materials.

A65-18784

CADMIUM-TITANIUM PLATING - AN IMPROVED PROCESS FOR PROTECTING HIGH STRENGTH STEELS.

Dewey M. Erlwein and Robert E. Short (Boeing Co., Airplane Div., Finishes and Sealants Group, Materials Technology Unit, Seattle, Wash, I.

Metal Progress, vol. 87, Feb. 1965, p. 93-96.

Description of a process for protecting high-strength steels from corrosion by codepositing cadmium with up to 0.5% Ti from an aqueous solution. This technique produces a coating which is said to be more corrosion-resistant than conventional bright cadmium plating and to have less tendency to embrittle high-strength steel. Another advantage of this process is the decrease in baking time necesary to drive off the hydrogen. One possible reason suggested for low hydrogen input is the ability of titanium to pick up and retain the gas, so that that much less enters the steel during plating. Another possible explanation is that the titanium is chemically reduced at the surface of the part by nascent hydrogen, which would result in less hydrogen being available to enter the steel.

A. B. K.

A65-18793

DEGRADATION OF POLYMERIC COMPOSITIONS IN VACUUM TO MMH2 IN EVAPORATION AND SLIDING FRICTION EXPERI-MENTS.

D. H. Buckley and R. L. Johnson (NASA, Lewis Research Center, Cleveland, Ohio).

Cleveland, Oniol. (Society of Plastics Engineers, Annual Technical Conference, Atlantic City, N.J., Jan. 27-30, 1964.)

SPE Transactions, vol. 4, Oct. 1964. 9 p. 14 refs.

Determination of the volatility of solid polymer compositions at temperatures to 1100°F, including investigation of their friction characteristics and the mechanisms of wear and decomposition in lubrication experiments. Polymer compositions examined included: fluorocarbon telomers, polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCFE), polyimide, and epoxy compositions. The quantity and nature of the decomposition products formed in the process of polymers sliding on various substrates are determined both by the substrate material and the polymer. Scission of the carbonto-fluorine bond due to heat was noted in glass-filled PTFE and a reduction in decomposition was observed in copper-filled PTFE. Unfilled polvimide was found to be superior to unfilled PTFE as a slider material in vacuum at ambient temperatures. Fillers did not improve friction characteristics but did reduce wear, in some instances, as much as a factor of 100. Evaporation rates were found to be related to the molecular weights of the materials. Friction, wear, and evaporation results are given graphically.

A65-18794

THE DETERMINATION OF THE COEFFICIENT OF FRICTION AT ELEVATED TEMPERATURES USING A PLANE-STRAIN COM-PRESSION TEST.

J. A. Bailey (Georgia Institute of Technology, School of Mechanical Engineering, Atlanta, Ga.) and A. R. E. Singer (Wales, University, University College of Swansea, Dept. of Metallurgy, Swansea, Wales).

Institute of Metals, Journal, vol. 92, 1964-1965, p. 378-380. 8 refs.

Determination of correction factors, based on coefficient of friction at elevated temperatures, for stress-strain curves. The plane-strain compression test employed a hydraulic press to produce compression at constant velocity; loads were measured by means of a strain-gage bridge network, preamplifier, and doublebeam oscilloscope. Data, accurate to ±2%, were recorded photographically. The basic yield curve of the material (super-purity aluminum strip specimens) was determined and compared with the pressure/reduction curve obtained for each of four lubricants (cadmium oxide, molybdenum disulphide, graphite, and graphite plus cadmium oxide) by a "single-indentation" technique. The coefficient of friction was then calculated by applying the analysis of Takahashi and Alexander. The effects of temperature and percentage deformation on coefficient of friction for the four lubricants are plotted and discussed. The results on all the lubricants are in rough agreement with the work of Orcutt et al., although direct comparisons could not be made because of the different methods used. It is found that friction initially increases with deformation and then decreases; the decrease possibly results from lubrication by metal debris but the mechanism is not well understood.

A65-19259

CORROSION OF METALS BY LIQUID FLUORINE. Alan H. Singleton, James F. Tompkins, Jr., Sidney Kleinberg (Air Products and Chemicals, Inc., Research and Development

Dept., Allentown, Pa.), and C. J. Sterner (American Cryogenics, Inc.).

I & EC - Industrial and Engineering Chemistry, vol. 57, Mar. 1965, p. 47-53. 18 refs.

Contract No. AF 33(616)-6515.

Investigation of the corrosive action of fluorine on metals in a dry system free from contaminants. It is found that under these conditions, corrosive action is negligible. Stress corrosion and cracking are not likely to occur with metals exposed to liquid fluorine. Passivation of small metal systems with low pressure or dilute fluorine gas is not a requisite for safe operation; however, this technique does increase the probability of safe operation and is recommended as a final treatment prior to liquid exposure. It has been shown that hydrocarbons invariably form either elemental carbon or combustible liquids when exposed to gaseous fluorine; hence, extreme care must be exercised in eliminating such contaminants prior to gas exposure. It has been shown that exposure of metals to low pressure muorine gas results in the formation of a very thin film of metal fluoride, on the order of 10 Å thick. Essentially no deterioration of tensile properties of metals takes place from exposure to liquid fluorine for a one-year period.

A65-19706

ROTORACE GYROS.

F. Errington and J. J. Jones (Sperry Gyroscope Co., Ltd., Bracknell, Berks., England).

Institution of Mechanical Engineers, Symposium on Gyros, London, England, Feb. 25, 26, 1965, Paper 13. 16 p. 9 refs.

Discussion of "Rotorace" gyros, whose average gimbal friction is reduced by the use of special ball bearings, in which a third, intermediate race is rotated forwards and backwards over several revolutions, while the intermediate race in the companion bearing is rotated in the opposite direction. The main large-scale application is for aircraft directional gyros and attitude reference systems. Wander rates of 0.50 - 0.10/hr are being achieved. A single-degree-of-freedom miniature Rotorace gyro of inertial quality has also been developed, intended to be used in the first large-scale application of inertial navigation in commercial airlines. The rotation of the bearings makes them less sensitive to the effects of brinelling and dirt, thus improving the reliability of the gyros and reducing manufacturing difficulties and cost. (Author) F.R.L.

A65-19790

CORROSION BEHAVIOR UNDER TENSION OF ALUMINUM ALLOY SECTIONS AND FORGED PARTS [TENUE A LA CORROSION SOUS TENSION DES PROFILES ET DES PIECES DE FORGE EN ALLIAGE D'ALUMINIUM L

R. Le Grand (Aluminium Français, Paris, France). (Association Française des Ingénieurs et Techniciens de l'Aéronautique et de l'Espace, Commission des Matériaux, Paris, France, Mar. 9, 1964, Lecture.)

Technique et Science Aéronautiques et Spatiales, Sept. -Oct. 1964, p. 399-407. 8 refs. In French.

Examination of corrosion under tension, which has been observed to be a cause of fracture of aluminum alloy parts from the theoretical, experimental, and practical points of view. Observed types of corrosion are classified as either (1) intergranular, which manifests itself suddenly with a reduction of dimensions of the part in healthy metal; or (2) corrosion under tension, which manifests itself by fracture of the part, the structural condition of the material not always being characterized by a very distinct corrosion along the joints of the grains. Although the two types of corrosion are identified and described, it is pointed out that they are interdependent. According to results obtained on different high-resistance alloys, which were cross-checked, and conform to general corrosion theory, it is considered that chemical composition is of importance, and that the conditions of heat treatment have a predominant effect in corrosion under tension. In the case of certain alloys, the influence of the orientation of the fibers in relation to stress plays F. R. L. an essential part.

A65-20015 =

EFFECTIVENESS OF POLYSILOXANES AS ADDITIVES TO PETROLEUM LUBRICATING OIL UNDER VARIOUS FRICTION REGIMES [EFFEKTIVNOST' POLISILOKSANOV KAK PRISADOK K NEFTIANYM MASLAM PRI RAZLICHNYKH REZHIMAKH TRENHAL.

M. I. Nosov and G. V. Vinogradov (Akademiia Nauk SSSR, Moscow, USSR).

Khimiia i Tekhnologiia Topliv i Masel, vol. 10, Mar. 1965, p. 52-54. 5 refs. In Russian.

Study of the effect of sliding velocity and temperature on the lubricating properties of solutions of polyethylsiloxane in petroleum and its naphthene-paraffin and aromatic fractions. It is found that elevated temperatures increase the activity of the polysiloxane admixture. On increasing the sliding velocity, the lubricating properties of solutions of polysiloxanes in hydrocarbon media deteriorate, while at lower velocities these properties improve. The synergistic effect, which is most strongly evidenced in 3 to 6% solutions, is believed to be due to decomposition of the polysiloxane during friction leading to the formation of a hard layer of silicon on which is superimposed a much softer layer of oxide (or some other material of favorable composition) that acts effectively as a grease.

A65-20033

FACTORS AFFECTING THE PERFORMANCE OF RESIN BONDED SOLID FILM LUBRICANTS.

S. F. Calhoun, F. S. Meade, G. P. Murphy, and R. L. Young (U.S. Army, Rock Island Arsenal, Rock Island, Ill.). Lubrication Engineering, vol. 21, Mar. 1965, p. 97-103. 17 refs.
Summary of the results of work, done by the Petroleum

Products Unit of the U.S. Army Rock Island Arsenal Laboratory, Rock Island, Ill., over a period of twelve years, to improve the lubricating ability and corrosion protection afforded by resinbonded solid-film lubricants. The study was restricted to steel surfaces at ambient temperatures and pressures. Certain metallic oxides and salts were found to act synergistically with the molybdenum disulfide to improve its performance. Graphite improved the wear and EP properties of the lubricant, but promoted galvanic corrosion. An epoxy-phenolic resin system in a 3: 7 ratio with the solids gave the best overall results. A grit-blasted zinc-phosphated surface gave the best wear life, but a cadmium-plated zincphosphated surface gave the best corrosion protection. Studies of cure time and temperature revealed that optimum conditions differed for wear life and corrosion protection. A compromise was arrived at which is said to give both reasonably good wear life and corrosion protection. Contamination of solid-film lubricants by conventional lubricants is indicated as being detrimental to both wear life and corrosion protection. Solvent removal of the contaminating lubricant alleviates this problem. Rust coverage of up to 50% had no appreciable effect upon the wear life of the solid-lubricant-coated (Author) F.R.L. surface.

A65-20034

IMPROVED BOUNDARY LAYER LUBRICATION BEHAVIOR. R. B. Bossler, Jr. (Kaman Aircraft Corp., Bloomfield, Conn.) Lubrication Engineering, vol. 21, Mar. 1965, p. 104-111. 5 refs. Contract No. DA-44-177-TC-716.

Discussion of an empirical investigation of the concept that a surface composed of noninterconnected lubricant reservoirs can have less boundary-layer friction than a smoother surface with an apparent lay. Starting-friction tests were conducted with test pieces simulating the components of a specific sliding bearing application. Various combinations of surfaces produced by grinding and by glass bead peening were tested for the loads, lubricant, and material involved. A combination of noninterconnected reservoir surface finishes was selected which had higher rms and lower starting friction than the ground surface finishes tested. The actual bearing application with the production-ground finishes had measured starting torque values ranging from 54 ft-lb to 84 ft-lb; the most common value was bb ft/lb. With the rougher noninterconnected reservoir surface finishes, the measured starting torque ranged from 30 ft/-1b to 54 ft/1b, the most-common value was 42 ft/1b. Some speculations on the associated lubrication mechanism are offered.

(Author) F.R.L.

A65-20040

DEVIATION OF A GYROSCOPIC TURN INDICATOR CAUSED BY DRY FRICTION [DEVIACE GYROSKOPICKÉHO ZATÁČKOMĚRU ZPŮSOBENÁ SUCHÝM TŘENÍM]. Jan Šklíba.

Zpravodaj VZLÚ, no. 4, 1964, p. 47-49. In Czech.

Extension of a solution to a linear equation describing the motion of a gyroscopic turn indicator to a more general case in which its axis is subjected to the action of a dry friction moment. A general solution of this equation is obtained which can be used to make a correct choice of parameters of the instrument. The validity of the solution is verified by a complete mathematical

A65-20115 =

HYDROMAGNETIC THEORY FOR SQUEEZE FILMS.

J. B. Shukia (Institute of Higher Technology, Dept. of Mathematics, Khanpur, India).

(American Society of Mechanical Engineers, Lubrication Symposium Cleveland, Ohio. Apr. 28-30, 1664, Paper 64 - LubS-12.) ASME, Transactions, Series D - Journal of Basic Engineering vol. 87, Mar. 1965, p. 142-144.

Discussion of the hydromagnetic theory for squeeze films of conducting lubricants, with special reference to the roller and slipper type of bearings. The effect of magnetic field has been theoretically investigated, and it is shown that the load capacity, pressure, and time of approach can be increased by applying the (Author) M.M. magnetic field in the system.

A65-20150

SOLID LUBRICANTS.

John W. Shier and Arthur J. Stock (Acheson Industries, Inc., Acheson Colloids Co., Port Huron, Mich.). Product Engineering, vol. 36, Mar. 29, 1965, p. 66-71.

Description of materials and bonding methods for dry-film lubrication. Dry-film lubricants consist of a thin lubricating film of bonded particles backed up by a hard substrate, and are useful for control surfaces in aircraft and for other inaccessible or clean applications subjected to intermittent motion or loads. Lubricants reviewed are graphite, sulfides, selenides, tellurides, mica, polytetrafluoroethylene (PTFE), PTFE telomers, fluorinated ethylene propylene, chlorinated compounds, and metals. Bonding methods covered are particle-bonding, resin-bonding, and salt-PK. based bonding techniques.

A65-20347

DECOMPOSITION OF HYDROGEN PEROXIDE VAPOUR ON METAL SURFACES AND THE ROLE OF HYDROGEN PEROXIDE IN ATMO-SPHERIC CORROSION.

I. L. Roikh, I. P. Bolotich, V. V. Ordynskaia, S. G. Belitskaia, and L. N. Koltunova (Odessa Institute of Technology, Odessa, Ukrainian SSR).

(Zhurnal Fizicheskoi Khimii, vol. 38, June 1964, p. 1588.) Russian Journal of Physical Chemistry, vol. 38, June 1964, p. 858-

10 refs. Translation.
Use of a combination of photographic and optical polarization methods in an investigation of the atmospheric corrosion of magnesium, aluminum, and iron in order to determine the role of hydrogen peroxide in the oxidation of metals. The quantity of H2O2 decomposed in the oxidation of these metals was determined as a percentage of the quantity of H2O2 formed, and the results were tabulated. A mechanism for the atmospheric corrosion of metals is discussed; it involves the formation of H2O2 followed by a stage of combined decomposition and desorption. A relation was obtained between the number of Fe3O4 molecules formed and the number of H2O2 molecules evolved.

A65.20349

CORROSION OF TITANIUM IN SULPHURIC AND HYDROCHLORIC ACID SOLUTIONS DURING A.C. POLARISATION. Iu. N. Mikhailovskii (Academy of Sciences, Institute of Physical

Chemistry, Moscow, USSR).

(Zhurnal Fizicheskoi Khimii, vol. 38, June 1964, p. 1612.) Russian Journal of Physical Chemistry, vol. 38, June 1964, p. 873-875. Il refs. Translation.

Study of the electrochemical and corrosion behavior of titanium in $10 \, \mathrm{N} \, \mathrm{H}_2 \mathrm{SO}_4$ during polarization with a 10-cps ac squarewave. As a result of the recurrent activation of the metal during the cathodic, half-period, vigorous dissolution of titanium takes place in the subsequent anodic half-period. It is found that the maximum corrosion current observed with titanium during ac polarization in $\mathrm{H}_2 \mathrm{SO}_4$ and HCl solutions is always higher than the current which obtains on dc polarization. This is related to the presence of a slow stage in the formation of the passivating adsorption layer. The amount of titanium dissolving in a single anodic half-period is proportional to the square root of the duration of the half-period. This suggests the presence of a diffusion stage whin controls the rate of formation of the passivating adsorption layer. (Author) D.H.

A65-20692

ELOXAL METHODS IN AIRCRAFT CONSTRUCTION [ELOXAL-VERFAHREN FÜR DEN FLUGZEUGBAU].

VERFARREN FOR DEN FLUGZEUGBAU, Jürgen Weigel (Hamburger Flugzeugbau GmbH, Hamburg, West Germany).

Luftfahrttechnik Raumfahrttechnik, vol. 11, Mar. 1965, p. 77-80. In German.

Description of a technique developed by Hamburger Flugzeugbau GmbH, for covering aluminum or aluminum-alloy aircraft surfaces with an Eloxal layer as a protection against corrosion. In combination with a densification bath, the proposed technique has proved to have alleviated the drawbacks of earlier Eloxal coating methods, arising from thermal, chemical, mechanical, and dynamic loading. The Eloxal layer produced by this technique is corrosion-resistant, ductile, thermochemically stable, and does not crack when the surface is deformed.

V.P.

A65-21245

THE DYNAMICALLY LOADED RADIAL SLIDING BEARING OF ARBITRARY CROSS SECTION [DAS DYNAMISCH BELASTETE RADIAL-GLEITLAGER BELIEBIGEN QUERSCHNITTS].

T. Someya (Karlsruhe, Technische Hochschule, Institut für Maschinen-Konstruktionslehre und Kraftfahrzeugbau, Karlsruhe, West Germany).

Ingenieur-Archiv, vol. 34, no. 1, 1965, p. 7-16. 7 refs. In German. Research supported by the Bundeswirtschaftsministerium and the Forschungsvereinigung Verbrennungskraftmaschinen.

Development of a method for calculating the track curve made by the pivot center point along the play of a cylindrical sliding bearing of arbitrary cross section, for the case of a given time-variable load. It is shown that for the type of bearing considered, a general bearing-clearance function, \overline{H} (ϕ), appears in the Reynolds equation for circular cylindrical bearings. The Reynolds equation is solved for the boundary condition of a zero mean oil pressure at the bearing rims. The solution is used to determine the value of the pressure. A system of two differential equations in implicit form is derived for the motion of the pivot center point. The equations are brought to an explicit form by iteration (preferably by computer) and are numerically integrated. The results of the analysis are seen to be of interest to designers of internal combustion engines and turbines.

A65-21650 =

HOW SCIENTISTS SEEK TO SAVE BILLIONS OF DOLLARS BY CORROSION RESEARCH.

W. C. Herron (Lockheed Aircraft Corp., Lockheed-Georgia Co., Research Center, Marietta, Ga.).

Lockheed Georgia Quarterly, vol. 2, Spring 1965, p. 8-ll, 24.

Discussion of work on methods to protect aircraft from corrosion. Covered are research into the causes of corrosion within integral fuel tanks, stress corrosion, and general stress corrosion methods such as lamellar and exfoliation corrosion. Coating methods for protecting against corrosion are described, including electroplating and vacuum deposition techniques.

P.K.

A65-21666

HOW TO DESIGN FOR CORROSION RESISTANCE. Norman D. Groves (Carpenter Steel Co., Reading, Pa.). Machine Design, vol. 37, Apr. 1, 1965, p. 118-122. Discussion of the design of components for corrosive environments. Corrosive hazards likely to be encountered are considered, and methods for reducing them are described. These methods involve choosing the proper configurations, locations, and tolerances for parts in corrosive environments, and using the proper assembly methods.

A65-21893

EFFECTS OF CORROSION ON WAVEGUIDE INSERTION LOSS.
William F. Smith and Thaddeus Sokolowski (Sperry Rand Corp.,
Sperry Gyroscope Co., Radiation Div., Great Neck, N.Y.),
(Institute of Electrical and Electronics Engineers, International
Convention, New York, N.Y., Mar. 22-26, 1965.)
IEEE International Convention Record, vol. 13, pt. 5, 1965, p. 209-

Discussion of changes in insertion loss due to the corrosive effects of acidified hydrogen sulfide gas and salt spray on waveguide surfaces. It is noted that the data indicate that insertion loss is affected by the type and amount of corrosion in the waveguide. The conclusion is drawn that the most efficient protective coating will support a stable microwave signal. (Author) M.M.

A65-22133

CORROSION EXPERIENCE WITH ALUMINUM POWDER PRODUCTS. J. E. Draley, W. E. Ruther, and S. Greenberg (Argonne National Laboratory, Argonne, Ill.).
International Journal of Powder Metallurgy, vol. 1, Apr. 1965, p. 28-41. 12 refs.

AEC-sponsored research.

Evaluation of extrusions of aluminum-powder products from the standpoint of corrosion resistance to high-temperature (260-350°C) water. Many experimental rod extrusions exhibited corrosion resistance to static 290°C water equivalent to that of wrought alloys. Specimens tested in rapidly flowing water at 315°C exhibited a corrosion rate significantly greater than for the wrought alloy. Several types of impact-extruded tubing were tested. The stronger tubing failed very rapidly; the weaker tubing corroded at the same rate as wrought alloy for about the first 90 days of testing, but suffered extensive localized surface attack and penetration of the corrosion attack along the extrusion direction after prolonged exposure to 290°C water. A precorrosion heat treatment was effective in reducing both types of attack on the weaker tubing. Many samples of tubing extruded through a bridge die performed well during the first months of corrosion exposure. However, all tubes failed on prolonged corrosion in 290°C water. The failure was at one or more of the longitudinal bond lines, formed by the rejoining of the metal streams passing over the mandrel supports in the die during extrusion. Directly extruded tubing also failed on extended exposure to 290°C water. (Author) A. B. K.

A65-22208

CORROSION.

Henry Leidheiser, Jr. (Virginia Institute for Scientific Research, Richmond, Va.).

Chemical and Engineering News, vol. 43, Apr. 5, 1965, p. 78-92.

Discussion of research on, and problems associated with, corrosion. Studies on the mechanism of corrosion, on thin films, thin-film reactions, thin-film inactivity, and methods for inhibiting corrosion are discussed. Corrosion problems reviewed include stress-corrosion cracking, cavitation damage, hydrogen embrittlement, the low-temperature oxidation of intermetallic compounds, and corrosion caused by bacteria, as in jet aircraft fuel tanks. The establishment of an Institute of Corrosion Control is discussed.

A65-22215

CONTROL TESTS TO VERIFY HIGH RESISTANCE TO STRESS CORROSION OF 7075-773 ALLOY PRODUCTS.

W. King, B. W. Lifka, and L. A. Willey (Aluminum Company of America, Alcoa Research Laboratories, New Kensington, Pa.). Materials Evaluation, vol. 23, Feb. 1965, p. 89-95.

Description of rapid screening methods for determining if 7075 aluminum alloys meet the stress-corrosion cracking stipulations incorporated into military specifications for T73 tempered alloy products. In these specifications, a specimen taken in the

transverse or short transverse direction from a 7075-T73 product stressed to within 75% of the guaranteed yield strength must not fail in a 30-day exposure to 3.5% NaCl solution in which it is periodically immersed. Because this test is lengthy, two rapid screening techniques were developed. One involves a solutionpotential method, and the other an electrical-conductivity procedure. Both methods indicate within hours if a given specimen meets the quality for 7075-T73 material. P.K.

A65-22234

LUBRICATION OIL IN AVIATION [MAZACÍ OLEJ V LETECTVÍ]. Jan Krotký.

Zpravodaj VZLÚ, no. 6, 1964, p. 51-53. 11 refs. In Czech. Discussion of the problems in the development of lubrication oils, especially for turboprop engines. Classes of materials are presented which are suitable for the development of chemical lubricants corresponding to current aviation requirements. The state of the art in Czechoslovakia is also considered.

A65-22351

AN INTEGRATED THEORY OF STRESS CORROSION. K. C. Thomas and R. J. Allio (Westinghouse Electric Corp., Atomic Power Div., Pittsburgh, Pa.).

Nature, vol. 206, Apr. 3, 1965, p. 82, 83. 7 refs.

Presentation of a theory of stress corrosion as a basis for developing an overall model for stress corrosion from which the effect of cation and anion in solution on susceptibility to stress corrosion cracking may be predicted. The concept of short-range order is introduced to explain the apparently anomalous stress corrosion resistance of "Incoloy 800" (high stacking fault energy and a planar dislocation arrangement) and nichrome (planar arrangement). It is postulated that in the higher nickel alloys short-range order is present which on deformation leads to a planar structure in spite of a high stacking fault energy; thus the disorder on the slip planes created by the passage of dislocations results in chemically reactive sites on the surface. The results of some recent investigations by Bergen are reviewed in which it was found that chloride in the oxide film on 304 stainless migrates up a temperature gradient and that the migration is reversible as the stress is removed. It is proposed that the chloride stress corrosion susceptibility is controlled by both the dislocation structure and the chloride migration capacity of the oxide film. The concept of short-range order is required to explain the formation of a planar grouping of dislocations in a high stacking fault energy alloy. Thus it is concluded that Incoloy 800 and nichrome are not susceptible to stress corrosion failure because there are sufficient nickel ions in the oxide film to prevent chloride migration to the high-stress regions on the surface. M.L.

A65-22363

THE NITRIC ACID-OXYGEN REDOX ELECTRODE IN ACID ELECTROLYTE.

Joseph A. Shropshire and Barry L. Tarmy (Esso Research and Engineering Co., Linden, N.J.).

IN: FUEL CELL SYSTEMS (Advances in Chemistry Series, 47). Symposia sponsored by the American Chemical Society, Division of Fuel Chemistry.

Washington, American Chemical Society, 1965, p. 153-165. 9 refs. Contract No. DA-36-039 SC-89156.

Study of the performance and mechanism of a fuel cell oxygen cathode, using low concentrations of nitric acid as a redox intermediate in sulfuric acid. Electrode performance using either carbon or noble metal electrodes is superior to that attainable by direct electrochemical reduction of oxygen or air in acid solution. Mechanism studies showed that the reaction is autocatalytic with the actual electrochemical reaction being the reduction of nitrous acid to nitric oxide and the rate-limiting step involving the chemical reduction of nitric acid with nitric oxide. Regeneration of nitric acid by oxidation of nitric oxide and subsequent hydrolysis of nitrogen dioxide proceeds at rates that would require 0.1 lb/kwh of nitric acid in actual fuel cell operation on air. (Author) D. P. F.

ANODIC OXIDATION OF DERIVATIVES OF METHANE, ETHANE, AND PROPANE IN AQUEOUS ELECTROLYTES. I - GALVANO-STATIC INVESTIGATIONS.

H. Binder, A. Köhling, H. Krupp, K. Richter, and G. Sandstede (Battelle-Institut, Frankfurt, West Germany).

IN: FUEL CELL SYSTEMS (Advances in Chemistry Series, 47). Symposia sponsored by the American Chemical Society, Division of Fuel Chemistry.

Washington, American Chemical Society, 1965, p. 269-282. 9 refs.

Research supported by the Robert Bosch GmbH.

Galvanostatic measurements of anodic potential-current density plots of a Raney platinum electrode with alcohols, aldehydes, ketones, and carboxylic acids up to 800 mv (vs hydrogen electrode in the same solution). These measurements were made at temperatures of 250 and 80°C, the electrolyte being 5N potassium hydroxide and 5N sulfuric acid. Acetic acid and propionic acid cannot be oxidized in potassium hydroxide solution, but are active in sulfuric acid. With methanol, ethanol, glycol, and glycerol in 5N potassium hydroxide at 200 ma per cm² potentials of from 300 my to 350 my were observed, while in 5N sulfuric acid the potentials range from 500 to 650 mv under the same conditions.

A65-22369

ANODIC OXIDATION OF DERIVATIVES OF METHANE, ETHANE, AND PROPANE IN AQUEOUS ELECTROLYTES. II - COULO-METRIC-POTENTIOSTATIC INVESTIGATIONS.

H. Binder, A. Köhling, and G. Sandstede (Battelle-Institut, Frankfurt, West Germany)

IN: FUEL CELL SYSTEMS (Advances in Chemistry Series, 47). Symposia sponsored by the American Chemical Society, Division of Fuel Chemistry.

Washington, American Chemical Society, 1965, p. 283-291. 10 refs.

Research supported by the Robert Bosch GmbH.

Coulometric-potentiostatic measurements showing that in alkaline solutions, using Raney platinum as a catalyst, only the derivatives of methane can be oxidized completely to carbonate and water. With derivatives of ethane and propane oxidation stops at the stage of the carboxylic acid. In sulfuric acid all derivatives investigated can be oxidized completely to carbon dioxide at 80°C, if provisions are made to prevent loss of volatile intermediates. From the results of methanol in sulfuric acid it may be concluded that on the Raney platinum electrodes at +700 mv, the oxidation of methanol is diffusion-controlled only at concentrations smaller than (Author) D. P. F. 0.3 mole per liter.

AA5-22370

OXIDATION OF OLEFINS AND PARAFFINS IN LOW TEMPERATURE FUEL CELLS.

M. J. Schlatter (California Research Corp., Richmond, Calif.). IN: FUEL CELL SYSTEMS (Advances in Chemistry Series, 47). Symposia sponsored by the American Chemical Society, Division of Fuel Chemistry.

Washington, American Chemical Society, 1965, p. 292-317. 8 refs.

Army-ARPA-supported research.

Complete oxidation of low molecular weight paraffins and olefins at platinized porous carbon anodes in low temperature acid electrolyte fuel cells. These two classes of hydrocarbons do, however, show substantial differences in electrochemical behavior. The paraffin-depolarized electrodes are readily poisoned by air or oxygen; olefin depolarized electrodes are much less affected. The paraffins are said to give more favorable cell voltages at low currents but to fall off badly under load. The olefins can support high currents as the anode potential approaches that of the oxygen (Author) D. P. F. electrode.

A65-22744

MATERIALS FOR LUBRICATED SYSTEMS.

F. J. Clauss and W. C. Young (Lockheed Aircraft Corp., Lockheed Missiles and Space Co., Sunnyvale, Calif.). IN: SPACE MATERIALS HANDBOOK.

Edited by C. G. Goetzel, J. B. Rittenhouse, and J. B. Singletary.

Reading, Mass., Addison-Wesley Publishing Co., Inc., 1965, p. 209-296. 123 refs.

Discussion of lubricants and self-lubricating materials for use in advanced spacecraft systems. The requirements for lubrication

materials used in space are reviewed, and the mechanisms of hydrodynamic and boundary lubrication are described. The properties, characteristics, and performance in simulated space environments of various lubrication materials are discussed. These naterials include oils and greases, graphite, MoS2, MoS2 films, foS2-impregnated solids, MoS2-added oils and other carriers, PbO, soft metals, plastics, fluorocarbon resins, nylons, ceramics, and cermets.

P.K.

A65-22788

MICROTOPOGRAPHY OF FINELY GROUND STEEL SURFACES IN RELATION TO CONTACT AND WEAR.

A. Dorinson (Sinclair Research, Inc., Harvey, Ill.). (American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D. C., Oct. 13-16, 1964, Paper 64 LC-15.)

ASLE Transactions, vol. 8, Apr. 1965, p. 100-107; Discussion, J. A. Greenwood (Burndy Corp., Norwalk, Conn.), p. 107, 108; Author's Closure, p. 108. 14 refs.

Research supported by Sinclair Research, Inc.

Results of interferometric examination and taper sectioning to elucidate the microtopography of the contacting surfaces of a finely ground disk and a conically ended rider. The question of the real area of contact when these surfaces are put together under high pressure is considered. It is found that after a short period of rubbing, with either a white or compounded oil, the visible evidence of true metal-to-metal contact is quite sparse in comparison to the potential real area of contact deduced from microtopograpical considerations. The scar on the end of the rider, on the other hand, is found to show evidence of extensive rubbing, as a consequence of the high ratio of the area of the disk track to the area on the end of the rider. It is found that, when an indifferent lubricant is used in high-pressure wear experiments, the first worn-off material detected with any certainty consists of obviously secondary agglomcrates of primary wear material. The adhesion of these agglomerates to the rubbing surface of the disk is shown to radically alter the nature of the surface, so that any analysis of contact based on the initial topography of the disk and the rider is no longer valid. It is concluded that an effective extreme-pressure lubricant, on the other hand, tends to preserve the initial topography of the contacting surfaces. Thus the action of extreme-pressure lubricants is found to be intimately connected with changes in surface topography due to wear and the influence of these changes on further wear.

A65-22789

THE FRICTION AND WEAR BEHAVIOR OF MOLYBDENUM-TUNGSTEN-CHROMIUM ALLOYS IN HIGH-TEMPERATURE SODIUM ENVIRONMENTS.

W. H. Roberts (United Kingdom Atomic Energy Authority, Reactor Development Laboratory, Risley, Lancs., England).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D. C., Oct. 13-16, 1964, Paper 64 LC-25.)

ASLE Transactions, vol. 8, Apr. 1965, p. 109-121; Discussion, W. A. Glaeser (Battelle Memorial Institute, Columbus, Ohio), p. 121, 122; Author's Closure, p. 122, 22 refs.

Study of wear data and friction coefficients of molybdenumtungsten-chromium alloys in the presence of liquid sodium and sodium vapor and argon. Data are obtained with a crossed-cylinders apparatus over a range of 200-500°C. Comparisons are made with results obtained in gaseous environments of pure argon, helium, and carbon dioxide. The effect of increasing the oxygen content of liquid sodium from 5 to 80 ppm on friction and wear behavior is indicated. It is shown that chemisorbed double-oxide films, formed by the reaction of the molybdenum, tungsten, and chromium alloys with the sodium environment, play a significant role in providing boundary lubrication in high-temperature sodium. It is found that the availability of oxygen is an essential feature of the reactions for producing the double oxides in sodium. It is concluded that the molybdenum and tungsten double oxides are not thermodynamically stable in high-purity sodium at high temperatures (above 400°C), but that sodium-chromium complexes can be effective to quite high temperatures. The effectiveness of the lubrication provided by such films is found to be a function of the specific nature of the sodium environment and temperature, as well as time at temperature.

A65-22791

FRICTION AND CLEAVAGE OF LAMELLAR SOLIDS IN ULTRAHIGH VACUUM.

D. G. Flom, A. J. Haltner, and C. A. Gaulin (General Electric Co., Missile and Space Div., Space Sciences Laboratory, Philadelphia, Pa.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D.C., Oct. 13-16, 1964, Paper 64 LC-18.)

ASLE Transactions, vol. 8, Apr. 1965, p. 133-144; Discussion, H. E. Evans (NASA, Goddard Space Flight Center, Greenbelt, Md.) and C. E. Vest (Midwest Research Institute, Kansas City, Mo.), p. 144, 145; Authors' Closure, p. 145. 32 refs. Contract No. AF 33(657)-10493.

Presentation of results of measurements of sliding friction on copper surfaces at 10⁻⁶ to 10⁻⁹ torr for five lamellar solids, namely, molybdenum sulfide, tungsten sulfide, cadmium iodide, bismuth iodide, and phthalocyanine. No evidence is found that the sliding behavior of any of these materials is improved by the presence of gas or vapors. Each is found to evolve considerable quantities of gas during sliding. Molybdenite and surface-nucleated pyrolytic graphite are cleaved in an ultrahigh vacuum apparatus built for this purpose. The graphite specimens are tested in both as-deposited and annealed forms. It is found that the predominant gas given off for the former is methane, while for the latter, it is water vapor. In the cleavage of molybdenite, the primary gas is found to be methane. (Author) M.L.

A65-22792

LUBRICATION BY TRANSFERRED FILMS OF SOLID LUBRICANTS.
J. K. Lancaster (Ministry of Aviation, Royal Aircraft Establishment,
Farnborough, Hants., England).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D. C. Oct. 13.16, 1964, Paper 64 LC-19.)

D.C., Oct. 13-16, 1964, Paper 64 LC-19.)

ASLE Transactions, vol. 8, Apr. 1965, p. 146-153; Discussion,

Paul H. Bowen (Westinghouse Electric Corp., Research Laboratories,

Pittsburgh, Pa.), p. 154; Author's Closure, p. 154, 155. 22 refs.

Experimental study of the feasibility of providing a continuous

Experimental study of the feasibility of providing a continuous supply of solid lubricant to a metal (steel) by transfer from a compact. Friction and wear measurements are made on a pin sliding against a rotating disk, with a compact of solid lubricant, particularly graphite and molybdenum disulfide, which is independently loaded against the disk in the same track as the pin. It is found that the amount of lubricant depends markedly on the surface finish of the steel and that the most effective lubricant films form on relatively rough surfaces. It appears that film-to-substrate bonding is primarily mechanical. Determinations are made of the scuffing load and endurance tests which show that replenishment of the lubricant film by continuous transfer is possible only to a limited extent. With molybdenum disulfide, the film is found to ultimately wear away, but with graphite, failure is found to occur when the mean surface temperature exceeds about 100°C. It is concluded that the load-carrying capacity of transferred molybdenum disulfide films is appreciably greater than that of graphite films.

M. L.

A65-22793

ON THE MECHANISMS OF \mbox{MoS}_2 -FILM FAILURE IN SLIDING FRICTION.

A. W. J. de Gee (Metal Research Institute TNO, Physico-Mechanical Dept., Delft, Netherlands), G. Salomon (Centraal Laboratory TNO, Delft, Netherlands), and J. H. Zaat (Eindhoven, Technological University, Eindhoven, Netherlands).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D. C., Oct. 13-16, 1964, Paper 64 LC-30.)

ASLE Transactions, vol. 8, Apr. 1965, p. 156-162; Discussion,

ASLE Transactions, vol. 8, Apr. 1905, p. 150-162; Discussion M. B. Peterson (Mechanical Technology, Inc., Latham, N.Y.) and H. F. Barry (Climax Molybdenum Company of Michigan, Detroit, Mich.), p. 162, 163; Authors' Closure, p. 163, 8 refs. Research sponsored by Alpha Molykote Cörp., Molykote Produktionsgesellschaft mbH, and Molykote S. A. R. L. Study of the effect of oxygen on the life expectancy of a run-in

Study of the effect of oxygen on the life expectancy of a run-in molybdenum disulfide film under heavy load. Tested in argon, with only small quantities of oxygen present, the smooth running period is found to be increased by at least two decades as compared to a test in oxygen. Blister formation is seen to be an important factor

in the gradual destruction of the lubricant film. Blisters of submicroscopic size can be traced with the electron microscope. In the presence of oxygen, macroscopic blisters are seen to be formed rapidly. Oxygen promotes sintering of the individual particles to a continuous, smooth, and therefore highly reflective lubricant layer. No wear occurs during the smooth running period of MoS2 lubrication. Graphite differs from MoS₂ in this respect and in its much lower load-carrying capacity. A cine-film on graphite-lubricated surfaces shows a rougher surface and the formation of smaller blisters. On addition of graphite to MoS2, a sudden change in surface features is seen to occur within narrow limits of graphite concentration. It is concluded that the addition of 15% by weight of graphite increases the total life expectancy of the MoS, film, but reduces the length of the smooth running period. (Author) M. L.

A65-22794

THE EFFECTS OF LOAD ON THE FRICTIONAL PROPERTIES OF MOLYBDENUM DISULFIDE.

S. A. Karpe (U.S. Navy, Marine Engineering Laboratory, Friction and Wear Div., Annapolis, Md.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D. C., Oct. 13-16, 1964, Paper 64 LC-21.)

ASLE Transactions, vol. 8, Apr. 1965, p. 164-174; Discussion,

Martin J. Devine (U.S. Naval Air Engineering Center, Phila-Martin J. Devine (U.S. Navai Air Engineering Center, Pinadelphia, Pa.), Josef Gänsheimer (Molykote Produktionsgesellschaft mbH, Munich, West Germany), G. Salomon, and A. W. J. de Gee (Centraal Laboratorium TNO, Delft, Netherlands), p. 174-176; Authors! Closure, p. 176-178. 29 refs.

Determination of the kinetic coefficient of friction for several grades of commercially available molybdenum disulfide powder. The powders are individually applied to separate steel-supporting substrates to form a thin lubricant film. Friction measurements are made at loads of 0.1 to 10 kg and at a slow speed of sliding. It is shown that the coefficient of friction decreased with increasing load, contrary to Amontons' second law. A theory is postulated to explain the observed variation in the friction coefficient with load, It is concluded that this variation could be explained solely on the basis of the macroelastic and/or macroelastic and plastic deforma-(Author) M. L. tion characteristics of the supporting substrates.

SOME ILLUSTRATIVE PROBLEMS IN THE FLOW OF VISCO-ELASTIC NON-NEWTONIAN LUBRICANTS.

R. I. Tanner (Sydney, University, Dept. of Mechanical Engineering, Sydney, Australia).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D.C., Oct. 13-16, 1964, Paper 64 LC-10.)

D. C., Oct. 13-16, 1704, Fapel Of Science 20, 179-182; Discussion, ASLE Transactions, vol. 8, Apr. 1965, p. 179-182; Discussion, J. K. Appeldoorn (Esso Research and Engineering Co., Linden,

N. J.), p. 182; Authors' Closure, p. 183. 16 refs.
Discussion of the factors affecting the choice of an equation of state for the description of non-Newtonian viscoelastic lubricants. Simple solutions for squeeze films with and without superimposed steady shears are given. These illustrate the complexity of the action of these fluids, including the variation of the effective relaxation time and the "softening" of the film under dynamic (Author) M. L. loading.

A65-22797

SLIDER BEARING PERFORMANCE WITH A NON-NEWTONIAN

Y. C. Hau (Southwest Research Institute, San Antonio, Tex.) and Edward Saibel (Rensselaer Polytechnic Institute, Dept. of Mechanics, Trov. N. Y.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D. C., Oct. 13-16, 1964, Paper 64 LC-17.)

ASLE Transactions, vol. 8, Apr. 1965, p. 191-194.

Analysis of a method capable of approximating the behavior of a slider bearing without side leakage, using a non-Newtonian fluid. An example of this method is given, and it is found to be relatively easy to apply and valid for a large range of strain rates. The difference between this treatment and earlier ones is found to be in the type of constitutive equations used. This treatment satisfies the invariant condition and is considered applicable to both pseudoplastic and dilatant fluids. The pressure distribution, oil flow, and friction force are calculated, and the results are compared with the corresponding ones for a Newtonian fluid.

A65-22965

INVESTIGATION OF ROLLING FRICTION IN CYLINDRICAL BODIES [ISSLEDOVANIE TRENIIA PRI VNUTRENNEM KACHENII TSILINDRICHESKIKH TEL]. V. D. Rabko.

Akademiia Nauk SSSR, Sibirskoe Otdelenie, Izvestiia, Seriia Tekhnicheskikh Nauk, no. 3, 1964, p. 135-141. 11 refs. In Russian.

Investigation of the effect of rolling rate, load and specific pressure, lubrication, material, and the radii of curvature on the rolling friction of cylindrical bodies. At Il to 70-kg loads, the rolling friction coefficient is found to increase with rolling rate, specific pressure, the radius of the cylinder, and the amount of the lubricant. A pendulum device, proposed by Kunin and the author and described in a previous paper, is used in the experiments. A line drawing of the device is given and the experimental procedure is described.

A65-23318

EVALUATION OF DRY FILM LUBRICATING MATERIALS FOR SPACECRAFT APPLICATIONS.

Harold E. Evans, Charles E. Vest, and Bowden W. Ward (NASA, Goddard Space Flight Center. Advanced Technical Development Section, Greenbelt, Md.).

IN: AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAU-TICS, STRUCTURES AND MATERIALS CONFERENCE, 6TH, PALM SPRINGS, CALIF., APRIL 5-7, 1965. [A65-23300 13-32] New York, American Institute of Aeronautics and Astronautics, 1965, p. 185-191.

Investigation of solid film lubricating materials for aerospace application. Intensive investigation of various lubricating materials and systems revealed that MoS2 and Teflon come very close to meeting the aerospace requirements of low coefficient of friction, low vapor pressure, capability of replenishing the film, and low wear rate. An evaluation of MoS2 powders, MoS2 and Au compacts, Duroid (MoS2-PTFE) and MoS2 in situ established the merits of these materials for vacuum operation. For rolling applications, such as occur in a ball bearing, a fully machined ball retainer of 60% Teflon, 40% glass fiber + MoS₂ shows the best results. Examples of radial loads, speeds, and operating time, respectively, are as follows: (R-2 bearing) 0.8 oz., 8000 rpm, 4380 hours; 2.1 oz., 1800 rpm, 1700 hours; (R-4 bearing) 4.5 lb, 10 rpm, 10, 515 hours all at 10-8 torr pressure. In special cases where rolling element lubrication must be accomplished while a conductive electrical path must be maintained, the directly applied MoS2 can be used. This may be accomplished by the "in situ" process or by burnishing MoS2 powder on the specimen. Wear life can be enhanced and electrical noise kept low by using MoS2-Au compacts to act as a film-replenishing source, such as in ball retainer applications. (Author) M.M.

A65-23440

EFFECT OF ZIRCONIUM ON THE CORROSION RESISTANCE OF STEEL.

V. S. Kovalenko and E. L. Zats (Donets Scientific Research Institute of Ferrous Metallurgy, Ukrainian SSR). (Metallovedenie i Termicheskaia Obrabotka Metallov, Apr. 1964, p. 30, 31.) Metal Science and Heat Treatment, Mar.-Apr. 1964, p. 223, 224.

Translation.

Investigation of carbon steel alloyed with varying amounts of Si, Mn, S, P, and Zr in order to determine the effect of the latter on the corrosion resistance. It was considered that the effect of the alloyed solid solution (anodic phase) and the formation of Zr inclusions (cathodic phase) must be taken into account. It was found that: (1) the corrosion resistance of carbon steel in water is increased by the addition of 0.10 to 0.16% Zr, (2) the increase of the corrosion resistance of steel containing Zr is due to the decrease of the activity of the anodic process resulting from the increase

of the thermodynamic stability of the anodic phase or its passivation, and (3) the effect of Zr on the cathodic process manifests itself in the formation of a large number of microcathodes which do not affect the corrosion rate.

A65-23447 #

SULFUR AND SEA SALT ATTACK OF TURBINE BLADES.
C. A. Dalton (Bristol Siddeley Engines, Ltd., Parkside, War., England).

American Society of Mechanical Engineers, Gas Turbine Conference and Products Show, Washington, D.C., Feb. 28-Mar. 4, 1965, Paper 65-GTP-7. 6 p.

Members, \$0.50; nonmembers, \$1.00.

Discussion of the effects, mechanism, and prevention of sulfur attack in aero engines. The mechanism for sea salt attack on marine turbine blades is proposed, and the results of tests designed to cure the trouble are presented. The treatment suggested is said to be only a paliative, and speculation on future work for greater protection is included.

(Author) M.M.

A65-23464

NONLINEAR BENDING OF A STRESS CORROSION SPECIMEN. Paul E. Wilson and Edward E. Spier (General Dynamics Corp., General Dynamics/Astronautics, Structures Research Group, San Diego, Calif.).

American Society of Mechanical Engineers, Aviation and Space Conference, Los Angeles, Calif., Mar. 14-18, 1965, Paper 65-AV-3. 6 p. 10 refs.

Members, \$0.50; nonmembers, \$1.00.

Analysis of the postbuckling behavior of an initially straight plate strip of variable flexural rigidity whose ends are subjected to opposing "axial" loads. Bending action takes place only in the center section of the strip, since the symmetric end portions are considered to be rigid. Pertinent postbuckling load-deflection curves are deduced by using the nonlinear bending theory of a plate strip, and the maximum stress is obtained as a function of the half-distance between the loaded ends. Numerical results are presented in nondimensional form, and the theoretical solution is shown to compare favorably with a major portion of the experimental stress and deflection data.

(Author) A.B.K.

A65-23501

LUBRICATION AND WEAR, INTERNATIONAL SYMPOSIUM, UNIVERSITY OF HOUSTON, HOUSTON, TEX., JUNE 1963, PROCEEDINGS.

Edited by D. Muster and B. Sternlicht (Mechanical Technology, Inc., Latham, N.Y.).

Symposium supported by AEC, NASA, NSF, and Navy. Berkeley, McGutchan Publishing Corp., 1965, 974 p. \$20.

CONTENTS:

PREFACE, D. Muster and B. Sternlicht, p. i, ii,
RECOMMENDED MATHEMATICAL SYMBOLS AND UNITS.
Vi. vii.

INVERSE PROBLEMS IN HYDRODYNAMIC LUBRICATION AND DESIGN DIRECTIVES FOR LUBRICATED FLEXIBLE SURFACES. H. Blok (Delft, University, Delft, Netherlands), p. 1-151. 62 refs. [See A65-23502 13-15]

THEORY OF TURBULENT LUBRICATION. V. N. Constantinescu (Rumanian Academy, Bucharest, Rumania), p. 153-213. 42 refs. [See A65-23503 13-15]

THIN FILM LUBRICATION. D. Dowson (Leeds, University, Leeds, England), p. 215-281. 41 refs. [See A65-23504 13-15] BOUNDARY LUBRICATION. D. Godfrey (California Research

BOUNDARY LUBRICATION. D. Godfrey (California Researcl Corp., Richmond, Calif.), p. 283-306. 18 refs. [See.A65-23505 13-15]

EXTERNALLY PRESSURIZED BEARING LUBRICATION. W. A. Gross (Ampex Corp., Redwood City, Calif.), p. 307-421, 147 refs. [See A65-23506 13-15]

INERTIA EFFECTS IN SELF-ACTING BEARING LUBRICATION THEORY. A. A. Milne (Department of Scientific and Industrial Research, Ezet Kilbride, Scotland), p. 423-527. 53 refs. [See A65-23507 13-15]

INFLUENCE OF BEARINGS ON ROTOR BEHAVIOR. Beno Sternlicht (Mechanical Technology, Inc., Letham, N.Y.), p. 529-699. 218 refs. [See A65-23508 13-15]

FRICTION AND WEAR. D. Tabor (Cambridge, University, Cambridge, England), p. 701-761. [See A65-23509 13-15]
THERMAL EFFECTS AND ELASTO-KINETICS IN SELF-

ACTING BEARING LUBRICATION. Georg Vogelpohl (Max-Planck-Institut für Strömungsforschung, Göttingen, West Germany), p. 763-822.

GAS LUBRICATED BEARINGS. J. Stanley Ausman (Litton Systems, Inc., Woodland Hills, Calif.), p. 825-853, 14 refs. [See A65-23510 13-15]

DESIGN OF FLUID FILM HYDRODYNAMIC AND HYDROSTATIC THRUST AND JOURNAL BEARINGS. Dudley D. Fuller (Columbia University, New York, N.Y.), p. 855-877.

COMPUTER ANALYSIS OF HIGH-DUTY ROLLING-ELEMENT BEARING SYSTEMS. A. Burton Jones, p. 879-903. [See A65-235]1 [13-15]

LUBRICATION IN THE ENVIRONMENT OF SPACE. Paul Lewis (Mechanical Technology, Inc., Latham. N.Y.), p. 905-939, 17 refs. [See A65-23512 13-15]

HIGH-TEMPERATURE LUBRICATION. Marshall B. Peterson (Mechanical Technology, Inc., Latham, N.Y.), p. 941-974. 67 refs. [See A65-23513 13-15]

A65-23502

INVERSE PROBLEMS IN HYDRODYNAMIC LUBRICATION AND DESIGN DIRECTIVES FOR LUBRICATED FLEXIBLE SURFACES. H. Blok (Delft, University, Delft, Netherlands).

IN: LUBRICATION AND WEAR, INTERNATIONAL SYMPOSIUM, UNIVERSITY OF HOUSTON, HOUSTON, TEX., JUNE 1963, PROCEEDINGS. [A65-23501 13-15]

Edited by D. Muster and B. Sternlicht.

Symposium supported by AEC, NASA, NSF, and Navy.

Berkeley, McGutchan Publishing Corp., 1965, p. 1-151. 62 refs.
Outline and exemplification of the "inverse" variant of the theory of hydrodynamic lubrication. Problems in hydrodynamic lubrication, in contrast to the classical ones, are defined as "inverse" when a given distribution of film pressures is imposed upon the film, the profile of the film hydrodynamically compatible with that distribution being required. The treatment is mainly confined to problems where the effects of the finite width may be neglected, and the then plane flow in the film may be assumed incompressible and isothermal, and to be influenced only by hydrodynamic wedging action. In this type of inverse problem the pertinent Reynolds equation becomes a cubic, with film thickness as the unknown. The only complication lies in the fact that, unless some suitable restrictive condition is imposed upon the film pressure distribution, and also one on the film profile, an indeterminacy will arise in that the solution comprises an entire family of admissible film profiles. Thus a limiting possibility exists for the film profile to become vanishingly thin. It is shown that, for any normal design purpose, full control over the entire film profile is not really necessary, provided the determinacy of the profile is ensured, and that the magnitude of the "flow criterion" is determined. The control over the film profile has to be effected through suitably shaping the distribution of the film pressures, or the distribution of the contact pressures that would arise at the same given load and for no lubricant supply at all. Because the two pressure distributions cannot be made identical, and their distribution may overridingly affect the control required, the deviations must in turn be kept under control. It is shown how to accomplish this through contouring and elastically designing the rubbing surfaces in such a way that the distribution of the contact pressure is "straight flanked." Several simple problems illustrative of inverse theory are worked out, and the relationship between the profile of flexible coatings, the contour of the opposite, rigid, rubbing surface, and the deformation characteristics of such coatings is assessed. Remarks are made on certain more complicated inverse problems.

A65-23504

THIN FILM LUBRICATION.

D. Dowson (Leeds, University, Leeds, England). IN: LUBRICATION AND WEAR, INTERNATIONAL SYMPOSIUM, UNIVERSITY OF HOUSTON, HOUSTON, TEX., JUNE 1963, PROCEEDINGS. [A65-23501 13-15] Edited by D. Muster and B. Sternlicht. Symposium supported by AEC, NASA, NSF, and Navy. Berkeley, McGutchan Publishing Corp., 1965, p. 215-281. 41 refs.

Discussion of the very thin but coherent oil films which occur in an envisaged geometry of two cylinders in contact along a generator. In such contacts very high pressures are generated within the thin film of lubricant which separates the solid components, and the thin film is distinguished from the classical hydrodynamic lubrication problem by (1) the influence of pressure upon lubricant viscosity, and (2) the effect of elastic distortion of the bounding solids. When the bounding solids deform elastically under high contact pressures the shape of the oil film is changed. This in turn modifies the distribution of pressure, and the subject is complex since solutions must simultaneously satisfy the basic equations of lubrication and elasticity. It is considered that the most important question in thin film lubrication is the prediction of film thickness in highly loaded elastic contacts.

A65-23505

BOUNDARY LUBRICATION.

D. Godfrey (California Research Corp., Richmond, Calif.). IN: LUBRICATION AND WEAR, INTERNATIONAL SYMPOSIUM, UNIVERSITY OF HOUSTON, HOUSTON, TEX., JUNE 1963, PROCEEDINGS. [A65-23501 13-15]

Edited by D. Muster and B. Sternlicht.

Symposium supported by AEC, NASA, NSF, and Navy. Berkeley, McGutchan Publishing Corp., 1965, p. 283-306. 18 refs.

Discussion of the formation of films and their effects in a sliding mechanism, with exact definition of common terms. The various degrees of boundary lubrication are related to the physical properties of the films. Among the common terms, film strength is considered the most descriptive because films provide lubrication and because to be effective they must possess the strength to resist penetration by an asperity. Physically adsorbed films, films of adsorbed polar molecules, and films bonded to surfaces by chemical reactions are discussed in detail, with examples from research and practice. The film-forming mechanism is treated separately. Interfacial material, or films that affect boundary lubrication in an oil system are described, beginning with physically adsorbed films with the least film strength, followed by chemisorbed films with moderate film strength, and chemical reaction films with the greatest film strength. It is shown that, generally, film strength in boundary lubrication is determined by the melting point F.R.L. of the film.

A65-23509

FRICTION AND WEAR.

D. Tabor (Cambridge, University, Cambridge, England). IN: LUBRICATION AND WEAR, INTERNATIONAL SYMPOSIUM, UNIVERSITY OF HOUSTON, HOUSTON, TEX., JUNE 1963, PROCEEDINGS. [A65-23501 13-15] Edited by D. Muster and B. Sternlicht.

Symposium supported by AEC, NASA, NSF, and Navy. Berkeley, McGutchan Publishing Corp., 1965, p. 701-761.

Discussion of some of the basic ideas on friction and wear. Sliding friction is considered to be mainly due to adhesion which occurs over the region of real contact. A smaller part of the friction arises from the deformation of the surfaces. It is shown that these processes can explain most of the phenomena observed in the sliding friction of metals and nonmetals, in rolling friction, and in the wear of rubbing surfaces. Some of the more recent methods that have been developed for studying the topography of a surface, its structure, and chemical composition, such as electron microscopy, are discussed. The effect of asperities in determining the true area of contact is examined for metals and nonmetals, followed by review of the laws of friction and methods of measuring it. The mechanism of metallic friction, the friction and adhesion of clean metals, the friction of brittle solids and polymers, the surface temperature of sliding solids, rolling friction and deformation losses, and the mechanisms of wear are given detailed attention.

A65-23512

LUBRICATION IN THE ENVIRONMENT OF SPACE. Paul Lewis (Mechanical Technology, Inc., Latham, N.Y.).
IN: LUBRICATION AND WEAR, INTERNATIONAL SYMPOSIUM, UNIVERSITY OF HOUSTON, HOUSTON, TEX., JUNE 1963, PROCEEDINGS. [A65-23501 13-15]

Edited by D. Muster and B. Sternlicht.

Symposium supported by AEC, NASA, NSF, and Navy. Berkeley, McGutchan Publishing Corp., 1965, p. 905-939. 17 refs.

Results of an experimental program to investigate lubrication problems, and to aid in selecting lubricants for devices and equipment which must operate in the environment of space, with citations of the work of other investigators. Those effects of the environment which would affect bearing system performance are examined in detail. Laboratory simulation for evaporation and for dry materials is discussed, and an evaluation of fluid lubricants (oils and greases) is made. The test apparatus, designed to provide (1) pressures of 10⁻⁵ mm Hg, (2) a condensing surface which views the evaporating sample, and (3) a means for agitation to prevent stratification and thermal gradients is described. Various tests carried out on liquid lubricants of different classes, and on different classes of greases are discussed. The use of solid lubricants is considered. important properties and operating parameters are reviewed, and F. R. L. some test results are presented.

A65-23513

HIGH-TEMPERATURE LUBRICATION.

Marshall B. Peterson (Mechanical Technology, Inc., Latham,

N. Y.) IN: LUBRICATION AND WEAR, INTERNATIONAL SYMPOSIUM, UNIVERSITY OF HOUSTON, HOUSTON, TEX., JUNE 1963, PROCEEDINGS. [A65-23501 13-15]

Edited by D. Muster and B. Sternlicht.

Symposium supported by AEC, NASA, NSF, and Navy. Berkeley, McGutchan Publishing Corp., 1965, p. 941-974. 67 refs.

Investigation of high-temperature lubrication, considered to be lubrication at temperatures above which present synthetic lubricants cannot be used (above ±700°F). Primary emphasis is placed on the materials and lubricants which are available, and literature is cited to point out the approaches which have been used in high-temperature lubrication. The subject is discussed with reference to the dry sliding characteristics of the materials themselves, and various material combinations under various conditions are examined. Solid lubricants receive detailed attention, and the characteristics of various materials (e.g., graphite, and certain sulfides and oxides) are reviewed. The means which have been devised for practical use of solid lubricants are (1) solid films, (2) gas reaction films, (3) filled reservoirs, (4) stick lubrication, and (5) gas-solid circulation. Glass lubricants, liquid metal lubricants, and lubrication with gas are considered.

A65-23538

THE EFFECT OF CORROSION ON THE PERFORMANCE OF THIN-FILM CAPACITORS WITH SILICON OXIDE AND ALUMINUM OXIDE DIELECTRIC [DER EINFLUSS DER KORROSION AUF DIE ZUVERLAESSIGKEIT VON DÜNNSCHICHTKONDENSATOREN MIT SILIZIUMOXYD UND ALUMINIUMOXYD DIELEKTRIKA]. Andras Csanady, Tamas Strausz, and György Wollitzer (Forschungsinstitut für die nachrichtentechnische Industrie, Budapest, Hungary).

IN: RELIABILITY IN ELECTRONICS [ZUVERLÄSSIGKEIT IN DER ELEKTRONIK], PROCEEDINGS OF THE WISSENSCHAFTLICHER VEREIN FÜR NACHRICHTENTECHNIK, UNGARISCHE AKADEMIE DER WISSENSCHAFTEN, ABTEILUNG FÜR TECHNISCHE WIS-SENSCHAFTEN, AND REGIERUNGSAMT FÜR TECHNISCHE ENTWICKLUNG, SYMPOSIUM, BUDAPEST, HUNGARY, OCTOBER 27-29, 1964. VOLUME 1, SECTION A. [A65-23537 13-09] Budapest, Haus der Technik, 1964. 12 p. 5 refs. In German.

A discussion of the factors affecting the performance and reliability characteristics of thin-film capacitors. These factors can be divided into three classes, namely, the metallic mounting, the ability of the capacitor to recover from momentary peak voltages, and the reliability factor of the terminals. Aluminum has proved to be the most suitable material for the mountings, as it is easily applied by vaporization techniques, but the zone where this aluminum is joined to the silver terminals is the region where

intermetallic corrosion occurs, in many cases rendering the capacitor useless. Experiments have proven that this corrosion is caused by moisture, which can be avoided by not using the customary silvering mixture which contains the impurities which give rise to the corrosion. Virtually corrosion-free capacitors were obtained by using a special silvering preparation, inverting the normal order of vaporizing the aluminum onto the silver, and subjecting the glass substrate plates to a special technique. D.P.F.

A65-23565

INVESTIGATION OF THE ANTIFRICTION PROPERTIES OF SOLIDS AT HIGH TEMPERATURE IN VACUUM AND IN SOME GASEOUS MEDIA [ISSLEDOVANIE ANTIFRIKTSIONNYKH SVOISTV TVERDYKH TEL PRI VYSOKIKH TEMPERATURAKH V VAKUUME I NEKOTORYKH GAZOVYKH SREDAKH].

A. P. Semenov and V. V. Pozdniakov (Gosudarstvennyi Nauchno-Issledovatel'skii Institut Mashinovedeniia, USSR). Akademiia Nauk SSSR, Doklady, vol. 160, Feb. 1, 1965. p. 811-814. In Russian.

Investigation of friction and adhesion (at a 5-kg total load and 0.8-mm/min sliding rate) of graphite materials, Cr, Ti, Mo, W, and Nb carbides, and some borides and oxides at temperatures to 2000°C in vacuum and argon, helium, and nitrogen media. An experimental high-frequency (10-4 to 10-5 mm Hg) vacuum oven is developed which permits the investigation of (1) friction in isothermic conditions and at rising and falling temperatures, (2) adhesion and mechanical properties, and (3) sintering and chemical contact interaction of samples. The procedure is described, and the results are discussed.

V. Z.

A65-23826 =

A WEDGE-FLOW APPROACH TO LUBRICATION THEORY.
W. E. Langlois (International Business Machines Corp., San José, Calif.).

Quarterly of Applied Mathematics, vol. 23, Apr. 1965, p. 39-46. Contract No. Nonr-3448(00).

Discussion of a theory of fluid-film lubrication developed from an assumption of local wedge-flow, rather than local parallel-channel flow. This leads to a generalization of the Reynolds lubrication equation governing the pressure. A refinement of the lubrication theory does not necessarily follow: unlike the parallel-channel case, the stress field may differ significantly from an isotropic pressure, so that imposing ambient conditions on the bearing periphery does not always yield boundary conditions for the pressure equation. It is noted that, if the bearing slope differs appreciably from zero only in the film interior, consistent boundary conditions are once more available. (Author) M.M.

A65-23936

EFFECT OF COLD WORKING ON STRESS-CORROSION CRACKING OF STAINLESS STEEL.

Tatsuo Maekawa, Masaru Kagawa, and Nobuwo Nakajima (Mitsubishi Atomic Power Industries, Inc., Engineering and Research Laboratory, Saitama, Japan).

(Japan Institute of Metals, Journal, vol. 27, 1963, p. 548.)

Japan Institute of Metals, Transactions, vol. 5, Oct. 1964, p. 219
224, 9 refs. Translation,

Investigation of the effect of cold working on the sensitivity of several austenitic stainless steels of AISI Type 304 and 304 Lto stress-corrosion cracking in a high-temperature NaCl solution (300°C, 500 ppm Cl°), and in a boiling 42% MgCl₂ solution. It was found that (1) the carbon content and heat treatment before cold working do not appreciably affect the sensitivity of stainless steel to stress-corrosion cracking in the high-temperature NaCl solution and (2) the degree of cold working does not seem to have a direct relation to the sensitivity of stainless steel to stress-corrosion cracking in the high-temperature NaCl solution and in the boiling 42% MgCl₂ solution. However, the ferrite transformed from the austenite by cold working significantly decreases the sensitivity of stainless steel to stress-corrosion cracking in both solutions.

(Author) D.H.

A65-24115

FUNDAMENTAL STUDY OF A GOLD PLATING AND DRY FILM LUBRICANT SYSTEM FOR LONG LIFE SLIDING ELECTRIC CONTACTS.

L. P. Solos (Amphenol-Borg Electronics Corp., Broadview, Ill.). IN: NATIONAL AEROSPACE ELECTRONICS CONFERENCE, DAYTON, OHIO, MAY 11-13, 1964, PROCEEDINGS. [A65-24101 13-09]

Conference sponsored by the Professional Group on Aerospace and Navigational Electronics, Dayton Section of the Institute of Electrical and Electronics Engineers, and American Institute of Aeronautics and Astronautics.

Dayton, Institute of Electrical and Electronics Engineers, Dayton Section, 1964, p. 117-123.

Investigation of the design factors associated with sliding-contact friction and wear. Various contact design principles are reviewed and are used to develop a functional model to simulate the half-million repetitive cycles of contact life and other requirements for the sliding contact of a coaxial microwave cavity line. An acid gold plating over a rhodium plating, coated with a thin Teflon lubricant film, is found to pubbes exceptional wear properties for extensive cycling. The mechanisms affecting dynamic contact resistance (or noise) are discussed.

P.K.

A65-24242

DEVELOPMENTS IN HIGH-TEMPERATURE ULTRAHIGH-VACUUM FRICTION STUDIES.

L. G. Kellogg (North American Aviation, Inc., Atomics International Div., Canoga Park, Calif.).

American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 6Al. 11 p. 13 refs. Members, \$0.60; nonmembers, \$1.20.

Review of studies on the bearing compatibility of various materials for aerospace nuclear reactors. A total of 67 pairs of materials were tested in sliding couple at pressures down to 10^{-9} torr and temperatures up to 1300° F. The material combinations covered were metal-metal, both with and without dry lubricant; metal-ceramic-ceramic, both with and without dry lubricant; metal-ceramic; and ceramic-carbon pairs. Data are presented which illustrate the effects of vacuum on sliding friction and on surface film formation. The results indicate that carbon graphites and Na2SiO3 bonded dry-film lubricants provide relatively low friction when coupled with Al2O3 (flame-sprayed) surfaces. P.K.

A65-24245

NEW SOLID LUBRICANTS – PREPARATION, PROPERTIES AND POTENTIALS.

D. J. Boes (Westinghouse Electric Corp., Research Laboratory, Pittsburgh, Pa.).

American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 5C3. 26 p. 11 refs. Members, \$0.60; nonmembers, \$1.20.

Review of studies on the physical and chemical properties of a group of layer-lattice compounds similar in crystal structure to MoS₂ and graphite and suitable for use as aerospace solid lubricants. The compounds treated are the dichalcogenides (disulfides, diselenides, and ditellurides) of the Group V-B and VI-B metals molybdenum, tungsten, niobium, and tantalum. The friction characteristics, volume resistivity, thermal and oxidative stability, radiation resistance, and combined cryogenic and high vacuum capabilities of these lubricants are evaluated. It is found that the combined lubricity, electrical conductivity, radiation resistance and high-vacuum capability exhibited by these compounds make them attractive candidates for aerospace solid lubricants. The primary limitation is the restriction of 400-450°C that must be placed on their use in oxidizing atmospheres.

A65-24248

THE EFFECTS OF REACTOR RADIATION ON THREE HIGH-TEMPERATURE SOLID-FILM LUBRICANTS.

A65-24249

R. H. McDaniel (General Dynamics Corp., Nuclear Aerospace Research Facility, Fort Worth, Tex.).

American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 5C4. 30 p.

Members, \$0.60; nonmembers, \$1.20.

Contract No. AF 29(601)-6213.

Study of the effects of irradiation and temperature on the wear-life characteristics of solid-film lubricants for aerospace applications. Lubricants studied were: (1) a PbS-MoS₂-B₂O₃ combination on steel and on nickel-base alloy substrates and (2) CaF₂-oxide frit and MoS₂-graphite-sodium silicate formulations on nickel-base substrates. Test specimens were irradiated with gamma rays and neutrons from a thermal reactor and subjected to sliding-wear tests at temperatures up to 1500°F. The data are analyzed through the use of statistical procedures using Weibull plots.

P.K.

A65-24249

FLUORIDE SOLID LUBRICANTS FOR EXTREME TEMPERATURES AND CORROSIVE ENVIRONMENTS.

Harold E. Sliney, Thomas N. Strom, and Gordon P. Allen (NASA, Lewis Research Center, Cleveland, Ohio).

American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 5C5. 31 p. 11 refs. Members, \$0.60; nonmembers, \$1.20.

Review of studies on the chemical and thermal stability of various fluoride solid lubricants under extreme environmental conditions. Thermochemical considerations were used to select chemically stable metal fluorides which would be capable of functioning in aerospace environments, and the fluoride coatings chosen were bonded to Ni-Cr alloys and tested. Measurements were made on the friction, wear, and endurance properties of ceramic bonded calcium fluoride in air from 80° to 1900°F and in liquid sodium at 1000°F and on the lubricating properties of fused fluoride coatings in hydrogen and air to 1500°F and in sodium at 1000°F. The results demonstrate the suitability of fluoride coatings under these conditions.

P. K.

A65-24250

LUBRICANT FILM THICKNESS AND WEAR IN ROLLING POINT CONTACT.

T. E. Tallian, J. I. McCool, L. B. Sibley (SKF Industries, Inc., Engineering and Research Center, King of Prussia, Pa.), and E. F. Brady (Pennsylvania Military College, Chester, Pa.), American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 4A4, 45 p. 14 refs.

Members, \$0.60; nonmembers, \$1.20. Contract No. NOw 61-0716-c.

Review of measurements on elastohydrodynamic effects in rolling contact phenomena. Lubricant film thickness in the partial elastohydrodynamic range was measured as a function of speed in a rolling four-ball configuration for four mineral oils, two esters, and a polyphenylester, covering a viscosity range of 8 to 360 cs. Film thickness is shown to vary exponentially with speed. At the point where a full elastohydrodynamic film is formed, the product of viscosity and speed is constant for most lubricants. The wear rate after run-in is found to equal the total area of asperity contact multiplied by a constant which is a characteristic of the lubricant. The compounded ester type lubricants are found to be best for wear prevention. The size and shape of wear particles are studied, and the results suggest they are shaped like platelets.

P. K.

A65-24252

ON THE DETERMINATION OF FRICTION FORCES IN TURBULENT LUBRICATION.

V. N. Constantinescu (Rumanian Academy, Institute of Applied Mechanics, Hydrodynamic Lubrication Laboratory; Bucharest, Polytechnic Institute, Bucharest, Rumania) and S. Galetuse (Bucharest, Polytechnic Institute, Bucharest, Rumania).

American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 3AL 31 p. 12 refs. Members, \$0.60; nonmembers, \$1,20.

Analysis, using the mixing-length hypothesis, of the friction forces in turbulent lubricating films. The friction stresses on the

two lubricated surfaces in contact and their dependence on Reynolds number and on pressure distribution are studied. Formulas are obtained for the friction stresses which are valid for small and moderate variations of the film thickness and are applied to calculate friction forces and torques in journal bearings and slider bearings.

A65-24256

A REFINED SOLUTION TO THE THERMAL-ELASTOHYDRO-DYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLIN-DERS

H. S. Cheng (Mechanical Technology, Inc., Latham, N.Y.). American Society of Lubrication Engineers. Annual Meeting. 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 4A2. 34 p 18 refs.

Members, \$0,60; nonmembers, \$1.20.

Navy-supported research.

Extension, through a more rigorous analysis, of a recent theoretical study by Cheng and Sternlicht of the thermal-elasto-hydrodynamic lubrication of rolling and sliding cylinders. The previous work is extended by (1) removing the assumption of a mean viscosity across the thickness of the lubricating film, (2) using a two-dimensional finite-difference approach to calculate the temperature field in the film, (3) replacing the exponential relation between the density and the pressure by a more realistic empirical function, and (4) calculating the rolling and sliding friction forces. The results show that temperature has a moderate effect on the shape of the pressure and film profile, but has very little effect on the magnitude of the film thickness in the contact zone. The frictional force, however, is strongly influenced by the temperature rise in the film. The results are compared with experimental measurements.

P. K.

A65-24258

INFLUENCE OF SURFACE ROUGHNESS ON BOUNDARY FRICTION. Yukio Miyakawa (National Aerospace Laboratory, Tokyo, Japan), American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 6A2, 9 p. 7 refs. Members, \$0.60; nonmembers, \$1.20.

Experimental study, for various loads, speeds, and lubricants, of the effect of surface roughness on boundary friction. Hardened steel surfaces, polished with wet chromic oxide and with various grades of emery paper and lubricated with various mixtures of a highly refined spindle oil and oleic acid, were used. It is found that the friction when sliding parallel to the direction of polishing is greater than that when sliding perpendicular to this direction. The degree of roughness has little influence on the friction, except for extremely small or large degrees of roughness. The effective lubrication occurs as a result of the interruption by the surface roughness of contact. Therefore, the most effective lubrication takes place when the sliding surface is perpendicular to the direction of polishing and the surface has an appropriate degree of roughness. The effects of surface roughness on friction-load and friction-speed characteristics are also considered.

A65-25442

CONTACT TEMPERATURES IN ROLLING/SLIDING SURFACES. A, Cameron (London, University, Imperial College of Science and Technology, Dept. of Mechanical Engineering, London, England), A. N. Gordon, and G. T. Symm (London, University Imperial College of Science and Technology, Dept. of Mathematics, London, England).

Royal Society (London), Proceedings, Series A, vol. 286, May 25, 1965, p. 45-61, 6 refs.

Discussion of three related but separate problems concerning the surface temperatures of frictional contacts. The first part considers the surface temperatures of two rolling/sliding contacts when the condition is imposed that there must be no temperature discontinuity over the contact zone, for a range of surface speeds such that Ψ_1/Ψ_2 varies between + 1 and -1. The second part studies the surface temperatures when a rectangular heat source moves over the surfaces at various speeds. As the speeds increase the asymptotic expression for the temperature becomes more accurate. The third section considers the way the surface temperatures build up when (1) the contact is repeated, and (2) heat is convected from the free surface. (Author) D. P. F.

A65-25479 =

HYDRODYNAMICS OF A NONISOTHERMAL LUBRICATING FILM [K GIDRODINAMIKE NEIZOTERMICHESKOGO SMAZOCHNOGO SLOIA].

M. E. Podol'skii.

Akademiia Nauk SSSR, Izvestiia, Mekhanika, Mar. -Apr. 1965, p. 26-32. 6 refs. In Russian.

Discussion of the thermal boundary conditions for parallelsurface thrust bearings. Approximate integration of the hydrodynamic and energy-balance equations for a film of constant thickness leads to a solution which shows that variation of viscosity with temperature results in the onset of negative pressures in the film. This finding does not agree with the results obtained by Zienkiewicz and by Cameron.

A65-25497

A FIVE-POINT PROGRAM DESIGNED TO ELIMINATE CONTAMINATION AND CORROSION OF FUEL TANKS ON AIRCRAFT USING JET TURBINE FUEL.

Wilburn A. Boggs (Lockheed Aircraft Corp., Lockheed-Georgia Co., Marietta, Ga.).

IN: SOCIETY OF AUTOMOTIVE ENGINEERS, BUSINESS AIRCRAFT CONFERENCE, WICHITA, KAN., MAY 6-8, 1965, PROCEEDINGS. [A65-25495 15-02]

New York, Society of Automotive Engineers, 1965, p. 11-18. 13 refs. General discussion of the problems resulting from the introduction of contaminated jet turbine fuel into integral fuel tanks, with presentation of a five-point program designed to eliminate the contamination problem. The frequency of contamination and the seriousness of the problem have greatly increased. Contributing factors are the increase in volume of fuel handled and changes brought about by bulk handling, the difference in physical characteristics of the fuel, the proliferation of microbiological growth in "water bottoms," and failure of industry fully to understand the importance of the problem. The five-point program consists of (1) continuous scavenging of free water from storage tanks; (2) use of a suitable fuel biocide; (3) adoption of an improved finish system for aircraft tanks which is resistant to contaminated fuel; (4) use of a water-sensitive portable filter system as a final filter when receiving fuel from an uncontrolled source; and (5) regular inspection of the integral fuel tanks, with additional inspections after refuelling from uncontrolled sources. F. R. L.

A65-25505

ADDITIONAL DESIGN PERFORMANCE AND GROWTH POTENTIAL THROUGH THE USE OF A SYNTHETIC LUBRICANT.
Reginald S. Shearer (Lehigh Chemical Co., Chestertown, Md.).
IN: SOCIETY OF AUTOMOTIVE ENGINEERS, BUSINESS AIRCRAFT CONFERENCE, WICHITA, KAN., MAY 6-8, 1965, PROCEEDINGS.
[A65-25495 15-02]

New York, Society of Automotive Engineers, 1965, p. 110-114.

Discussion of improvements in service performance permitted by synthetic lubricants, compounded organic esters. Cooperation is needed from all segments of the aircraft industry, including the lubricant manufacturer, to achieve the maximum in aircraft design and utilization. It is considered that utilization of synthetic lubricants will make it possible to eliminate the oil cooler (thus permitting weight and cost savings) and to increase engine compression ratio for better power-to-weight ratio.

F.R.L.

A65-25545 =

INVESTIGATION OF A METHOD OF COMPENSATING FOR THE FRICTION IN THE SHAFT BEARINGS OF INSTRUMENTS [ISSLEDOVANIE ODNOGO METODA KOMPENSATSII TRENIIA V OPORAKH VALOV PRIBOROV].

B. A. Komashinskii.

Priborostroenie, vol. 8, no. 2, 1965, p. 107-112. In Russian.

Investigation of a method of reducing mechanical losses due to friction by means of "forced" motion of the outer races of a ball bearing. The races of the first and second bearing moved in opposite direction at an angular velocity much higher than that of the axle. The test stand used in the experiments is described, and the effectiveness of the method is assessed for several modes of forced motion and various angular velocities. The method is found to yield the best results in the case of dry friction and "pullout" friction on starting the axle.

V.P.

A65-25642

TFE-LUBRICATED PHENOLICS.

David P. Willis, Jr. (Whitford Chemical Corp., Malvern, Pa.), Machine Design, vol. 37, May 27, 1965, p. 130-137.

General discussion of modified phenolic molding compounds containing polytetrafluoroethylene (TFE) and a description of test data which indicate advantageous applications for such compounds. Velocities of up to 1200 rpm are tolerable; there is an optimum surface smoothness for film formation and hence minimum wear rates; proper break-in lubrication appreciably affects bearing life. The factors affecting bearing design are discussed, and the comparative properties of several bearing materials are summarized in tables. TFE-lubricated phenolic bearings can operate in temperature ranges from 350 to -40°F. The coefficient of friction decreases as the load increases, up to about 10,000 psi. Advantages to be derived from the use of such TFE-lubricated resins include lack of contaminating lubricant, "squeakless" dry operation, permanent internal lubrication, high heat capability, light weight, dimensional stability, low wear, and excellent frictional properties. D.P.F.

A65-25644

GRAPHICAL METHOD FOR FINDING OPTIMUM BEARING SPAN FOR OVERHUNG SHAFTS.

 $T.\ Terman \ and \ J.\ G.\ Bollinger\ (Wisconsin, University, Madison, Wis.).$

Machine Design, vol. 37, May 27, 1965, p. 159-162.

Description of a tabular technique for optimizing the bearing span with respect to reducing shaft bending and bearing deflection to a minimum. The design approach may involve three fundamental situations: (1) a preliminary design of a shaft may be completed in which the selection of dimensions and bearings is based on boundary conditions, and in this case redesign optimization can proceed; or (2) a design may be synthesized by first choosing the proportional distribution of the cross-sectional variation between bearings; or (3) for a fixed span, bearing stiffnesses or shaft diameters may be altered until the given bearing span is optimum. The strain-energy method which is described and illustrated by graphs differs from the usual method in which weighted average moment of inertia is used for finding optimum bearing span. The use of elastic strainenergy principles to find the bending deflection of a nonuniform shaft takes into account the actual cross-section distribution. The displacement at the load caused by deflection at the bearings is the same as that determined for a uniform shaft, but the expression for the bending deflection is different. D. P. F.

A65-25992

FLEXURE-PIVOT BEARINGS. I - SPRING RATE, BEARING TYPES, SINGLE-STRIP DESIGN.

Warren D. Weinstein (Sperry Rand Corp., Sperry Gyroscope Co., Inertial Div., Great Neck, N. Y.).

Machine Design, vol. 37, June 10, 1965, p. 150-157.

Examination of types of flexure-pivot bearings, their spring rate, and the design of single-strip bearings. Bearings of this type are made of one or more strips of an elastic material rigidly attached to two moving parts. The pivot-bearing assembly constrains one part to move in a particular manner with respect to the other. Inherent advantages of such bearings include low cost, no static friction, low hysteresis, and no lubricant requirement. They are rigid about the nonsensitive axis and the spring rate about the sensitive axis can be controlled. Their main disadvantage is their inability to provide large angles of rotation between the parts they connect. Flexure-pivot bearings can be designed quickly by means of dimensionless curves once the major bearing parameters have been specified. These include: (1) spring rate or torsional gradient, (2) size, (3) environment, (4) angular motion required, and (5) loading. F. R. L.

A65-26059

ESTIMATING CYCLICAL LIFE FOR EQUIPMENT EXPERIENCING ONLY WEAROUT FAILURES.

A65-26089

J. E. Comer (Gulton Industries, Inc., Engineered Magnetics Div., Hawthorne, Calif.).

IN: ACTIVE RELIABILITY: ANNUAL WEST COAST RELIABILITY SYMPOSIUM, 6TH, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIF., FEBRUARY 20, 1965. [A65-26051 15-15]

Symposium sponsored by the Reliability Div. of the Los Angeles Section, American Society for Quality Control, and the College of Engineering and University Extension, University of California. North Hollywood, Western Periodicals Co., 1965, p. 133-146.

Calculation of an approximate lifetime requirement to serve as a guide for arranging a program of reliability testing for any individual part failing primarily by wearout. It is assumed on the basis of experience that the distribution of the failure rate about the wearout point is Gaussian, and that the effect of random failures is negligible. Formulas are developed which make it possible to calculate minimum average lifetimes.

F.R.L.

A65-26089

ON THE POSSIBILITY OF REALIZING A NONHOLONOMIC CONSTRAINT BY MEANS OF VISCOUS FRICTION FORCES. N. A. Fuíaev.

(Prikladnaja Matematika i Mekhanika, vol. 28, May-June 1964, p. 513-515.)

PMM - Journal of Applied Mathematics and Mechanics, vol. 28,

no. 3, 1964, p. 630-632. Translation.

Analysis using Chaplygin's sledge to show that nonholonomic coupling can be achieved by means of viscous-friction forces in the limiting case where the coefficient of viscous friction is equal to infinity. The results refute Caratheodory's conclusion of the impossibility of such a realization.

A65-26262

EFFECTS OF THE SPACE VACUUM ON METALS.
L. J. Bonis (Bikon Corp., Natick, Mass.).

L. J. Bonis (linkon corp., Natice, Many Space/Aeronautics, vol. 43, June 1965, p. 76, 78, 80, 82, 84.

Consideration of some of the special factors that determine the characteristics of a metal in the space vacuum. The absence of adsorbed gases on the surface of a metal is seen to make the metal volume of the space processors of a metal in the space processors.

adsorbed gases on the surface of a metal is seen to make the metal less vulnerable to crack propagation. Successful simulation of vacuum effects on metals is said to require the use of ultrahigh vacuum simulators capable of ultimate pressures as low as 10-12 torr. For pressures not lower than 10-6 to 10-7 torr the experimental data on evaporation and sublimation are said to be in good agreement with the Langmuir equation. The absence of boundary layers on a vehicle moving through outer space is shown to lead to the phenomenon of sputtering. The special lubrication requirements imposed by the space vacuum are pointed out. Molybdenum disulfide, tungsten disulfide, and soft metals such as gold are said to have given good results as space lubricants. Certain common elastomers are also said to be stable in high vacuums.

A65-26487

STRESS RELIEVING TITANIUM ALLOY WELDMENTS IN VACUUM.

Herschel R. Green, Jr. (North American Aviation, Inc., Columbus Div., Columbus, Ohio).

Metal Progress, vol. 87, Apr. 1965, p. 72-75.

Description of the welding and heat-treatment cycle required for forming certain wing sections of the A-5 Vigilante out of an alpha-titanium alloy. It is shown that, in order to prevent contamination by halogens and other impurities, welded parts made of this alloy must be stress-relieved in vacuum. The furnaces used for this operation are described, as well as certain problems which arose when they were first put into operation.

A.B.K.

A65-26490

WEAR AND FRICTION OF SOLID SURFACES.
William A. Glaeser (Battelle Memorial Institute, Columbus,
Ohio).

Metal Progress, vol. 87, Apr. 1965, p. 146, 148, 150, 152, 154, 156, 158.

Review of reports given at the 1964 ASME-ASLE International Lubrication Conference. The reports presented deal with: the

influence of crystal-lattice structure on wear and friction phenomena; the effects of penetration hardness, elastic modulus, and work-hardening characteristics on resistance to abrasive wear; the importance of surface effects - such as adsorption, true area of contact, and thin-film lubrication - in boundary lubrication; wear and frictional behavior of various metal alloys in liquid sodium; solid lubricants which form thin films when rubbed on metal surfaces; and materials for high-temperature bearings. A number of theories of lubrication mechanisms are presented, along with evaluations of effects of rolling contact fatigue on ceramics and cermets.

A.B. K.

A65-26503

INITIAL PHASES OF DAMAGE TO TEST SPECIMENS IN A CAVITATING VENTURI.

F. G. Hammitt, L. L. Barinka, M. J. Robinson, R. D. Pehlke, and C. A. Siebert (Michigan, University, Nuclear Engineering Dept., Laboratory for Fluid Flow and Heat Transport Phenomena, Ann Arbor, Mich.).

Ann Arnor, Mich. J. (American Society of Mechanical Engineers, Winter Annual Meeting, New York, N.Y., Nov. 29-Dec. 4, 1964, Paper 64 - WA/FE-2.)

ASME, Transactions, Series D - Journal of Basic Engineering, vol. 87, June 1965, p. 453-463; Discussion, J. Z. Lichtman (U.S. Naval Applied Science Laboratory, Brooklyn, N.Y.), p. 463; Authors' Closure, p. 463, 464, 12 refs.

Research supported by United Aircraft Corp. and NASA.
Pictorially illustrated discussion of the detailed characteristics of pitting in the early phases of cavitation damage incurred by test specimens inserted into the diffusing portion of a cavitating venturi. The characteristics are discussed in terms of the degree of cavitation, fluid, material, duration, and velocity effects. Quantitative damage results are presented from these tests for mercury and water as test fluids and for a variety of test materials. Various possible damage correlating parameters are discussed and examined.

(Author) D.H.

A65-26533

THE INFLUENCE OF OIL FILM ON KINETOSTATIC CONTACT STRESSES [WPLYW WARSTWY OLEJU NA KINETOSTATYCZNE NAPRĘŻENIA KONTAKTOWE]. Jacek Stupnicki.

Archiwum Budowy Maszyn, vol. 12, no. 1, 1965, p. 47-66. 15 refs.

Theoretical and experimental investigation aimed at determining whether the equations in the theory of elasticity for cylinders in dry contact may be used to describe the pressure distribution at the contact points of ball and roller bearings in the presence of a lubricating film. The effect of the film is studied by photoelastic techniques, using plastic and glass models at pressures of 400 and 3000 kg/cm², respectively. Using the isochromatic curves, the pressure distribution at the contact surface of two cylinders is calculated on a computer by the method of characteristics. The results of the investigation indicate that the lubricating film between two cylinders has the effect of decreasing by about 20% the values for the contact stresses obtained from the Hertz equations. This effect increases in proportion to the initial viscosity of the film. The effect of the film on the contact stresses is influenced only by rolling rates up to 6 m/sec; at rolling rates higher than 6 m/sec, the effect remains constant.

A65-26568

INSTITUTION OF MECHANICAL ENGINEERS, LUBRICATION AND WEAR CONVENTION, 3RD, LONDON, ENGLAND, MAY 27-29, 1965.

London, Institution of Mechanical Engineers, 1965. 213 p \$9.10.

CONTENTS:

CONTACT STRESSES IN FLAT ELLIPTICAL CONTACT SURFACES WHICH SUPPORT RADIAL AND SHEARING FORCES DURING ROLLING. D. J. Haines (Bristol, University, Bristol, England), p. 1-12. 10 refs. [See A65-26569 16-15]

EFFECT OF LUBRICANTS ON THE FATIGUE OF STEEL AND OTHER METALS. G. D. Galvin and H. Naylor (Shell Research, Ltd., Chester, England), p. 23-37. 19 refs. [See A65-26570 16-15]

ROLE OF WEAR DEBRIS IN THE WEAR CHARACTERISTICS OF A ROLLING ELEMENT SUBJECTED TO TANGENTIAL SURFACE TRACTIONS. S. N. Giolmas and J. Halling (Liverpool, University, Liverpool, England), p. 107-115. 12 refs. [See A65-26571 16-15]

EFFECT OF GEOMETRIC CONFORMITY BETWEEN ROLLING BODIES ON THE SLIP AND WEAR IN THE CONTACT REGION. B. G. Brothers and J. Halling (Liverpool, University, Liverpool, England), p. 203-213. 12 refs. [See A65-26572 16-15]

A65-26570

EFFECT OF LUBRICANTS ON THE FATIGUE OF STEEL AND OTHER METALS.

G. D. Galvin and H. Naylor (Shell Research, Ltd., Thornton Research Centre, Chester, England).

IN: INSTITUTION OF MECHANICAL ENGINEERS, LUBRICATION AND WEAR CONVENTION, 3RD, LONDON, ENGLAND, MAY 27-29, 1965. [A65-26568 16-15]

London, Institution of Mechanical Engineers, 1965, p. 23-37. 19 refs.

Employment of a simple rotating cantilever fatigue rig in tests (1) to see if lubricants have any effects on the fatigue lives of steel and other metals, (2) to investigate the nature of any effects found, and (3) to advance the general knowledge concerning the effect of noncorrosive environments on the fatigue of metals. It has been shown that mineral oils, synthetic lubricants, and additives used in lubricants can indeed affect the fatigue.lives of steel and other reactive metals; at stresses above the fatigue limits, large effects are observed. Specimen lives may be only 10 to 20% of those found in MWO (medicinal white oil, a solventrefined oil subsequently treated with oleum to remove polar and aromatic materials), but in most fluids lives are at least as long as those measured in tests carried out in air. The largest reduction in fatigue limit was about 13%. The effect which the apparently noncorrosive fluids have is either to accelerate the propagation of fatigue cracks initiated by repeated stressing but to play no part in the initiation of fatigue cracks, or to accelerate both the initiation and propagation of fatigue cracks. In both crack initiation and crack propagation the fluid must be capable of reacting chemically with the metal specimens or with the oxide layer on the specimen. Chemically unreactive metals such as gold and platinum are unaffected by such fluids and this suggests that if a suitable hard unreactive plating were found it might alleviate pitting in situations where the lubricant was thought to be having a deleterious effect. W.M.R.

A65-26571

ROLE OF WEAR DEBRIS IN THE WEAR CHARACTERISTICS OF A ROLLING ELEMENT SUBJECTED TO TANGENTIAL SURFACE TRACTIONS.

S. N. Giolmas and J. Halling (Liverpool, University, Dept. of Mechanical Engineering, Liverpool, England).

IN: INSTITUTION OF MECHANICAL ENGINEERS, LUBRICATION AND WEAR CONVENTION, 3RD, LONDON, ENGLAND, MAY 27-29, 1965. [A65-26568 16-15]

London, Institution of Mechanical Engineers, 1965, p. 107-115. 12 refs.

Research supported by the United Kingdom Atomic Energy Authority.

Description of some slow-speed rolling experiments in which wear was produced by microslip in the contact zone. It was found that after an interval of time the wear rate increased if the experiment was designed to restrict the escape of wear debris. This increased wear rate was suppressed in experiments where the loose debris was removed at frequent intervals during the test. The wear measurements were obtained using radioactive tracer techniques and clearly demonstrate some material firmly attached to the mating surface. The increased wear rate was also suppressed for tests carried out in a nitrogen atmosphere. These results thus confirm a rolling-wear process of a similar type to that described by Kerridge for sliding wear.

(Author) W.M.R.

A65-26572

EFFECT OF GEOMETRIC CONFORMITY BETWEEN ROLLING BODIES ON THE SLIP AND WEAR IN THE CONTACT REGION. B. G. Brothers and J. Halling (Liverpool, University, Dept. of Mechanical Engineering, Liverpool, England). IN: INSTITUTION OF MECHANICAL ENGINEERS, LUBRICATION AND WEAR CONVENTION, 3RD, LONDON, ENGLAND, MAY 27-29, 1965. [A65-26568 16-15] London, Institution of Mechanical Engineers, 1965, p. 203-213. 12 refs.

Research supported by the United Kingdom Atomic Energy Authority. Illustration, using model techniques, of the small-scale slip processes that occur between a rolling element and its track. These slip mechanisms arise from the applied loading and the geometric conformity of the system. Creep measurements arising from such slip are presented and compared with theoretical predictions. The wear resulting from the slip is determined using the radioactive tracer technique and is shown to correlate with the creep measurements. Analysis of the distribution of the transferred metal substantiates the assumed mechanism. The nature of the wear process in this type of situation is discussed and shown to have practical significance in the design of rolling-contact systems.

(Author) W. M. B.

A65-26662

THE EFFECT OF DRY AND FLUID LUBRICATION ON INSTRU-MENT BALL BEARING TORQUES AT HIGH SPEED. H. H. Mabie (Sandia Corp., Albuquerque, N. Mex.). Lubrication Engineering, vol. 21, June 1965, p. 242-249.

Results of high-speed torque tests run on R2, R3, and R4 ball bearings lubricated with MIL-L-6085A oil and MIL-G-3278A grease. Bearings of the same sizes were also tested with PTFE retainers impregnated with MoS2. These tests were conducted over a speed range of 1000 to 40,000 rpm at room temperature with one radial load for a given bearing size. Tests were also run at a constant speed of 10,000 rpm on the grease- and oillubricated bearings for 60 minutes to determine the effect of time upon torque. Sample standard deviations were calculated for each data point for all of the tests. The results of the tests are presented graphically with the plus and minus value of the sample standard deviation shown for each point.

(Author) A. B. K.

A65-26951

MACHINING STAINLESS STEEL.

P. H. Frederick and D. G. Klingensmith (Allegheny Ludlum Steel Corp., Bar Products Div., Pittsburgh, Pa.). Product Engineering, vol. 36, May 24, 1965, p. 56-63.

Discussion of improvements in the machining and machinability of stainless-steel alloys. The machinability of 416 EZ, 303 EZ, and 203 EZ is compared with that of B-Ill2, the recognized staindard for comparison. Improvements in machine tools, cutting tools, and lubrications are described, and cost and availability data for several stainless-steel alloys are presented.

S.H.B.

A65-26973

CONTRIBUTION TO THE STUDY OF STAINLESS STEELS USING POTENTIODYNAMIC CURVES [PŘISPĚVEK KE STUDIU NEREZAVĚJÍCÍCH OCELÍ S POUŽITÍM POTENCIODYNAMICKÝCH KŘIVEK].
Rudolí Štefec.

Hutnické Listy, vol. 20, May 1965, p. 345-347. 16 refs. In

Investigation of the effect of heat treatment on the corrosion resistance of the chromium stainless steel ČSN 17023. The steel samples were hardened and then tempered at different temperatures up to 700°C. It is shown that tempering at temperatures near 500°C and at higher temperatures causes a narrowing of the passivity region and a lowering of the corrosion resistance in the active state. Using potentiodynamic curves, it is shown that the

A65-27161

corrosion resistance minimum occurs after tempering at temperatures near 500°C. The mechanism of the lowering of the corrosion resistance is considered. The study shows that tempering at temperatures higher than 500°C results in a partial improvement of the corrosion resistance. This is explained by the chromium entering from chromium carbide into the solid solution. It is also noted that the rise of the temperature of the corroding solution increases the critical current density required for passivation; that the characteristics of the potentiodynamic curves also depend on the method used for preparing the surface of the electrode and on the duration of the immersion of the electrode in the corroding solution before the curve is registered. M.L.

A65-27161

FUELS AND LUBRICANTS FOR THE NEXT GENERATION AIR-CRAFT - THE SUPERSONIC TRANSPORT.

W. G. Dukek (Esso Research and Engineering Co., Linden, N.J.). Esso Air World, vol. 17, Mar. -Apr. 1965, p. 119-125, 13 refs.

Consideration of the problem of providing satisfactory fuels and lubricants for the next generation of transport aircraft, where the root of the problem is the tendency of hydrocarbons and esters to undergo high-temperature oxidation in the supersonic environment. It is noted that an understanding of the chemistry of auto-oxidation has made it possible to process fuels to remove reactive species, to synthesize ester lubricants of a more thermally stable molecular structure, and to provide the anti-oxidants, metal deactivators, and other additives useful for maintaining the life of these improved products. The best of current aviation kerosenes and a new Type-II lubricant are ready to serve the first-generation Mach 2 to 2.5 SST. Advanced SSTs of the Mach 3 class will demand better fuels and oils of the improved Type-II or Type-III categories. Such products are in active development. (Author) M.M.

A65-27311

DESIGN AND MANUFACTURE OF AN APPARATUS FOR RESEARCH ON PRESSURE-LUBRICATED FLAT-FACE THRUST BEARINGS [PROGETTO E COSTRUZIONE DI UNA ATTREZZATURA PER RICERCHE SU CUSCINETTI DI SPINTA A LUBRIFICAZIONE FORZATA].

Giorgio Bartolozzi (Pisa, Università, Istituto di Macchine, Pisa, Italy).

Ingegneria Meccanica, July 1964, p. 3-16, 10 refs. In Italian.

Description of the design of an apparatus suitable for carrying out a series of tests to establish criteria for the optimum sizing of pressure-lubricated parallel flat-face thrust bearings. Comments are offered on the setting up and mode of utilization of the equipment during a first series of tests. The results obtained are reported.

A65-27545

IMPROVEMENT OF THE SCALE-RESISTANCE OF HEAT-RESISTANT MATERIALS BY INTRADIFFUSION OF METALS [VERBESSERUNG DER ZUNDERBESTÄNDIGKEIT HOCHWARM-FESTER WERKSTOFFE DURCH EINDIFFUSION VON METALLEN]. Albert von den Steinen and Gottfried Becker (Deutsche Edelstahlwerk AG, Forschungsinstitut, Krefeld, West Germany). Motortechnische Zeitschrift, vol. 25, Sept. 1964, p. 1-3. In German

Discussion of Cr and Al surface diffusion into low-carbon unalloyed steels as a means of improving corrosion and scale resistance. The technique uses volatile Cr and Al halides or atomized metallic Cr and Al; it is described as an effective way of eliminating crack formation, reducing thermoshock sensibility, and obtaining scale-resistant products without affecting tensile and creep strength. Results are tabulated. The method was developed in Germany during World War II to substitute unalloyed for scarce alloyed steels.

AA5-27690 3

VANISHING SLIP OF MECHANICAL SYSTEMS WITH DRY FRICTION [ISCHEZAIUSHCHIE SKOL' ZHENIIA MEKHANICHESKIKH SISTEM S SUKHIM TRENIEM].

G. K. Pozharitskii.

Prikladnaia Matematika i Mekhanika, vol. 29, May-June 1965, p. 558-563. In Russian.

Comparative analysis of motions with energy dissipation due to sliding of the frictional surfaces and of motions without friction, in which energy can be conserved. For general systems with friction, sufficient conditions are derived under which an initial motion

with sliding (at low energy influx to the system) will change into a motion without sliding. It is shown that for a sufficiently small sliding rate, the transfer process can be made arbitrarily small.

A65-27984

ON HYDRODYNAMIC LUBRICATION WITH SPECIAL REFERENCE TO SUB-CAVITY PRESSURES AND NUMBER OF STREAMERS IN CAVITATION REGIONS.

Leif Floberg (Lund Institute of Technology, Mechanical Engineering Dept., Lund, Sweden).

Acta Polytechnica Scandinavica, Mechanical Engineering Series, no. 19, 1965. 35 p. 18 refs.

Research sponsored by the Swedish Technical Research Council.

Study of hydrodynamic lubrication of two lightly loaded rotating circular cylinders. Special reference is made to subcavity pressures and the númber of oil streamers in cavitation regions; it is theoretically and experimentally shown how the subcavity pressure influences the number of streamers and other bearing quantities. The agreement between theory and tests is good. It is indicated that influence of surface tension can be neglected even at extremely light loads. Pressure distributions, load capacities, and oil flows are calculated, and tests are conducted for pressure distributions, meniscus locations, and load capacities. Included photographs show the test rig and various cavitation boundaries.

B.B.

A65-28341

THE INTERACTION OF METALLIC NIOBIUM WITH CARBON MONOXIDE [VZAIMODEISTVIE METALLICHESKOGO NIOBILA S OKIS' IU UGLERODA].

G. P. Shveikin and V. A. Pereliaev.

Akademiia Nauk SSSR, Izvestiia, Metally, May-June 1965, p. 164-169. 8 refs. In Russian.

Investigation of the interaction of carbon monoxide with powdered and compact niobium. In both cases the formation of an oxycarbide phase on the surface of the metal is noted. When tested for chemical strength in a 40% solution of hydrofluoric acid at room temperature, it was found that a specimen of metallic niobium was more subject to the action of the acid than a similar specimen with an oxycarbide coating.

A.B.K.

A65-28600

OPERATING EXPERIENCE WITH AN OIL-LUBRICATED HIGH-SPEED POTASSIUM TURBINE BEARING.

Hermann Ernst (General Electric Co., Space Power and Propulsion Section, Cincinnati, Ohio).

American Society of Mechanical Engineers. Lubrication Symposium, New York, N.Y., June 6-9, 1965, Paper 65 - LUBS-10. 14 p.

Members, \$0.50; nonmembers, \$1.00.

Contract No. NAS5-1143.

Summary of experience gained during analysis, design, and testing of a modern, high-speed, oil-lubricated tilting-pad bearing. The two-stage test turbine operates in saturated potassium vapor with an inlet temperature of 1600°F and is of overhang design. Oil lubrication was chosen because it was considered to be more reliable than liquid-metal lubrication. The tilting-pad bearing was selected because of its good record of suppressing fractional frequency whirl. Applicable data were analyzed and are discussed. Throughout testing, the bearing design demonstrated ruggedness at high speeds, up to 23,000 rpm.

A65-28628

DETERMINATION OF ANNEALING BRITTLENESS BY CORROSION TESTS UNDER TENSION IN THE PRESENCE OF HYDROGEN [MISE EN EVIDENCE DE LA FRAGILITE DE REVENU PAR DES ESSAIS DE CORROSION SOUS TENSION EN PRESENCE D'HY-DROGENE].

Ubirajara Quaranta Cabral, André Hache, and André Constant (Institut de Recherches de la Sidérurgie, Saint-Germain-en Laye, Seine-et-Oise, France).

Académie des Sciences (Paris), Comptes Rendus, vol. 260, no. 26, June 28, 1965, p. 6887-6890, 6 refs. In French.

Description of an experimental method for determining the degree of brittleness of annealed steels using corrosion tests under

tension in the presence of hydrogen. Annealing brittleness is shown by several tempered steels which had been annealed at temperatures in the 400-550°C range for relatively long periods of time. Such brittleness is not detectable by conventional methods and requires detailed micrographic examination. It is shown that there is a correlation between the existence of such brittleness and the rate of corrosion of steel samples under tension in the presence of H_2 . It is also shown that the same technique is capable of detecting the degree of resistance to cracking. A decinormal $\rm H_2SO_4$ solution is used as the corrosive agent; tensile strength tests were below the elastic limit. D. P. F.

A65-28635 =

HYDROMAGNETIC SQUEEZE FILMS BETWEEN TWO CONDUCTING SURFACES.

J. B. Shukla (Institute of Higher Technology, Dept. of Mathematics, Kanpur, India) and R. Prasad (U.S.S.D. College, Dept. of Mathematics, Kanpur, India).

American Society of Mechanical Engineers, Lubrication Symposium, New York, N.Y., June 6-9, 1965, Paper 65 - LubS-6. 5 p. (refs. Members, \$0.50; nonmembers, \$1.00.

Analytical investigation of the hydromagnetic theory for squeeze films between two conducting surfaces. It is shown that increase in load capacity, pressure, and time of approach are possible by increasing either the strength of the magnetic field, or conductivities of the surfaces, or both.

(Author) D. P. F.

A65-28637 =

DESIGN AND MANUFACTURING TECHNIQUES TO PREVENT STRESS CORROSION.

L. K. Crockett (North American Aviation, Inc., Space and Information Systems Div., Downey, Calif.).

American Society of Mechanical Engineers, Design Engineering Conference and Show, New York, N.Y., May 17-20, 1965.

Paper 65 - MD-45. 7 p.

Members, \$0.50; nonmembers, \$1.00.

Discussion of stress-corrosion cracking which results from a combination of three factors: (1) material susceptibility, (2) sustained tensile surface stress, and (3) mild corrosive environment. An example of material selection criteria for several large longerons is given where stress corrosion was a primary consideration. Examples of service failures are presented.

F.R.L.

A65-28639

RELATING BEARING SELECTION TO TOTAL PRODUCT PER-FORMANCE.

Carl H. Keller, Jr. (United Aircraft Corp., Sikorsky Aircraft Div., Stratford, Conn.).

American Society of Mechanical Engineers, Design Engineering Conference and Show, New York, N. Y., May 17-20, 1965, Paper 65 - MD-51, 7 p. 7 refs.

Members, \$0.50; nonmembers, \$1.00.

Evaluation of the many factors which influence bearing selection. Bearing selection without due consideration to all the design parameters may jeopardize reliable product performance. The achievement of successful bearing performance together with confidence in predicting life expectancy is related to a thorough understanding of the design requirements, and a complete evaluation of the operational characteristics of the bearing.

F.R.L.

A65-28653

METHODS OF THE STUDY OF METAL CORROSION [METODY ISSLEDOVANIIA KORROZII METALLOV].

V. V. Romanov.

Moscow, Izdatel'stvo Metallurgiia, 1965. 280 p. In Russian.

This book, compiled from both Soviet and foreign sources, is an up-to-date, compact account of the basic methods of metal-corrosion studies, intended to fill the gap in Soviet literature on the subject which has become apparent since the last book of the kind was published nearly 20 years ago. Following a brief description of qualitative corrosion-testing techniques, such as visual observations and macroscopic and microscopic examinations, quantitative methods of corrosion measurement are treated in more detail.

These include: loss of weight after the removal of corrosion products

generated by various reagents; the gain in weight when the corrosion product is firmly attached; the amount of hydrogen developed (as in the cathode process); the amount of oxygen absorbed; the time required to form the first corrosion center; the changes in sample thickness and corrosion penetration depth; the change in mechanical behavior under tensile stresses; the change in electrical conduc-

A65-29304 =

HEAT EXCHANGE, FRICTION, AND MASS EXCHANGE IN A LAMINAR MULTICOMPONENT BOUNDARY LAYER DURING INJECTION OF EXTRANEOUS GASES [TEPLOOBMEN, TRENIE I MASSOOBMEN V LAMINARNOM MOGOKOMPONENTNOM POGRANICHNOM SLOE PRI VDUVE INORODNYKH GAZOV], N. A. Anfimov and V. V. Al'tov.

Teplofizika Vysokikh Temperatur, vol. 3, May-June 1965, p. 409-420. 18 refs. In Russian.

Derivation of approximate formulas for calculating the effect of the injection of individual gases on heat exchange. It is shown that with the aid of data on the effect of the injection of individual gases on heat exchange and friction the curresponding effect for a mixture of gases can be calculated. An approximate expression is derived for the law of mass exchange in a laminar multicomponent boundary layer. The effect of diffusion separation of dissociated air during the injection of extraneous gases is investigated.

A. B. K.

A65-29311

INVESTIGATION OF THE CORROSION OF METALS IN THE PRESENCE OF HEAT TRANSFER [ISSLEDOVANIE KORROZII METALLOV V USLOVIIAKH TEPLOPEREDACHI].

P. I. Zarubin, L. A. Poluboiartseva, and V. M. Novakovskii (Ural' skii Nauchno-Issledovatel' skii Khimicheskii Institut, Sverdlovsk; Nauchno-Issledovatel' skii Fiziko-Khimicheskii Institut, Moscow, USSR).

Zashchita Metallov, vol. 1, May-June 1965, p. 297-303. 14 refs. In Russian.

Application of rotating disk electrodes to the simulation of diffusive corrosion processes taking place in circular tubes through which flows an aggressive fluid. The technique is shown to provide satisfactory results not only under conditions of thermal equilibrium but also when the fluid is heated (or cooled) through the tube walls. The experiments indicate that if the temperatures of the wall and of the fluid are adequately modeled, the disk velocity equivalent to a given value of linear flow rate can be calculated with sufficient accuracy on the basis of an equivalence equation derived for systems in thermal equilibrium. It is shown that in the presence of heat transfer the effect of the flow rate of the fluid on the rate of diffusive corrosion differs substantially from the effect when thermal equilibrium prevails.

A65-29501 =

ENGINE RATING SYSTEM FOR ASSESSING THE PERFORMANCE OF SYNTHETIC AVIATION TURBINE LUBRICANTS.

R. F. Overhoff (Esso Research and Engineering Co., Linden, N.J.) and J. P. Perry (Imperial Oil, Ltd., Toronto, Canada).

Esso Air World, vol. 17, May-June 1965, p. 147-155.

Development of a simple rating system for assessing the per-

Development of a simple rating system for assessing the performance of synthetic lubricants in aircraft gas turbines. Four hasic criteria were selected to develop a simplified numerical demerit system for rating aircraft gas turbines. These were (1) to define deposit demerit scales, (2) to establish methods for assigning deposit demerits to the critical parts in different engine models, (3) to confine the mechanical performance to a descriptive assessment, and (4) to develop a simplified photographic technique for illustrating deposits or mechanical conditions. Demerit factors based on types of deposit, thickness of deposit, and color of deposit are tabulated. An application of the rating system is shown in two tables of the rating report on a Pratt and Whitney JT3-D engine.

M. F.

A65-29781

ON THE PREDICTION OF THE WEAR AND DETERIORATION IN PRECISION LAPPING [ZUR VORAUSBESTIMMUNG DES ABSCHLIFFES UND DER ABNUTZUNG BEIM PRÄZISIONSLÄPPEN].

A65-29870

Edgar Fischer (Dresden, Technische Universität, Institut für elektrischen und mechanischen Feingerätebau, Dresden, East Germany).

Wissenschaftliche Zeitschrift, vol. 14, no. 1, 1965, p. 177-181. 5 refs. In German.

Theory concerning the lapping motion of the component particles of a tool such as a file and the work piece which makes it possible to predict the expected deterioration of the tool and the wearing down of the work piece. The starting point of the theory is a straight lap line and a straight lapping motion. The generaliza tion to include any lapping motion is also presented. It is shown how the efficiency of a lapping motion can be evaluated, and it is pointed out that the approach described is suitable for optimizing the tooling process. M.L.

A65-29870

THE DIFFUSION OF CARBON INTO TUNGSTEN AND MOLYB-DENUM AT LOW CARBON CONCENTRATIONS. L. N. Aleksandrov and V. Ia. Shchelkonogov (Mordovskii Gosu-

darstvennyi Universitet, Saransk, USSR). (Poroshkovaia Metallurgiia, July-Aug. 1964, p. 28-32.)

Soviet Powder Metallurgy and Metal Ceramics, July-Aug. 1964, p. 288-291. 9 refs. Translation.

Investigation of the conditions under which tungsten and molybdenum become contaminated with carbon at high temperature, by means of the use of C₁₄. Results are presented for grade VRN tungsten specimens 0.8 mm in diameter and grade Mch molybdenum specimens 0, 4 mm in diameter. The specimens are coated with a 1 to 20 mixture of graphite lubricant and C^{-14} mixture. It is known that for tungsten, W2C is formed when the carbon is present in excess of 0.05 wt %, and for molybdenum, Mo₂C is formed when carbon concentration is 0.15 wt % or greater. Annealing of the prepared specimens is by conduction at 1100 to 1450°C in hydrogen to prevent oxidation. Graphs showing the carbon diffusion rates for tungsten and molybdenum are included, together with equations for the concentration distribution of the diffusing element. It is concluded that the principal diffusion constants of carbon - the pre-exponential factor Do and the energy of activation of the process, Q - are determined with the aid of C_{14} . It is found that as a result of annealing for 3, 5 hr in the specified temperature range carbon penetrates into tungsten and molybdenum to depths of 5 and 40 μ , respectively. M. L.

A65-30030

A METHOD OF TESTING DRY FILM LUBRICANTS IN AN ULTRA-HIGH VACUUM.

Robert N. Hager, Jr. (General Dynamics Corp., General Dynamics Convair, San Diego, Calif.).

IN: INSTITUTE OF ENVIRONMENTAL SCIENCES, ANNUAL TECHNICAL MEETING, 11TH, CHICAGO, ILL., APRIL 21-23, 1965, PROCEEDINGS. [A65-29982 19-11]

Mount Prospect, Ill., Institute of Environmental Sciences, 1965, p. 365-368.

Description of a unique method of studying dry film lubricants exposed to an ultra-high-vacuum environment. An all-metal sealed, stainless steel chamber, 12 in.-diam by 18-in. long houses the test fixture, which is contained on one of the chamber end plates. Pumping is accomplished by cryosorption and getter-ion pumps. The ion pump and chamber can be surrounded by a folding oven and baked to 5000F. A residual gas analyzer, mounted on the chamber, continually records chamber partial pressures from mass 2 to 150. The test fixture contains a standard Falex journal mounted on the end of a torsion shaft, rotating between standard Falex vee blocks at 190 rpm. A magnetic coupled feed-through is used to transmit rotary motion into the chamber. The journal and vee blocks are coated with the lubricant under study. A linear motion feed-through is used to vary the load on the vee blocks. Friction in the test specimen is transmitted as a torque through the torsion shaft. The resulting twist of the shaft is monitored by two magnetic pickups located under gears attached to both ends of the torsion shaft. The electrical pulses from the two pickups are fed into an electronic circuit, which produces a dc output proportional to the relative phase of displacement of the two signals. This output is therefore proportional to both the angle of twist in the torsion shaft, and the coefficient of friction at the test specimen with a constant load.

A65-30154

ON THE IMPROVEMENT OF THE TURBULENT LUBRICATION THEORY, BY USING THE MIXING-LENGTH HYPOTHESIS. V. N. Constantinescu (Rumanian Academy, Institute of Applied Mechanics, Bucharest, Rumania).

Revue Roumaine des Sciences Techniques, Série de Mécanique Appliquee, vol. 10, no. 2, 1965, p. 421-437. 18 refs.

Critical examination of the turbulent lubrication theory. It is shown that the mixing-length hypothesis may be considered as a useful method in developing a coherent theory of turbulent lubrication. Some improved relations for the calculation of the parameters k, and k, are given, as well as some considerations on the determination of the constant which determines the mixing-length variation and on the use of the mixing-length hypothesis for nonplanar flows.

(Author) M. F.

A65-30155

ON THE CALCULUS OF LUBRICATION SYSTEMS WITH FLUID LUBRICANTS

Al. Nica (Rumanian Academy, Institute of Applied Mechanics, Bucharest, Rumania).

Revue Roumaine des Sciences Techniques, Série de Mécanique Appliquee, vol. 10, no. 2, 1965, p. 439-450. 5 refs.

Method permitting the determination of the head losses in pipes of fluid lubrication systems. Some practical simple cases are considered (pipes in series and in parallel) and relations between their characteristic parameters are established. A general method for the computation of flow rates in pipe networks is presented. Numerical examples are included. (Author) M. F.

A65-30156

FRICTION AND WEAR ASPECTS IN THE MOLYBDENUM DISULFIDE LUBRICATION.

Olga Bită and I. Dincă (Rumanian Academy, Institute of Applied Mechanics, Bucharest, Rumania).

Revue Roumaine des Sciences Techniques, Série de Mécanique Appliquee, vol. 10, no. 2, 1965, p. 451-462. 10 refs.

Observations and experimental results concerning the influence of the purity and grain size of various qualities of natural and synthetic molybdenum disulfide on the friction and wear of metal surfaces, tested under conditions of variable operation parameters. The efficiency of molybdenum disulfide (MoS₂), used as lubricant, is found to be strongly influenced by the purity and the homogeneity of the grain size. (Author) M.F.

A65-30100

MECHANICAL AND CHEMICAL CONTRIBUTIONS TO THE EROSION RATES OF CARBON CHOKES IN ROCKET MOTOR NOZZLES.

V. R. Gowariker (Imperial Metal Industries /Kynoch/, Ltd., Ballistics and Mathematical Services Dept., Summerfield Research Station, Kidderminster, England).

American Institute of Aeronautics and Astronautics, Annual Meeting, 2nd, San Francisco, Calif., July 26-29, 1965, Paper 65-351. 12 p. 5 refs.

Members, \$0.50; nonmembers, \$1.00.

Investigation of throat erosion in a rocket nozzle over a wide range of graphite grades, pressures, and propellants. The erosion is assumed to be attributable to both surface chemical reactions and mechanical removal. The degree of effectiveness of each of these factors depends on the composition of the reacting products in the combustion gases, the temperature, the pressure, and the quality of the carbon. A simplified diffusion equation is solved for the turbulent boundary layer close to the carbon surface, and a suitable expression for the mass-transfer coefficient that considers the geometry of the convergent portion of the nozzle is employed to evaluate the chemical contribution. For the mechanical effect, a simple logarithmic function which depends on the porosity of the carbon choke and the characteristic velocity of the propellant gases is determined using dimensional analysis and experimental data.

S.H.B.

A65-30288

GRAPH-ANALYTICAL METHOD OF TAKING INTO ACCOUNT THE EFFECT OF THE FORCES OF DRY FRICTION IN THE BEARING ON THE OPERATION OF A GYROSCOPE [GRAFOANALITICHESKII SPOSOB UCHETA STEPENI VLIIANIIA SIL SUKHOGO TRENIIA V OPORAKH NA RABOTU GIROSKOPA].

M. N. Katkhanov and V. P. Demidenko (Voennaia Artilleriiskaia Akademiia, Moscow, USSR).

Priborostroenie, vol. 8, no. 3, 1965, p. 104-108. In Russian. Description of a graph-analytical method of determining the effectiveness of the action of the forces of dry friction in the bearings of a gyroscope suspension under various conditions of operation. The principle of construction and utilization of a nomogram for determining the coefficient of effectiveness of the action of the corresponding friction moment is illustrated by a specific example. A. B. K.

A65-30467

ALUMINUM.

B. Wyma (Aluminum Company of America, Pittsburgh, Pa.). I & EC - Industrial and Engineering Chemistry, vol. 57, Aug. 1965, p. 85-88, 40 refs.

Review of progress in aluminum technology and applications. Alloys such as X5015 and Anoclad Al3 have been developed with improved corrosion and abrasion resistance. Increased productivity of aluminum strip has resulted from the use of a continuous casting line that produces sound sheet in a wide range of alloys including heat-treatable alloys. Electroforming of aluminum optical components has produced nonmagnetic solar energy concentrators for space applications. Several other applications of aluminum in space technology are described.

THE ANODIC DISSOLUTION OF GERMANIUM.

B. Lovrecek and K. Moslavac (Zagreb, University, Faculty of Technology, Institute of Electrochemistry and Electrochemical Technology, Zagreb, Yugoslavia).

(International Committee of Electro-Chemical Thermodynamics and Kinetics, Meeting, 15th, London, England, Sept. 21-26, 1964,

Electrochimica Acta, vol. 10, June 1965, p. 627-635. 9 refs. Investigation of anodic dissolution of n-type germanium. Experimental conditions were achieved which made possible the construction of a potential/current (e_i/i^{\dagger}) diagram, in a broad current density range, which satisfies the condition p1 = p0, - i.e., the concentration of holes on the boundary of the space charge region (p1) equals the equilibrium concentration of holes in the bulk of the semiconductor (p0). Potential/current curves constructed in such a way are compared with similar earlier attempts. Taking these results, by an analogy with surface photoeffect, the saturation current of holes (ip, sat) in anodic polarization is calculated. Further, it is possible to separate the parts of the overall overpotential which correspond to the transport phenomenon of holes $(\eta_{T, p})$ and injection by chemical reaction $(0\eta_{L^1})$, respectively. se values calculated from experimental results are compared with those to be expected theoretically. (Author) F.R.L.

A65-30599

LUBRICATION AND WEAR.

<u>Lubrication</u>, vol. 51, no. 6, 1965, p. 61-80.

Study of the lubrication and wear of steel bearing surfaces and mineral-oil lubricant systems. The classical and elastohydrodynamic situations are conpared. The existence of microelastohydrodynamic lubrication has not been explicitly demonstrated. Rather, it has been inferred from experimental data showing trends in the intuitively expected directions. Observations concerning the onset of wear without a change in friction point up the fact that, in the absence of gross scoring or galling, friction is almost entirely due to shearing of the lubricant film. These are various means by which wear may occur: (1) corrosion, (2) fatigue, (3) cutting or plowing, (4) adhesion or welding. The physical factors influencing wear are considered. Recent investigations of antiwear and extreme-pressure films have only demonstrated the need for discarding some established ideas, but without providing much positive evidence to support alternate concepts. It is believed that much more work is required, particularly in the fields of solid-state and surface chamistry and physics, to bring this subject out of the realm of speculation and empiricism.

A65-30744

STUDY OF STRUCTURAL ALLOYS BASED ON Al-Zn-Mg SYSTEM. IV - CORROSION CHARACTERISTICS OF Al-Zn-Mg ALLOYS. Ikuo Tani and Yutaka Ishikawa (Furukawa Aluminium Co., Ltd., Nikko Works, Nikko, Japan). Light Metals (Tokyo), vol. 15, May 1965, p. 4-17. 18 refs. In

Japanese.

Investigation of corrosion tests on Al-Zn-Mg alloys under various conditions. The interdependence between structures and corrosion conditions must be considered when studying the corrosion characteristics of such alloys. It is found that these alloys have the same corrosion resistance as other corrosion-resistant Al alloys as regards reduction in tensile strength; however, Al-Zn-Mg alloys seem to be more subject to pitting corrosion than other Al alloys. Extrusion textures in naturally aged alloys based on the Al-Zn-Mg system, which contain not less than 0.2% Cr or 0.6% (Mn + Cr), show extrafoliation on exposure to an NaCl solution containing not less than 1% H2O2 or HCl solution. Al-Zn-Mg alloys containing not more than 5% Zn are not sensitive to stress-corrosion cracking and are therefore safe for practical purposes.

(Author) D.P.F.

A65-30815

A THIN FILM LUBRICANT FOR CONNECTOR CONTACTS. Jack Spergel, Elmer Godwin (U.S. Army, Electronics Command, Electronics Laboratories, Fort Monmouth, N. J.), and Gunther Steinberg (Stanford Research Institute, Menlo Park, Calif.). (Institute of Electrical and Electronics Engineers, The 1965 Elec tronic Components Conference, Washington, D.C., May 5-7, 1965 Paper.)

IEEE Transactions on Parts, Materials and Packaging, vol. PMP-1, June 1965, p. s-1 to s-9. 11 refs.

Description of a thin film-lubricant developed for gold-plated contacts. This film is octadecylamine hydrochloride (ODA HCL), and it exhibits excellent adherence to gold surfaces. The friction between solid gold surfaces and gold-plated surfaces was reduced by a factor of approximately 4 to 1. The lubricating properties of this film have been adequately demonstrated under loads ranging from 20 to 300 g while providing metal-to-metal electrical contact. The stability of this film has been demonstrated in exposure tests performed in the laboratory, as well as direct exposure to industrial, marine, and smog atmospheres in the US. In all instances, the thin film maintained its lubricating properties and its low electrical resistance characteristics. The adherence of the film to the gold surface is believed to involve only physical adsorption, primarily by van der Waals forces; however, this phenomenon is still being studied. An interim batch method of coating contacts which was developed indicates the feasibility of a production technique for applying reliable coatings to contacts. Octadecylaminehydrochloride film was found to be superior to other types of lubricants tried on gold-plated surfaces, and it offers a potential of considerable improvement in gold-plated connector contacts in a wide variety of (Author) R. A. F. applications.

A65-31094

ELECTRICAL SLIDING CONTACTS FOR APPLICATION IN SPACE ENVIRONMENTS.

L. E. Moberly and J. L. Johnson (Westinghouse Electric Corp., Research Laboratories, Pittsburgh, Pa.).

(1965 Aerospace Technical Conference and Exhibit, Houston, Tex., June 21-24, 1965, Paper.)

IEEE Transactions on Aerospace, vol. AS-3, June 1965, Supplement, p. 252-257. 9 refs.

Determination that performance characteristics of electrical contacts lubricated with niobium diselenide are superior to similar materials lubricated with molybdenum disulfide while transferring power to a slow-speed silver slip ring for a period of 1000 hr. Lower and more stable contact voltage was the main improvement shown while operating in a vacuum chamber near 2.0 x 10-8 torr. (Author) B. B.

A65-31144

ROTATING MACHINES FOR EXTREME ENVIRONMENTS. D. Irani and C. S. Smith (Garrett Corp., AiResearch Manufacturing Co., Los Angeles, Calif.).

(1965 Aerospace Technical Conference and Exhibit, Houston, Tex., June 21-24, 1965, Paper.)

IEEE Transactions on Aerospace, vol. AS-3, June 1965, Supplement, p. 620-627, 25 refs.

Discussion of materials selection and design considerations of rotating machines subjected to difficult environmental conditions. Problems affecting the design of a rotating machine; such as conductor and magnetic materials, insulation systems, bearings, and performance, are described. Advantages and disadvantages of various materials for various functions are discussed and summarized in tables. Environmental factors considered include heat, radiation, vacuum, and magnetic fields. (Author) R.A.F.

A65-31216

STRUCTURE OF PSEUDOGELS OBTAINED BY THICKENING HYDRO-CARBON OILS WITH SOAPS OF SATURATED CARBOXYLIC ACIDS [STRUKTURA PSEVDOGELEI POLUCHAEMYKH ZAGUSHCHENIEM UGLEVODORODNYKH MASEL Ca- I Li-MYLAMI PREDEL'NYKH KARBONOVYKH KISLOT].

V. V. Sinitsyn, Iu. L. Ishchuk, and V. A. Prokopchuk.

Akademiia Nauk SSSR, Doklady, vol. 163, July 11, 1965, p. 426-429.

8 refs. In Russian.

Systematic study of the relation between the chain length in a homologous series of saturated aliphatic acids and the structure of the pseudogels obtained by thickening them with their Li and Ca soaps. The structure of lubricants based on soaps of mixtures of these acids is considered. The effect of mechanical deformation on the structure of the pseudogels is investigated, and the relation between the structure and the rheological properties of Ca and Li lubricants is determined.

A B.K.

A65-31372

INSIDE AND OUT.

Flight International, vol. 88, Aug. 12, 1965, p. 255-258.

General discussion of aircraft paints, finishes, and anticorrosion processes. Aircraft life is set at a figure ranging from 10 to 15 yr; corrosion is generated from within by such compositions as hydraulic fluid and from water condensation effects caused by temperature and pressure changes. Rain, salt water, and industrial effluents tend to corrode the airframe from without. Joints are particularly liable to corrosion; there are three basic methods to improve resistance to corrosion - cathodic protection, waterproofing of the joint by the application of a scalant, and the painting of all surfaces before assembly. Anodizing is an excellent protective treat ment for aluminum and ensures a good bond for subsequent painting. Chromate inhibitors have been found very useful in checking corrosion when incorporated with aircraft paints.

D.P.F.

A65-31529

STRUCTURAL CHANGES IN GRAPHITIZED MATERIALS DURING WEAR.

L. P. Grigorenko, L. A. Plutalova, and B. M. Rovinskii (Gosudarstvennyi Nauchno-Issledovatel'skii Institut Mashinovedeniia, Moscow, USSR).

(Akademiia Nauk SSSR, Doklady, vol. 160, Feb. 1, 1965, p. 807-810. Soviet Physics - Doklady, vol. 10, Aug. 1965, p. 154-156. 5 refs. Translation.

Analysis of the structural changes occurring during the friction of AG-1500 antifriction graphite material on M-3 copper, IKhl8N9 steel, and chromium at 10⁻⁵ mmHg. A comparison is made of the crystal sizes and the integral line intensities of the initial material and the wear products. The possibility that grinding and shear cause a conversion from the hexagonal to a monoclinic form of graphite is examined by calculating the intensity ratios for certain coincident lines of the two forms.

A. B. K.

A65-31530

ANTIFRICTION PROPERTIES OF SOLIDS AT HIGH TEMPERATURES UNDER VACUUM AND IN GASES.

A. P. Semenov and V. V. Pozdniakov (Gosudarstvennyi Nauchno-Issledovatel'skii Institut Mashinovedeniia, Moscow, USSR). (Akademiia Nauk SSSR, Doklady, vol. 160, Feb. 1, 1965, p. 811-814.) Soviet Physics - Doklady, vol. 10, Aug. 1965, p. 157-159. Translation.

[For abstract see Accession no. A65-23565 13-17]

A65-31684

MICROSTRUCTURAL ASPECTS OF STRESS-CORROSION FAILURE.
P. R. Swann and J. D. Embury (United States Steel Corp., Research Center, Edgar C. Bain Laboratory for Fundamental Research, Monroeville. Pa.)

Monroeville, Pa.).
IN: HIGH-STRENGTH MATERIALS; BERKELEY INTERNATIONAL MATERIALS CONFERENCE, 2ND, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIF., JUNE 15-18, 1964, PROCEEDINGS. [A65-31680 20-17]

Conference supported by the Atomic Energy Commission. Edited by V. F. Zackay.

New York, John Wiley and Sons, Inc., 1965, p. 327-355; Comments, M. R. Louthan, Jr. (Du Pont de Nemours and Co., Inc., Savannah River Laboratory, Aiken, S.C.), p. 355-359; Discussion, p. 359-362. 41 refs.

AEC Contract No. AT(07-2)-1.

Determination of the influence of dislocations on the nucleation and propagation of stress-corrosion cracks. Electron-microscope studies of many alloys susceptible to transgranular stress-corrosion cracking show that tunnel corrosion is the characteristic mode of attack by environments which cause cracking, and the rates of crack propagation compare well with earlier data. The observations are considered to support the theory that cracking propagates by the ductile rupture of a slot weakened by many tubular corrosion pits lying in the crack plane. The most important properties of the stress-corrosion environment in the nucleation of transgranular stress-corrosion cracks are believed to be that a surface film must form over most of the alloy surface; that the environment must be able to support tunnel corrosion; that the mechanical properties and thickness of this film must be such that it can be ruptured by slip; and that the repair rate of the surface film must be slow enough and the creep rate of the specimen fast enough, for the environmental conditions necessary for tunnel corrosion to be established at the exposed slip step.

A65-31715

AN ELECTRON MICROSCOPE STUDY OF ROLLING CONTACT FATIGUE.

George S. Reichenbach and Walter D. Syniuta (Massachusetts Institute of Technology, Mechanical Engineering Dept., Cambridge, Mass.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D. C., Oct. 13-16, 1964, Paper 64 LC -29.)
ASLE Transactions, vol. 8, July 1965, p. 217-223. 8 refs.
Research supported by the United Aircraft Corp.

Study of the progressive changes in the surface topography of the running track in a rolling contact fatigue tester, using replica techniques and the electron microscope. Early in the life of a specimen, micron-size cracks are found to appear in the stressed surface. With further running, more cracks are seen to appear. However, those existing already are found not to grow to any extent except in isolated cases. When the lubricant is changed, the time to form the first few cracks and the rate of formation of additional cracks are found to correlate well with the fatigue performance. Etching of the ball tracks shows that the surface cracks observed are almost always located at the chrome carbide to martensite interface. It is postulated that corrosion fatigue may contribute to the differences between the fatigue performance of lubricants as much as or more so than elastohydrodynamic effects.

(Author) M. L.

A65-31716

THE ISOTHERMAL LUBRICATION OF CYLINDERS.
D. Dowson and A. V. Whitaker (Leeds, University, Dept. of Mechanical Engineering, Leeds, England).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D.C., Oct. 13-16, 1964, Paper 64 LC - 22.)

ASLE Transactions, vol. 8, July 1965, p. 224-233; Discussion, Y. P. Chiu and T. E. Tallian (SKF Industries, Inc., King of Prussia, Pa.), p. 233, 234; Authors' Closure, p. 234. 14 refs. Research supported by the Department of Scientific and Industrial Research.

Consideration of the hydrodynamic problem of cylinder lubrication. Rigid solids lubricated by a constant-property fluid, rigid solids lubricated by a variable-property fluid, and elastic solids lubricated by a variable-property fluid are considered. The cylinder is selected for analysis since many real contacts in machinery can be represented. It is found that for light loads, the cylinders retain their unloaded geometry, but, when the contact forces are large, significant elastic deformation may occur. Computing methods appropriate to the "rigid" and "elastic" situations are summarized. The valid application range of the "rigid" and "elastic" film thicknes relationships is discussed, and an intermediate range is defined. A chart to enable a particular problem to be located in the "rigid," "intermediate," or "elastic" zone is presented.

M. L.

A65-31717

DISTRIBUTION OF HYDRODYNAMIC PRESSURE ON COUNTERFORMEL LINE CONTACTS.

G. Niemann and F. Gartner (München, Technische Hochschule, Forschungsstelle für Zahnräder und Getriebe, Munich, West Germany).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D. C., Oct. 13-16, 1964, Paper 64 LC - 12. 1

D. C., Oct. 13-16, 1964, Paper 64 LC - 16. j
ASLE Transactions, vol. 8, July 1965, p. 235-244; Discussion,
D. Dowson (Leeds, University, Leeds, England), H. Christensen
(Norway, Technical University, Engineering Research Foundation,
Trondheim, Norway), and E. A. Ryder, p. 244-248; Authors'
Closure, p. 248, 249. 18 refs.

Results of measurements of the pressure distribution of counterformel cylinders. Within the small zone of contact, pressure curves are obtained which are correct both qualitatively and quantitatively. Integration of the pressure gives the hydrodynamic borne load. This load is found to agree with the applied load in the region of fluid friction. Under conditions of mixed friction, a steady decrease in the developed pressures is observed. There is no sudden breakdown of pressure. The following effects are investigated: speed, load, viscosity, curvature, roughness, and lubricant. The highest measured pressure is 60,000 psi. This pressure exceeds the maximum of the hertzian distribution.

(Author) M. I.

A65-31719

TEMPERATURE - THE KEY TO LUBRICANT CAPACITY. E. F. Leach and B. W. Kelley (Caterpillar Tractor Co., Peoria, Ill.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D.C., Oct. 13-16, 1964, Paper 64 LC -13.)
ASLE Transactions, vol. 8, July 1965, p. 271-279; Discussion, p. 280-284; Authors' Closure, p. 284, 285. 20 refs.
Results of an investigation showing that the failure of a non-

Results of an investigation showing that the failure of a non-reactive mineral oil can be predicted by Blok's formula for determining the maximum temperature between two bodies in rolling and sliding contact. The evaluation of many lubricants on a geared roller test machine is discussed, and it is shown that the lubricant failure for any particular lubricant-material combination occurs at a constant, critical contact temperature, film thickness, and viscosity grade. The coefficient of friction can be predicted by a parameter involving the unit load, inlet viscosity, sum velocity, and sliding velocity. The load capacity of a lubricant is shown to vary inversely with specimen temperature for a constant set of test conditions. Electrical-resistance measurements across the contact zone are shown to aid in identifying the lubricant failure point and in revealing the action of two deposit-forming additives.

(Author) M.L.

A65-31720

TURBULENT AND INERTIA FLOW IN SLIDER BEARINGS.

C. F. Kettleborough (New South Wales, University, Dept. of Mechanical Engineering, Kensington, Australia).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, Washington, D. C., Oct. 13-16, 1964, Paper 64, LC - 16.)

ASLE Transactions, vol. 8, July 1965, p. 286-295. 8 refs.

Presentation of a computer solution developed in terms of matrix algebra, in which the equations of a slider bearing are analyzed which include the inertia, turbulent, and viscous terms. It is found that for small values of turbulence the results indicate that the dominant term after the viscous term is the inertia term, and that the inclusion of the Reynolds turbulent stress term actually

causes a slight decrease in load capacity. A numerical example is considered, and it is concluded that the inertia effects alone can be considerable and cannot be neglected. The role of turbulence effects is found to be still undecided. (Author) M.L.

A65-32167

THE CORROSION-RESISTANCE OF NICKEL-CHROMIUM COATINGS SOME ELECTROCHEMICAL AND METALLOGRAPHIC FEATURES.
G. N. Flint (International Nickel Co./Mond/, Ltd., Development and Research Department Laboratory, Birmingham, England) and S. H. Melbourne (Steel Company of Wales, Port Talbot, Wales).
IN: AUSTRALIAN CONFERENCE ON ELECTROCHEMISTRY, IST, SYDNEY AND HOBART, AUSTRALIA, FEBRUARY 13-20, 1963, PROCEEDINGS. [A65-32164 20-03]

Conference sponsored by the Royal Australian Chemical Institute, the University of New South Wales, and the University of Tasmania. Edited by J. A. Friend and F. Gutmann.

Oxford, Pergamon Press, Ltd., 1965, p. 399-416. 26 refs.

Discussion of improved nickel-chromium coatings in terms of the electrochemical and metallographic features associated with the protection against corrosion provided by such coatings. The major cause of breakdown is shown to be pitting by atmospheric corrosion under conditions of cathodic control. Experiments are noted which provide strong evidence that cathode polarization at the chromium surface is a major factor in controlling the rate of corrosion penetration of nickel-chromium coatings. Some improvements that can be obtained by modifications in undercoat and topcoat are described.

V.P.

A65-32310

MAGNETO-HYDRODYNAMICALLY LUBRICATED EXTERNALLY PRESSURISED BEARING WITH VARIABLE FILM THICKNESS, J. B. Shukla (Indian Institute of Technology, Dept. of Mathematics, Kanpur, India).

Applied Scientific Research, Section B, vol. 11, no. 6, 1965, p. 453-460.

Theoretical study of the use of a conducting lubricant in an externally pressurized bearing with variable film thickness in the presence of an axial magnetic field. The flow and other characteristics are determined, and it is shown that the pressure and load capacity can be increased by increasing the strength of the applied magnetic field at a given flow rate. But at a given feeding pressure, the load capacity and pressure do not depend on the magnetic field. The load capacity of this bearing is greater than that of a bearing having a constant film thickness. It is also pointed out that the frictional drag on the rotor can be minimized by supplying electrical energy to the system.

(Author) B, B,

A65-32402

BERYLLIUM CORROSION AND HOW TO PREVENT IT.

A. J. Stonehouse and W. W. Beaver (Brush Beryllium Co., Chemistry Dept., Cleveland, Ohio).

(National Association of Corrosion Engineers, Annual Conference, 20th, Chicago, Ill., Mar. 9-13, 1964, Paper.)

Materials Protection, vol. 4, Jan. 1965, p. 24-28. 27 refs.

Review of the corrosion-resistant characteristics of beryllium and a discussion of four types of beryllium corrosion: aqueous, atmospheric, and that due to high-temperature gases and liquid metals. It is shown how corrosion can be minimized on unprotected beryllium. The protection achieved with anodized coatings on beryllium is discussed. Other protective systems considered are metallic paint and enamel systems, electroless nickel coatings, and inhibitors for aqueous applications. (Author) M.F.

A65-32404

COMPATIBILITY OF TITANIUM AND NITROGEN TETROXIDE.
R. L. Wallner, B. B. Williams, and A. C. Simmons (North American Aviation, Inc., Downey, Calif.).
(National Association of Corrosion Engineers, Annual Conference, 20th, Chicago, Ill., Mar. 9-12, 1964, Paper.)
Materials Protection, vol. 4, Jan. 1965, p. 55, 56.

Discussion of compatibility tests of nitrogen tetroxide and titanium containing 6% aluminum and 4% vanadium. The testing involved the immersion of samples in nitrogen tetroxide to evaluate the corrosive attack and impact sensitivity tests to determine the effect of a sudden energy release on titanium exposed to nitrogen tetroxide.

(Author) M.F.

A65-32761

ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM, LEEDS. ENGLAND, SEPTEMBER 21-23, 1965. GENERAL PAPERS. London, Institution of Mechanical Engineers, 1965. 165 p.

CONTENTS:

THE THEORETICAL EFFECTS OF ELASTIC DEFORMATION OF THE BEARING LINER ON JOURNAL BEARING PERFORMANCE G. R. Higginson (Royal Military College of Science, Shrivenham, Wilts., England), p. 1-8.

FOIL BEARINGS - THEIR GENERAL BEHAVIOUR WITH PARTICULAR EMPHASIS ON THE EXTERNALLY PRESSURIZED BEARING. M. Wildmann (Ampex Corp., Redwood City, Calif.), p. 9-16.

ELASTOHYDRODYNAMIC LUBRICATION AT POINT CONTACTS. J. F. Archard (Leicester, University, Leicester, England) and E. W. Cowking (English Electric Co., Ltd., Whetstone, Middx., England), p. 17-26. 15 refs. [See A65-32762 21-15]

A NUMERICAL PROCEDURE FOR THE SOLUTION OF THE ELASTOHYDRODYNAMIC PROBLEM OF ROLLING AND SLIDING CONTACTS LUBRICATED BY A NEWTONIAN FLUID. D. Dowson and A. V. Whitaker (Leeds, University, Leeds, England), p. 27-41. 19 refs. [See A65-32763 21-15]

THE THERMODYNAMICS OF A VISCOELASTIC FILM UNDER SHEAR AND COMPRESSION. R. A. Burton (Southwest Research

Institute, San Antonio, Tex.), p. 42-47. [See A65-32802 21-12] TEMPERATURE AT SCUFFING. J. P. O'Donoghue (Joseph Lucas and Co., Ltd., Burnley, Lancs., England) and A. Cameron (London, University, London, England), p. 48-57.

FURTHER EXPERIMENTS ON THE EFFECT OF METALLIC CONTACT ON THE PITTING OF LUBRICATED ROLLING SUR-FACES. P. H. Dawson (Associated Electrical Industries, Ltd., Manchester, England), p. 58-63.

HYDRODYNAMIC LUBRICATION OF PROXIMATE CYLINDRI-CAL SURFACES OF LARGE RELATIVE CURVATURE. W. Lauder

(Strathclyde, University, Glasgow, Scotland), p. 64-69.
PRESSURE DISTRIBUTIONS IN A HIGHLY LOADED LUBRI-CATED CONTACT. M. D. Longfield (Leeds, University, Leeds, England), p. 70-75.

THE MEASUREMENT OF OIL-FILM THICKNESS IN ELASTO-HYDRODYNAMIC CONTACTS. A. Dyson, H. Naylor, and A. R. Wilson (Shell Research, Ltd., Chester, England), p. 76-91. 14 refs. [See A65-32764 21-15]

MEASUREMENTS OF PRESSURES IN ROLLING CONTACT. J. W. Kannel (Battelle Memorial Institute, Columbus, Ohio), p. 92-99: 12 refs. [See A65-32765 21-15]

NATURE OF METALLIC CONTACT IN MIXED LUBRICATION. H. Christensen (Norway, Technical University, Trondheim, Norway), p. 100-110. 6 refs. [See A65-32766 21-15]

A CORRELATION BETWEEN THE THEORETICAL AND EX-PERIMENTAL RESULTS ON THE ELASTOHYDRODYNAMIC LU-BRICATION OF ROLLING AND SLIDING CONTACTS. H. S. Cheng and F. K. Orcutt (Mechanical Technology, Inc., Latham, N.Y.), p. 111-121. 16 refs. [See A65-32767 21-15]

PARTIAL ELASTOHYDRODYNAMIC LUBRICATION IN ROLLING CONTACT. T. E. Tallian, J. I. McCool, and L. B. Sibley (SKF Industries, Inc., King of Prussia, Pa.), p. 122-137. 18 refs. [See A65-32768 21-15]

THE LUBRICATING CONDITION OF A LIP SEAL. F. Hirano (Kyushu University, Fukuoka, Japan) and H. Ishiwata (Nippon Oil Seal Industry Co., Ltd., Tokyo, Japan), p. 138-147. 7 refs. [See A65-32769 21-15]

THE MECHANICS OF ROLLER BEARINGS. P. Garnell and G. R. Higginson (Royal Military College of Science, Shrivenham, Wilts., England), p. 148-156.

ELASTOHYDRODYNAMIC BEHAVIOUR OBSERVED IN GEAR TOOTH ACTION. Darle W. Dudley (Mechanical Technology, Inc., Latham, N.Y.), p. 157-165. 11 refs. [See A65-32770 21-15]

A65-32762

ELASTOHYDRODYNAMIC LUBRICATION AT POINT CONTACTS. J. F. Archard (Leicester, University, Dept. of Engineering, Leicester, England) and E. W. Cowking (English Electric Co., Ltd., Whetstone, Middx., England).

IN: ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM, LEEDS, ENGLAND, SEPTEMBER 21-23, 1965. GENERAL PAPERS. [A65-32761 21-15]

London, Institution of Mechanical Engineers, 1965, p. 17-26.

Comparison of the classical hydrodynamic theory, which leads to the concept of a side-leakage or ellipticity factor Φ , which is the proportional reduction in pressure attributable to the existence of side-leakage. In the isoviscous theory of an undeformed point contact Φ is a constant equal to $[1+(2R_X/3R_Y)]^{-1}$ where R_X and R_Y are the effective radii of curvature parallel to and perpendicular to the direction of motion. This concept is used in the derivation of simple elastohydrodynamic theories for a point contact. The theories agree reasonably well with measurements of the film thickness using the crossed-cylinders machine under conditions in which Rx/Rv was varied between approximately 0.3 and 12.0. Two semianalytical solutions of the theory of elastohydrodynamic lubrication at point contacts are presented. It is assumed that the shape of the surface is identical with that which occurs under the same load in the absence of a lubricant; the film in the central region is therefore assumed to be parallel. Isobar plots of deduced values of the reduced pressure q are shown. These solutions and Archard's numerical integration all give expressions for the film thickness approximately of the form how $(\alpha \eta_{10} u)^{3/4} R^{5/12} (\omega^{_1} / E^{_1})^{-1/12}$

A65-32764

THE MEASUREMENT OF OIL-FILM THICKNESS IN ELASTO-HYDRODYNAMIC CONTACTS.

A. Dyson, H. Naylor, and A. R. Wilson (Shell Research, Ltd., Thornton Research Center, Chester, England). IN: ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM, LEEDS, ENGLAND, SEPTEMBER 21-23, 1965. GENERAL PAPERS. [A65-32761 21-15]

London, Institution of Mechanical Engineers, 1965, p. 76-91.

Assessment of the validity of elastohydrodynamic lubrication theory by use of the values of oil-film thickness predicted by Dowson and Higginson, which are compared with measurements obtained by experiment in a disk machine lubricated with a wide variety of fluids. It is shown that, over the range 1 to 40 μ in., theoretical and measured values are in close agreement for most of the fluids examined. Thus, over this range the predicted dependence of film thickness h on rolling speed u, viscosity η_0 , and pressure coefficient of viscosity α is confirmed. The experimental results are consistent with the expression $h\,\alpha\,(u\,\eta_0)^{0.65}\alpha^{\,0.56}$. The insensitivity of film thickness to load at loads exceeding 400 lb/in, and to sliding at constant rolling speed is also demonstrated. A tentative explanation is offered of the discrepancies between theoretical and measured values that emerge under conditions producing thicker films. Unlike most of the fluids examined, a polymer solution and a polydimethyl silicone fluid formed films significantly thinner than predicted.

A65-32767

A CORRELATION BETWEEN THE THEORETICAL AND EXPERI-MENTAL RESULTS ON THE ELASTOHYDRODYNAMIC LUBRICA-TION OF ROLLING AND SLIDING CONTACTS.

H. S. Cheng and F. K. Orcutt (Mechanical Technology, Inc., Latham, N.Y.).

IN: ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM, LEEDS, ENGLAND, SEPTEMBER 21-23, 1965. GENERAL PAPERS. [A65-32761 21-15]

London, Institution of Mechanical Engineers, 1965, p. 111-121. 16 refs.

Navy-supported research.

Summaries of major experimental data on the pressure, temperature, and film thickness between two circular disks, as well as theoretical solutions of the thermal-elastohydrodynamic lubrication of infinitely long rollers. Correlation is made between theoretical and experimental results. Agreement between the theoretical and experimental film thickness and surface temperatures is found to be fair, but major discrepancies are shown to exist between the measured and predicted pressure distributions. The sharp pressure peak predicted by the theory was not observed in the experimental pressure distributions; however, certain discontinuities in the pressure slope were discovered in the exit region of the pressure profile. Possible reasons for the discrepancy of pressure data are discussed. In addition, an isothermal elastohydrodynamic solution considering viscoelastic effects of the lubricant is investigated. The behavior of the lubricant is assumed to obey the law of a Maxwellian fluid. Preliminary results show that the viscoelastic effect is extremely important and could completely remove the pressure peak found in the results based on a Newtonian lubricant.

A65-32769

7 refs.

THE LUBRICATING CONDITION OF A LIP SEAL. F. Hirano (Kyushu University, Fukuoka, Japan) and H. Ishiwata (Nippon Oil Seal Industry Co., Ltd., Tokyo, Japan). IN: ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM, LEEDS, ENGLAND, SEPTEMBER 21-23, 1965. GENERAL PAPERS. [A65-32761 21-15] London, Institution of Mechanical Engineers, 1965, p. 138-147.

Establishment of a general formula for the value of Ψ , which was previously found to be dependent on the viscoelastic property of the seal material and the roughness of the sealing surface, by applying the theory of the foil bearing. Since the viscoelastic deformation of the lip is caused by sliding on peaks and valleys of the surface roughness, its significant effect should be taken into consideration. The result is given as $\Psi = 2C (r/h_{max})^{1/3} (h_{max}/\lambda)^2/\exp(\beta p_a)^{1/4} /h_{max})$ where r is the radius of the shaft, h_{max} the peakto-valley height of the roughness of the shaft, λ the width of roughness, pa the average contact pressure w/2%r, J' the dynamic compliance of the lip, and C and B are constants. The theoretical relation not only gives a satisfactory explanation for experimental results, but also allows clarification of the limiting condition of the sealing action of a lip seal from a unified view with that of a mechanical seal. F.R.L.

A65-32770

ELASTOHYDRODYNAMIC BEHAVIOUR OBSERVED IN GEAR TOOTH ACTION.

Darle W. Dudley (Mechanical Technology, Inc., Latham, N.Y.). IN: ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM, LEEDS, ENGLAND, SEPTEMBER 21-23, 1965. GENERAL PAPERS. [A65-32761 21-15]

London, Institution of Mechanical Engineers, 1965, p. 157-165. ll refs.

Examination of several actual gear case histories to determine how the elastohydrodynamic theory of lubrication fits with the facts that have been observed. In the field of power gearing a wide variety of lubrication situations exist. Spur and helical gears running at high pitch-line velocity will operate for as much as a billion tooth contacts without enough wear occurring to remove machining marks 15-millionths of an inch deep. The teeth are apparently separated by an appreciable oil film. Slow speed gears with thin lubricants may wear as much as 1/8 in. in 10 million cycles of operation.

A65-32784 = MAGNETOHYDRODYNAMIC EFFECT IN LUBRICATION. II - FULL JOURNAL BEARING WITH INERTIA EFFECTS.

J. P. Agarwal (Institute of Technology, Kharagpur, India). Iași, Institutul Politchnic, Buletinul, vol. 10, no. 1/2, 1964, p. 67-72. 5 refs.

Application of the momentum integral method to the investigation of the effect of a magnetic field on the load capacity of a full journal bearing in the case of an electrically conducting lubricant. It is found that load capacity depends on the Hartmann number, increasing with the magnetic field. Good agreement with results obtained for sliding bearings is noted. V.P.

A65-32933

RHEOLOGICAL ASPECT OF TOOL WEAR IN MACHINING

H. Takeyama (Government Mechanical Laboratory, Tokyo, Japan). (American Society of Mechanical Engineers, Winter Annual Meeting, New York, N.Y., Nov. 29-Dec. 4, 1964, Paper 64 - WA/prod-7.) ASME, Transactions, Series B - Journal of Engineering for Industry, vol. 87, Aug. 1965, p. 359-364. 8 refs.

Experimental analysis of the mechanism of tool wear, especially its speed effect, in machining graphite. When machining materials such as graphite and plastics, an interesting phenomenon is observed in the manner of tool wear: the faster the speed, the lower the rate of tool wear. To explain the relationship between tool wear and machining speed, it is assumed that the trailing portion of a rheological material in contact with a slider cannot follow the slider at higher sliding speeds because of its retardation of the elastic recovery. Considering the friction between graphite and tool, a decrease of the effective contact area between both, with an increase of the relative sliding speed must result in a decrease of the effective abrasive number of graphite; consequently, there must also result a decrease of the amount of tool wear, if the abrasives are distributed uniformly in the graphite material and the stresses on the contact area are almost constant regardless of sliding speed and contact area.

A65-32944

EFFECT OF TITANIUM ON THE RESISTANCE OF FERRITIC-AUSTENITIC STEELS TO INTERCRYSTALLINE CORROSION. I. A. Levin and D. G. Kochergina (State Institute of Oil Machine Construction, USSR).

(Metallovedenie i Termicheskaia Obrabotka Metallov, Sept. -Oct. 1964, p. 22-25.) Metal Science and Heat Treatment, Sept. -Oct. 1964, p. 602-605.

Translation.

Discussion of the effect of titanium additions on the intercrystalline corrosion resistance of ferritic austenitic Kh2lN5 and Kh21N6M2 steels after quenching at 950, 1050, and 1250°C. Titaniumfree samples of both steels, containing 0.04 to 0.09% of carbon content, show prolonged resistance to intercrystalline corrosion, after quenching from 950°C. In contrast, samples with 0.284 to 0.61% Ti, even when they are resistant after additional heating at 450 to 850°C. rapidly lose this resistance at 1250°C. In weakly oxidizing media, the resistance decreases as the amount of ferrite in the samples increases. Titanium is found to promote ferrite formation, but slows down carbon diffusion and forms carbides during tempering. Titanium additions are found to be favorable only when the amount is precisely controlled.

A65-32945

THE TITANIUM/CARBON RATIO IN STAINLESS STEELS. M. B. Shapiro and I. G. Volikova (Scientific Research Institute of Chemical Machine Construction, Moscow, USSR). (Metallovedenie i Termicheskaia Obrabotka Metallov, Sept. -Oct. 1964, p. 39, 40.)

Metal Science and Heat Treatment, Sept. -Oct. 1964, p. 619-621. 5 refs. Translation.

Discussion of the titanium/carbon ratio in stainless steels as a determining feature of intercrystalline corrosion resistance. The enhanced resistance is attributed to the ability of titanium to form carbides. Curves are presented of the variation of the amount of uncombined carbon with quenching temperature for different Ti/C ratios. Limit temperatures are shown up to which steels with a given Ti/C ratio can be heated without becoming susceptible to intercrystalline corrosion during subsequent tempering. v.z.

A65-33125

LUBRICATION OF BALL BEARINGS IN HIGH SPEED APPLICA-TIONS.

Norton H. Goldstein (Boeing Co., Seattle, Wash.). Engineering Materials and Design, vol. 8, July 1965, p. 470-472.

Account of the problems regarding the lubrication of high-speed ball bearings. The benefits of high-speed rotation and the role and method of lubrication are discussed, and types of lubricant and the effects of grease shear and oil churning are described. Bestlubrication of a high-speed bearing is attained when the oil volume circulating over the bearing components is controlled so that just enough oil is applied to wet the rolling surfaces. Oil mist lubrication provides accurate control of the amount of oil delivered to a bearing by an oiler or wick; the oil used in an oil mist system should be a relatively low viscosity mineral oil. High-speed bearings can be harmfully affected by oil churning, as the internal friction in the bearing may cause heat rise, and it can retard free motion of the bearing elements.

A65-33134

THE POSSIBILITY OF SERVICE FAILURE OF STAINLESS STEELS BY STRESS CORROSION CRACKING.

J. E. Truman (Firth Brown, Ltd., Sheffield, England) and H. W. Kirkby (Firth Brown, Ltd., Research Laboratory, Sheffield, England).

Metallurgia, vol. 72, Aug. 1965, p. 67-71. 15 refs.

Review of the relative susceptibilities to stress-corrosion-cracking failure of the three basic types of stainless steel (austenitic, ferritic, and martensitic). It is concluded that, with the austenitic steels, cracking is a hazard only in special types of plant service at elevated temperatures, and that the steels can be used with complete safety for load-bearing applications at atmospheric temperatures. There is no stress corrosion hazard with the ferritic steels and little with the martensitics if they are softened to less than 65 to 70 tons/in. ² tensile strength. (Author) R.A.F.

A65-33218

ELASTOHYDRODYNAMIC LUBRICATION - AN INTRODUCTION AND A REVIEW OF THEORETICAL STUDIES.

D. Dowson (Leeds, University, Mechanical Engineering Dept., Leeds, England).

IN: ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM, LEEDS, ENGLAND, SEPTEMBER 21-23, 1965. NOTATION, REVIEW PAPERS, BIBLIOGRAPHY.

London, Institution of Mechanical Engineers, 1965, p. 7-16.

Study of situations in which the elastic deformation of the surrounding solids plays a significant role in the hydrodynamic lubrication process. Following consideration of the general features of the lubrication of line and point contacts, theoretical work is reviewed, with the comment that knowledge of elastohydrodynamics calls for an acquaintance with viscous flow, elasticity, thermodynamics, rheology, dynamics, and mathematics. Attention is given to film thickness and film shape, pressure distribution, surface tractions, stresses in the solids, side leakage, and point contacts. Lubricant properties are considered, and it is pointed out that many of the predictions of elastohydrodynamic theory have now been confirmed by experiment. It is considered that the theoretical results can be employed in the analysis of machine elements with some confidence.

A65-33219

EXPERIMENTAL STUDIES OF ELASTOHYDRODYNAMIC LUBRICA-TION.

J. F. Archard (Leicester, University, Dept. of Engineering, Leicester, England).

IN: ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM, LEEDS, ENGLAND, SEPTEMBER 21-23, 1965. NOTATION, REVIEW PAPERS, BIBLIOGRAPHY.

London, Institution of Mechanical Engineers, 1965, p. 17-30.

Review of experimental studies of lubricated systems under concentrated load, with consideration of the parallel development of the theory. The discussion is concerned with those forms of experimental apparatus which attempt to produce simplified and well defined experimental conditions. Experimental techniques to measure film thickness and the smalyses of such measurements are described. When measurements of conditions within the gap between the disks of a four-disk machine are made, conclusions can be drawn with reference to the shape of the film in line and point contact, as well as the pressure and temperature distribution. Friction and effective viscosity are examined, together with the effects of material properties. Problems of partial elastohydrodynamic lubrication and some applications are considered.

F.R.L.

A65-33220

BIBLIOGRAPHY.

D. Dowson (Leeds, University, Mechanical Engineering Dept., Leeds, England) and J. F. Archard (Leicester, University, Dept. of Engineering, Leicester, England). IN: ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM,

IN: ELASTOHYDRODYNAMIC LUBRICATION; SYMPOSIUM, LEEDS, ENGLAND, SEPTEMBER 21-23, 1965. NOTATION, REVIEW PAPERS, BIBLIOGRAPHY.

London, Institution of Mechanical Engineers, 1965, p. 31-35.

Bibliography of the symposium on elastohydrodynamic lubrica-

Bibliography of the symposium on elastohydrodynamic lubrica tion held in Leeds, England, from Sept. 21 to Sept. 23, 1965.

A65-33624

RESISTANCE SPOT WELDING OF TITANIUM ALLOY 8A1-1Mo-1V.
K. C. Wu and T. A. Krinke (Northrop Corp., Norair Div.,
Materials Research Group, Hawthorne, Calif.).
(American Welding Society, Annual Meeting, 46th, Chicago, III.,
Apr. 26-30, 1965, Paper.)
Welding Journal, Research Supplement, vol. 44, Aug. 1965, p. 365-s
to 371-s. 6 refs.

Program for establishing the optimum welding conditions for one-sheet thickness (0.060 in.) through evaluation of the tensionshear, normal-tension, and fatigue strength of joints in resistance spot welding. The latter will be used extensively in the joining of skin and stringer structures for supersonic aircraft. The program includes the investigation of the effect of a corrosive environment under stress and thermal exposure without load on joint strength and microstructure. Using a single-phase ac resistance welding machine tension-shear and normal-tension specimens were fabricated to evaluate the joint strength and ductility at $-165^{\circ}F$, room temperature, and 600°F. Since the shunting current was not a problem with this alloy, minimum spot spacing was determined by residual stress measurements using a photo-stress analysis technique. The fatigue strength at room temperature of single- and multiple-spot welds was determined and correlated to residual stress. Stress-corrosion properties in the 400 to 700°F temperature range were evaluated; and the microstructural stability of welds exposed in air and in argon at 600°F for periods of 500 and 1000 hr was studied.

(Author) D. P. F.

A65-33627

CARBON-FUNCTIONAL ORGANOSILICON FLUOROESTERS AS SYNTHETIC LUBRICANTS.

Paul M. Kerschner (Cities Segvice Research and Development Co., Cranbury, N.J.).

(American Chemical Society, Meeting, 148th, Chicago, Ill., Sept. 1964, Paper.)

1 & EC - Industrial and Engineering Chemistry, Product Research and Development, vol. 4, Sept. 1965, p. 197-200. 6 refs.

Effort to combine the best lubricant product characteristics of the esters, the silicones, and the fluorinated hydrocarbons into a single molecular species which resulted in the synthesis of a class of compounds known as carbon-functional organosilicon fluoroesters. The purified products possess good viscosity-temperature characteristics over wide temperature ranges, low pour points, and good lubricity at moderate and extreme pressures. Oxidation and corrosion stability have been demonstrated at 350°F, and the resistance to coke formation at 590°F would seem to indicate oxidation stability at temperatures in excess of 350°F. Thus, the experimental results confirmed the basic assumption motivating this research. (Author) M. F.

A65-33851

THE MAGNETOHYDRODYNAMIC PARALLEL PLATE SLIDER BEARING.

D. C. Kuzma (General Motors Corp., Research Laboratories, Warren, Mich.).

(American Society of Mechanical Engineers, Winter Annual Meeting, New York, N.Y., Nov. 29-Dec. 4, 1964, Paper 64 - WA/Lub-2.)

ASME, Transactions, Series D - Journal of Basic Engineering, vol. 87, Sept. 1965, p. 778-780.

Analytical investigation of the effect of a nonuniform applied magnetic field on the operation of a parallel plate slider bearing. It is found that the optimum magnetic field profile is a step function. This profile increases the load-carrying capacity, while decreasing the friction factor. The results are said to indicate that the nonuniform applied magnetic field is definitely superior to the uniform applied magnetic field, and that the operating characteristics of magnetohydrodynamic bearings may be improved by a nonuniform applied magnetic field. (Author) M.M.

A65-33852 =

CALCULATION OF WEAR RATE.

I. V. Kraghelsky (Academy of Sciences, Research Institute of Mechanical Engineering, Moscow, USSR).

(American Society of Mechanical Engineers, Winter Annual Meeting, New York, N.Y., Nov. 29-Dec. 4, 1964, Paper 64 - WA/Lub-5.)

ASME, Transactions, Series D - Journal of Basic Engineering, vol. 87, Sept. 1965, p. 785-790. 16 refs.

Presentation of exhaustive analytical data on factors contributing to the wear of a deformed body interacting with an absolutely rigid rough solid. It is believed that wear results from the deformation of a body due to geometrical and mechanical factors and due to its adhesion bonds. Three types of wear are considered: by elastic deformation, by plastic deformation, and by microcutting. The suggested criteria allow the determination of conditions which cause these types of wear to appear. It is shown that the rate of wear i.e., the ratio of height of the worn layer to the distance of sliding at elastic contact - depends on the elasticity modulus, roughness, friction coefficient, nominal pressure, rupture stress of material, and on the power exponent of the fatigue curve. In plastic contact it depends on the roughness, nominal pressure, hardness, destroying deformation, and the friction coefficient. In microcutting, it depends on roughness, nominal pressure, and hardness. Wear in microcutting is found to be independent of the friction coefficient. The formulas derived are borne out by experiments. These formulas may be readily modified for the case of two rough surfaces. (Author) M.L.

A65-33853 =

LUBRICATION REVIEW.

T. E. Timkens (U.S. Army, Watervliet Arsenal, Watervliet, N.Y.), R. D. Brown, R. A. Burton (Southwest Research Institute, San Antonio, Tex.), E. E. Klaus (Pennsylvania State University, College of Engineering, Dept. of Chemical Engineering, Petroleum Refining Laboratory Div., University Park, Pa.), W. J. Wojtowicz (H. A. Montgomery Co., Detroit, Mich.), and F. J. Villforth, Jr. (Texaco, Inc., Research Center, Beacon, N.Y.). (American Society of Mechanical Engineers, Winter Annual Meeting New York, N.Y., Nov. 29-Dec. 4, 1964, Paper 64 - WA/Lub-1.) ASME, Transactions, Series D - Journal of Basic Engineering, vol. 87, Sept. 1965, p. 791-804, 150 refs.

vol. 87, Sept. 1965, p. 791-804. 150 refs.

Presentation of information on publications relating to several aspects of the field of lubrication. Many of the results of current theoretical and experimental investigations are summarized. The areas reviewed include fluid-film lubrication, developments in lubricants, metalworking lubricants, automotive lubricants, gear lubrication, boundary lubrication, rolling element bearings, and friction and wear.

(Author) M.L.

A65-33854 =

MAGNETOHYDRODYNAMIC SQUEEZE FILM BEARINGS. F. T. Dodge (Southwest Research Institute, Dept. of Mechanical Sciences, San Antonio, Tex.), J. F. Osterle, and W. T. Rouleau (Carnegie Institute of Technology, Dept. of Mechanical Engineering, Pittsburgh, Pa.).

(American Society of Mechanical Engineers, Winter Annual Meeting, New York, N.Y., Nov. 29-Dec. 4, 1964, Paper 64 - WA/Lub-3.)

ASME, Transactions, Series D - Journal of Basic Engineering, vol. 87, Sept. 1965, p. 805-809. 6 refs.

Theoretical analysis of squeeze film bearings which use an electrically conducting fluid, such as a liquid metal, as the lubricant, and which are in the presence of a magnetic field. Electrical energy is added to the film by an exterior source. By considering infinitely long rectangular plates, the fluid film thickness is determined as a function of time, with the applied magnetic and electric fields as parameters. It is shown that the squeeze action is altered significantly when the electric field is symmetrical about the center of the bearing, and results are presented for various values of the Hartmann number. (Author) M.M.

A65-34699

EXTENSION OF DRAIN PERIODS IN GAS TURBINE ENGINES USING IMPROVED SYNTHETIC LUBRICANTS.

H. W. Reynolds, Jr. (United Aircraft Corp., Pratt and Whitney Aircraft Div., East Hartford, Conn.).

Society of Automotive Engineers, National Aeronautics and Space Engineering and Manufacturing Meeting, Los Angeles, Calif., Oct. 4-8, 1965, Paper 650814. 11 p.

Members, \$0.75; nonmembers, \$1,00.

Analysis of the so-called "constant oil-monitoring system" which uses an electrical conductivity tester with Type 2 oils and provides a practical, sensitive, and low-cost means of extending oil life without fixed use-time limitations. A brief history of the development of lubricants is traced, and basic performance criteria and methods used for extending oil life are given. Potential benefits to airlines through use of the constant oil-monitoring system are outlined.

B. B.

A65-34831

MULTIPURPOSE AERONAUTICAL LUBRICATING GREASES.
M. J. Devine, E. R. Lamson, and L. Stallings (U.S. Naval Air Engineering Center, Aeronautical Materials Laboratory, Philadelphia, Pa.).

Society of Automotive Engineers, National Aeronautic and Space Engineering and Manufacturing Meeting, Los Angeles, Calif., Oct. 4-8, 1965, Paper 650817. 7 p. Members, \$0.75; nonmembers, \$1.00.

Description of the use and limitations of a range of aeronautical lubricating greases specified for military vehicles and components. Sixteen greases are evaluated, and important properties of 11 of the more generally used greases are tabulated. Because of problems presented by the increasing number of different greases required for the variety of vehicles and components, a program has been initiated to establish possibilities for multipurpose greases, and various consolidations have been effected. It is anticipated that within five years the number of greases required may be reduced to two.

F.R.L

A65-34836

A NEW HIGH TEMPERATURE BEARING MATERIAL.
Mukul K. Mukherjee (Midwest Research Institute, Kansas City, Mo.).
Society of Automotive Engineers, National Aeronautic and Space
Engineering and Manufacturing Meeting, Los Angeles, Calif.,
Oct. 4-8, 1965, Paper 650796. 7 p. 21 refs.
Members, \$0.75; nonmembers, \$1.00.

Characteristics of new bearing materials, suitable for high-temperature applications, which possess preferred lattice structural properties and appear to exhibit low friction and wear coefficients. Materials evaluated were MgNi, MgNi₂, Ni₂Al₃, α -Ti (Ti + Al), TiAl₃, and β -Co (Co + Zn). Friction and wear characteristics were determined on a pellet friction machine at a linear surface speed of 580 fpm at temperatures up to 1000^{0} F in air or N₂. The coefficient of friction is determined by measurement of the torque necessary to drive the pellet holder on its axis. The most feasible manufacturing method appears to be sintering, provided the smallest available particle size powders are sintered directly in a mold designed to give the same shape as the bearing and provided the method is selected so that the matrix has a low porosity and limited particle growth. Future advancement of the bearing is considered to lie in the possibility of using a suitable precipitation hardenable high-temperature material, thus ensuring good maintenance characteristics and reliability.

A65-34839

AIR TRANSPORT LANDING GEAR MAINTENANCE.
William W. Witt (United Air Lines, Inc., Elk Grove Township, Ill.).
Society of Automotive Engineers, National Aeronautic and Space
Engineering and Manufacturing Meeting, Los Angeles, Calif.,
Oct. 4-8, 1965, Paper 650842. 6 p.
Members, \$0.75; nonmembers, \$1.00.

Airline experience regarding landing gear design and maintenance, with suggestions to assist design engineers in prevention of some of the problems encountered. The necessity for large radii on corners to prevent cracks is stressed. Material which is tolerant of some nicks and scratches should be chosen, and troubles arising from overzealous attempts to save weight are discussed. Joints and bushings should be as few as possible and adequately protected against corrosion. Accurate identification of parts is important. Lubrication and hydraulic seal leakage problems are examined, and the importance of simple design is emphasized.

F.R. L.

A65-34857

PATTERN-CONFORMING CRACKING OF AN OXIDE FILM ON ALUMINUM DURING HIGH-TEMPERATURE OXIDATION [ZAKONO-MERNOE RASTRESKIVANIE OKISNOI PLENKI NA ALIUMINII PRI VYSOKOTEMPERATURNOM OKISLENII].

Iu. D. Chistiakov and A. Iu. Mendelevich (Moskovskii Institut Stali i Splavov, Kafedra Proizvodstva Chistykh Metallov i Poluprovodnikovykh Materialov, Moscow, USSR).

Tsvetnaia Metallurgiia, vol. 8, no. 3, 1965, p. 127-130. 22 refs. In Russian.

Investigation of the process of pattern-conforming cracking of an oxide film on aluminum occurring during high-temperature oxidation and resulting from oriented growth of the film on the surfaces of the metal grains. The driving force of this process is found to be the energy field of the crystal lattice of the metal and diffusion of hydrogen atoms from the metal into the oxide film. The assumption, on the part of a number of authors, that a good crystallochemical correspondence exists between aluminum and the γ -oxide of aluminum is shown to be false. Pattern-conforming cracking of an oxide film is said to be the cause of the decrease in corrosion resistance of welded seams and articles made of pure aluminum subjected to high-temperature heat treatment.

A65-34961

HIGH-ALLOY STEELS.

E. A. Schoefer (Alloy Casting Institute, New York, N.Y.).

Machine Design, vol. 37, Sept. 9, 1965, p. 19-24.
Review of the properties of "high-alloy" steel castings, which contain at least 8% nickel and/or chromium. These alloys are used to resist corrosion and provide strength at temperatures above 1200°F. The physical and mechanical properties of both corrosionresistant and heat-resistant cast high alloys are described, and techniques for casting and fabricating them are discussed.

A65-34977

INFLUENCE OF THE DEGREE OF DEFORMATION AND THE ANNEALING TEMPERATURE ON THE ELECTROCHEMICAL CORROSION OF TITANIUM AND AN ALLOY OF TITANIUM WITH 0. 2% PALLADIUM.

N. D. Tomashov and Iu. M. Ivanov (Akademiia Nauk SSSR, Institut Fizicheskoi Khimii; Gosudarstvennyi Nauchno-Issledovatel'skii i Proektnyi Institut Redkometallicheskoi Promyshlennosti, Moscow,

(Zashchita Metallov, no. 1, 1965, p. 36.)

Protection of Metals, no. 1, 1965, p. 40-45. Translation.

Study of the effects of deformation and annealing on the corrosionresistance of pure and alloyed titanium in sulphuric and hydrochloric acids. The alloy tested was titanium, 0,2% palladium. It is found that cold-rolled sheets of the pure and alloyed titanium have lower corrosion rates in the rolling plane than annealed sheets and that the rate of corrosion in this plane decreases with increasing deformation. The annealing of deformed sheets at temperatures below 600°C had no effect on the corrosion resistance, while increasing the temperature above 600°C increases the corrosion rate. The welding of unannealed sheets leads to an increased corrosion rate of the weld seams and the area near the weld zone.

A65-34980

A RADIOCHEMICAL METHOD OF INVESTIGATING THE MECHA-NISM OF THE PROTECTIVE EFFECT OF PALLADIUM IN THE CORROSION RESISTANT ALLOYS TITANIUM-PALLADIUM. N. D. Tomashov, M. N. Shchulepnikov, and Iu. M. Ivanov (Akademiia Nauk SSSR, Institut Fizicheskoi Khimii; Gosudarstvennyi Nauchno-Issledovatel'skii i Proektnyi Institut Redkometallicheskoi Promyshlennosti, Moscow, USSR).

(Zashchita Metallov, no. 1, 1965, p. 122.)

Protection of Metals, no. 1, 1965, p. 133-135, 5 refs. Translation.

Study, using a radiochemical method, of the mechanism by which the addition of palladium increases the corrosion-resistance of titanium. Specimens of annealed Ti, 0.1% Pd are treated in a boiling solution of 5% HCl and then irradiated for 20 hr with a flux of slow neutrons which transforms the Pd 108 inside the alloy into radioactive Pd 109, which can be traced. Some control specimens are not immersed in the HCl. It is found that treating specimens with HCl increases the quantity of palladium at the surface at least

15 times. It is suggested that this accounts for the sharp weakening of the cathode reaction due to passivation following the introduction of even very small quantities of palladium into titanium.

A65-35056

HIGH-STRENGTH HIGH-ALLOY STEELS.

C. L. M. Cottrell (Bristol Aerojet, Ltd., Rocket Motor Dept., Banwell, Soms., England). Chartered Mechanical Engineer, vol. 12, Sept. 1965, p. 440-445,

Discussion of the characteristics of high-strength high-alloy steels. Strengths of various alloy steels are studied and tabulated, and toughness of high-tensile steel is considered. The effect of melting and alloying processes on fracture toughness is plotted, and the fatigue properties of high-strength steels are evaluated. Finally, corrosion and heat-resistant steels and machining and forming methods are analyzed. It is concluded that the maximum strength of high-alloy steels has greatly increased in recent years and that current developments are mostly aimed at combining this with greater toughness, better working properties, and higher

A65-35750

corrosion resistance.

SOME AIRCRAFT CORROSION PROBLEMS AND THEIR SOLUTIONS. Morgan Sinclaire (Douglas Aircraft Co., Inc., Aircraft Div., Chemical Section, Long Beach, Calif.) and Robert H. Gassner (Douglas Aircraft Co., Inc., Metals Section, Long Beach, Calif.). (National Association of Corrosion Engineers, Western Region Conference, Anaheim, Calif., Sept. 25-27, 1963, Paper.) Materials Protection, vol. 4, Oct. 1965, p. 69-73.

Description of several case histories of corrosion failures in aircraft, and discussion of what was done in each case to remedy the situation or prevent future occurrences. Among items discussed are hydraulic lines, angle-of-attack indicator, hot air ducting, control cable, and bellows. It is briefly explained what procedures were taken to prevent further failures.

A65-36014

EFFECT OF ALUMINUM ADDITIONS ON THE CORROSION RESIS-TANCE OF TITANIUM IN SULFURIC ACID SOLUTIONS [VLIIANIE LEGIROVANIIA ALIUMINIEM NA KORROZIONNUIU STOIKOST' TITANA V RASTVORAKH SERNOI KISLOTY].

G. M. Kirkin and N. R. Zhuk.

Zashchita Metallov, vol. 1, July-Aug. 1965, p. 380-384. 8 refs. In Russian.

'Investigation of the effect of 0.1, 0.3, 0.6, 1.0, 3.0, and 5.0% Al additions on the corrosion resistance and electrochemical characteristics of titanium at 25 to 80°C in 5 to 80% H2SO4. It is found that (1) corrosion of titanium and its alloys with aluminum in H2SO4 is a steadily progressing process, (2) Al additions, especially up to 1%, reduce the corrosion resistance of titanium, (3) the temperature and the concentration of H2SO4 have similar effects on the corrosion rates of pure titanium and its alloys with aluminum, and (4) the inferior protective properties of films that are formed on alloy surfaces reduce the corrosion resistance of Ti-Al alloys.

A65-36015

QUANTITATIVE ESTIMATE OF THE CORROSION FATIGUE OF METALS [K VOPROSU O KOLICHESTVENNOI OTSENKE KORRO-ZIONNOI USTALOSTI METALLOV).

V. V. Romanov (Akademiia Nauk SSSR, Institut Metallurgii, Moscow, USSR).

Zashchita Metallov, vol. 1, July-Aug. 1965, p. 391-395. In Russian. Discussion of the reliability, as criteria of corrosion fatigue, of the "conditional" limit of corrusion fatigue, σ_{-1}^{k} , and the ratio between the limits of corrosion fatigue and pure fatigue, $\sigma_{-1}^{k}/\sigma_{-1}^{b}$, found from the curve for the number of cycles to failure vs load. The conclusions are drawn that (1) σ_{-1}^{k} in no way characterizes corrosion fatigue and measures only the remainder of the cyclic strength of a metal, and (2) $\sigma_{-1}^{k}/\sigma_{-1}^{b}$ and the area between the curves for pure fatigue and corrosion fatigue are better quantitative criteria of corrosion fatigue.

A65-36016 =

SOME PROBLEMS IN CALCULATING THE CONTACT CORROSICN FOR A PLANE AND CYLINDRICAL METALLIC SURFACE [NEKOTORYE ZADACHI RASCHETA KONTAKTNOI KORROZII PLC KOI I TSILINDRICHESKOI POVERKHNOSTI METALLA]. lu. Ia. Iossel', E. S. Kochanov, and M. G. Strunskii (Tentral'nyi Nauchno-Issledovatel'skii Institut, Leningrad, USSR). Zashchita Metallov, vol. 1, July-Aug, 1965, p. 410-419. 7 refs. In Russian.

Derivation of simple approximate expressions for the voltage and density of the contact-corrosion current arising at the contact surface of two different metals. The expressions apply to plane and cylindrical contact surfaces, uncoated or coated with a dielectric dye, and can be used for calculating anticorrosion systems in engineering construction designs. As a numerical example, a determination is made of the density of the contact-corrosion current at a point on the surface of a dye-coated high-carbon steel sheet in contact with a dye-coated bronze sheet in soil.

V.Z

A65-36165 =

BEARING ALLOYS CONTAINING SOLID LUBRICANTS - FRICTION TESTS OVER THE RANGE 20-400 $^{\circ}$ C.

E. A. Smith.

Metallurgia, vol. 72. Sept. 1965, p. 119, 120.

Observation that a proprietary alloy containing graphite and molybdenum disulphide offered a very low coefficient of friction, which was maintained at temperatures up to 400°C. Details of the experiments are described and results are summarized.

(Author) M.F.

A65-36334

OXIDATION OF METALS.

Karl Hauffe.

(Translation of Oxydation von Metallen und Metallegierungen, Berlin, Springer-Verlag, 1956).
New York, Plenum Press, 1965. 452 p.
\$10.50

This book begins with a critical review of structural defects in scaling layers formed in the process of metal oxidation, since it is these defects in the protective layers that determine the mechanism and rate of oxidation, at least in those cases where diffusion or transport processes are rate-determining. This approach leads to a classification of oxidation processes from the point of view of the theory of defects in the layer of reaction products and of the associated kinetics, in place of the more familiar chemical classification as oxidation, sulfuration, halogenation, etc. Since this classification is applicable only when the rate of oxidation is not determined by a phase-boundary reaction, it has to be subordinated to a more general one, namely, that of oxidation processes controlled on the one hand by transport phenomena and on the other hand by phase boundary reactions. The author feels that a detailed treatment of the basic, generally valid elementary processes of metal oxidation is of greater value than a comprehensive reporting of the mass of published results. For this reason many reports on the oxidation of alloys of industrial interest have not been cited. However, it is hoped that this weakness is counterbalanced by the fundamental nature of the discussion of the possible reactions leading to the formation of protective layers on metals. The book is intended to stimulate professional colleagues employed in in-M. F. dustry to further significant experimentation.

1966

A66-10745

EFFECT OF GRAPHITE CONTENT ON THE ANTIFRICTION PROPERTIES OF METAL-GRAPHITE MATERIALS (VLIIANIE SODERZHANILA GRAFITA NA ANTIFRIKTSIONNYE SVOISTVA METALLOGRAFITOVYKH MATERIALOV).

L. I. Pugina, I. M. Fedorchenko, and N. E. Ponomarenko (Akademiia Nauk Ukrainskoi SSR, Institut Problem Materialovedeniia, Kiev, Ukrainian SSR).

Poroshkovaia Metallurgiia, vol. 5, Sept. 1965, p. 53-57. 6 refs. In Russian.

Investigation of the effect of graphite content (from 20 to 90 vol%) on the antifriction properties of graphitized nickel-based (50 to 80% Ni) copper and iron alloys. The technique of preparation of the materials and the experimental procedure are described. Metal-graphite materials with up to 50 vol% of graphite content are found to resist well high-rate sliding friction with limited lubrication but lose strength quickly at higher graphite contents. Materials with 50 to 90 vol% of graphite content have a high dry friction coefficient (0, 22 to 0, 40) which restricts their use without lubrication. Depending on the composition, the friction coefficient varies from 0, 03 to 0, 06 at friction rates to 50 m/sec and loads from 3, 3 to 3, 8 kg/cm²-sec when the materials investigated perform with lubrication.

V 7

A66-10821

A LOOK AT THE MIL-L-23699 (WEP) LUBRICANTS.

A. G. Sundberg and E. H. Wehner (General Electric Co., Flight Propulsion Div., West Lynn, Mass.).

Society of Automotive Engineers, National Aeronautic and Space Engineering and Manufacturing Meeting, Los Angeles Calif., Oct. 4-8, 1965, Paper 650816. 12 p. Members, \$0.75; nonmembers, \$1.00.

Laboratory, component, and engine tests conducted to evaluate the various lubricant properties important to the J79 jet engine. Such properties as elastomer volume swell, oxidation-corrosion, coking characteristics, and lubricity were evaluated. The effects of these various properties on engine performance and how the laboratory results relate to the component results and engine test results are discussed.

A66-10987

ELECTROCHEMICAL STUDY OF THE EFFECT OF CARBON, TITANI UM AND MANGANESE CONTENT ON THE CORROSION RESISTANCE OF CHROMIUM-NICKEL-MANGANESE STEELS.

1 - ANODE BEHAVI OR [ELEKTROKHMICHESKOE ISSLEDOVANIE VLIIANIIA SODERZHANIIA UGLERODA, TITANA I MARGANTSA NA KORROZIONNUIU STOIKOST' KHROMONIKEL' MARGANTSEVYKH STALEI. I - ANODNOE POVEDENIE].

V. M. Kniazheva, M. A. Vedeneeva, Said Esel'din Khalil', and Ia. M. Kolotyrkin (Nauchno-Issledovatel'skii Fiziko-Khimicheskii Institut, Moscow, USSR).

Zashchita Metallov, vol. 1, Sept.-Oct. 1965, p. 465-472. 20 refs. In Russian.

Investigation of the effect of variations in nickel content (reduction to 5%) and manganese content (5 and 10%) on the anodic behavior of Khl8N9 steels. It is shown that (1) the reduction of Ni content to 5% and the introduction of 10% Mn have no effect on the solubility rate of Khl8N9 steels at potentials from - 0.05 to 1.35 v which include the region of a stable passive state, (2) in the region of secondary passivation of these metals, anodic oxidation of manganese reduces the solubility rate as the potential increases, and (3) the resistance to intercrystallite corrosion is higher in steels of this type having an austenitic-ferrite structure. Reduction of carbon content, rather than stabilization with titanium, is seen to be preferable as a remedy against intercrystallite corrosion.

V.Z

A66-10988

GAS CORROSION OF AUSTENITIC-FERRITE STEELS [GAZOVAIA KORROZIIA AUSTENITO-FERRITNYKH STALEI].

A. A. Grigor'eva, N. P. Zhuk, and G. G. Sergeeva (Moskovskii Institut Stali i Splavov, Moscow, USSR).

Zashchita Metallov, vol. 1, Sept. -Oct. 1965, p. 490-493.* 10 refs. In Russian.

Investigation of the heat resistance in air of four industrial austenitic-ferrite steels (OKh2IN5MD2T, OKh2IN6M2T, IKh2IN5T, OKh2IN5T) with low nickel content (5. 3 to 6.7%) at temperatures gradually raised from 750 to 1050°C. The oxide films are examined with X rays, and curves are included showing the temperature-dependent rate of scale formation determined by systematically weighing the samples during the heating. The results, compared with those for two one-phase austenitic steels (Kh18N9T, Kh18N12M2T) with 10. 2 and 12. 3% Ni, show that the ferrite phase has a negative

effect on the heat resistance of these steels. The negative effect of molybdenum and the positive effect of chromium are also noted,

A66-10990

CORROSION OF TITANIUM IN MANGANESE-AMMONIUM SULFATE SOLUTIONS [KORROZIIA TITANA V SUL'FATNOM MARGANTSEVO-AMMONINOM RASTVORE].

E. D. Chkhikvadze (Akademiia Nauk Gruzinskoi SSR, Institut Neorganicheskoi Khimii i Elektrokhimii, Tiflis, Georgian SSR). Zashchita Metallov, vol. 1, Sept. -Oct. 1965, p. 595-597. 5 refs.

Investigation of the corrosion rate of BT-1 titanium and 9Khl8Nl2M2T stainless steel at 22 to 24°C in electrolyte containing 110 g/liter of MnSO4.5H2O and 150 g/liter of (NH4)2SO4.600-hr tests, using the gravimetric method to determine the change in weight of samples, showed a high corrosion resistance of both metals. Curves of corrosion rate vs pH (2 to 8), anodic polarization vs pH (3 to 7), and time-dependent variations in the potential are included to illustrate the results.

A66-11181

DETERMINATION OF THE CHARACTERISTICS OF A CIRCULAR, FLEXIBLE PLATE, ALLOWING FOR THE FORCES OF CLAMPING FRICTION [OPREDELENIE KHARAKTERISTIKI KRUGLOI GIBKOI PLASTINKI S UCHETOM SIL TRENIIA V ZADELKE).

I. I. Sherstobitov.

IN: PROBLEMS OF DYNAMICS AND STABILITY [VOPROSY DINAMIKI I PROCHNOSTI].

Edited by Ia. G. Panovko.

Riga, Latvian SSR, Izdatel'stvo Akademii Nauk Latviiskoi SSR, 1964, p. 159-172. 8 refs. In Russian.

Derivation of expressions to describe the characteristics of a flexible, round plate, taking account of deformation in the clamped section arising from friction forces. Stress and strain in the friction zone are considered, and Hencky's (1915) solution for the stress and deflection of a membrane is modified. An asymptotic solution to the equation for large deflections of a flexible plate is worked out. All solutions are based on the construction-deformation theories of Kalinin, Lebedev, and Lebedeva (1960) and Panovko (1960). R.A.F.

DETERMINATION OF THE CHARACTERISTICS OF A CORRUGATED MEMBRANE, ALLOWING FOR THE EFFECT OF THE FORCES OF CLAMPING FRICTION [OPREDELENIE KHARAKTERISTIKI GOFRI-ROVANNOI MEMBRANY S UCHETOM VLIIANIIA SIL TRENIIA V ZADELKE].

I. I. Sherstobitov.

IN: PROBLEMS OF DYNAMICS AND STABILITY [VOPROSY DINAMIKI I PROCHNOSTI].

Edited by Ia. G. Panovko.

Riga, Latvian SSR, Izdatel'stvo Akademii Nauk Latviiskoi SSR, 1964, p. 173-190. 5 refs. In Russian.

Detailed analysis of the forces acting on a partially clamped, corrugated membrane, taking account of clamping friction. The clamped ring and some characteristics of the membrane are calculated for cases of complete and incomplete loading. A sample R.A.F. problem is worked out.

A66-11304

INFLUENCE TO PROPERTIES BY DIFFERENT HEAT TREAT-MENT CYCLE FOR AM 355. I.

Kenji Hashimoto (Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo, Japan).

Ishikawajima-Harima Engineering Review, vol. 5, July 1965, p. 395-402. 7 refs. In Japanese.

Analysis of the results of five experiments for determining the effects of various heat-treatment cycles on the final mechanical properties of a corrosion-resistant precipitation-hardened steel (AM 355), in terms of its metallographic structure. This metal is under consideration for use in SST jet engines. Precipitationhardening effects on corrosion resistance and tensile strength have, it is pointed out, posed an interesting problem. By control of the heat-treatment cycles, AM 355 can be made suitable for various applications - by affecting the presence and distribution of coherent and incoherent precipitation and structure transformations. F.R.1..

A66-11698 #

LIQUID METAL EMBRITTLEMENT.

R. C. Carlston (U.S. Navy, Office of Naval Research, Metallurgy Branch, Washington, D. C.).

Naval Research Reviews, vol. 18, Sept. 1965, p. 1-8.

Examination of the essential factors of liquid metal embrittlement. The background of this phenomenon is briefly discussed, and characteristics of the intergranular corrosion mode are considered, together with the environmental cracking modes. Some specific liquid-solid embrittlement couples are tabulated, as are the factors and problems in liquid metal embrittlement, the effect of aqueous solutions on mechanical behavior of AgCl crystals, and the common factors in environmental cracking. It is concluded that the interpretation of all environmental cracking modes is still in a state of flux, despite the attention given to it in recent years.

NON-METALLIC MATERIALS - NUCERITE.

W. Wood (Balfour Group, Leven, Scotland). IN: NEW ENGINEERING MATERIALS; CONFERENCE, BIRMINGHAM, ENGLAND, OCTOBER 13, 14, 1965. [A66-11736 02-17]

London, Institution of Mechanical Engineers, 1965, p. 92-98.

This paper describes 'Nucerite,' a new material of construc tion consisting of a ceramic-metal composite which has improved mechanical strength and abrasion resistance over glassed steel. A wide range of ceramics is available and these can be bonded to a range of base metals, thus giving a very wide choice of properties. An outline of the induced crystalline structure in the ceramic shows how Nucerite is suitable for high temperature use together with good corrosion resistance. The application of Nucerite in the chemical and related industries shows how its versatility can be used to solve high temperature, corrosion, and abrasion problems. Examples of items of equipment, together with the conditions under which they are being used, confirms that there is a big future for Nucerite as it is developed and its properties are improved even further.

A66-12249

EFFECT OF VARIOUS LUBRICANTS AND BASE MATERIALS ON FRICTION AT ULTRAHIGH LOADS.

K. E. Demorest and A. F. Whitaker (NASA, Marshall Space Flight Center, Propulsion and Vehicle Engineering Laboratory, Materials Div., Huntsville, Ala.).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-23. 11 p. 5 refs.

A series of high load, low-speed sliding friction tests was made on eight greases and eighteen dry lubricants at normal unit loads from 10,000 psi to 150,000 psi. Four different substrate materials were used having a range of hardnesses from Rockwell C 18 to Rockwell C 55. The ultimate load capability of both greases and dry films is a function of substrate hardness with the best ultimate load capability being provided by inorganically bonded molybdenum disulfide films with small amounts of graphite added. The coefficient of friction of the greases appears to be an inverse function of substrate hardness and a direct function of the normal load. The coefficient of friction of the dry lubricants is an inverse function of the normal load, but does not appear to be related to the substrate hardness.

A66-12251

SLIDING BEHAVIOR OF SOME LAYER LATTICE COMPOUNDS IN ULTRAHIGH VACUUM.

A. J. Haltner (General Electric Co., Missiles and Space Div., Space Sciences Laboratory, Philadelphia, Pa.).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-19. 12 p. 23 refs. Contract No. AF 33(657)-10493.

Friction measurements have been made on a series of layer lattice compounds selected from a number of different crystal systems. Experiments in ultrahigh vacuum confirm the vapor lubrication mechanism for natural graphite, pyrolytic graphite, and boron nitride. For all other lamellar solids studied there was no evidence that vapor lubrication played a role in the sliding mechanism. It is likely that vapor lubrication applies to lamellar solids only when relatively high specific forces are acting between the layers.

(Author)

A66-12252

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS AS RELATED TO CRYSTAL STRUCTURE AND LATTICE PARAMETERS IN VACUUM

Donald H. Buckley and Robert L. Johnson (NASA, Lewis Research Center, Cleveland, Ohio).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-18, 13 p. 32 refs.

The friction and wear characteristics were determined for fourteen hexagonal metals in vacuum at temperatures to $850^{\circ}F$ and sliding speeds to 2000 fpm. The metals examined included cobalt, titanium, zirconium, hafnium, beryllium, the rare earth metals, and binary alloys of some of these with other elements. Single crystals of cobalt were also examined to determine the influence of specifically oriented planes on friction. Differences in friction properties of these metals (e.g., cobalt and titanium) were found to be related to crystal slip systems and associated shear. Friction coefficients are further related to lattice parameters for fourteen hexagonal metals. For those hexagonal metals undergoing crystal transformation to a cubic form at elevated temperatures, marked changes were observed in friction and wear with the crystal transformation. While relatively moderate friction and wear is observed for the hexagonal form, high friction and complete welding is observed for the cubic structures. Selective alloying of other elements with these hexagonal metals was found to expand the crystal lattice and to delay crystal transformation, thereby improving friction and wear characteristics. (Author)

A66-12253

ANALYTICAL ASPECTS OF GEAR LUBRICATION ON THE DISENGAGING SIDE.

J. W. McCain and E. Alsandor (North American Aviation, Inc., Rocketdyne Div., Canoga Park, Calif.).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-16. 10 p. 5 refs.

Variations and inconsistencies in the ratings of rocket engine lubricating oils on the Ryder Gear Tester prompted an analytical investigation into the mechanism of lubrication. It is considered that gears are lubricated on the disengaging side primarily to rapidly dissipate frictional heat. Based on this consideration, it is contended that oil nozzle position and depth of oil impingement are important variables. It is analytically shown by using the Ryder gears how these important variables could contribute to the load-carrying ability of oils and how these contributions could affect the Ryder ratings of oils. (Author)

A66-12254

STUDY OF CORROSIVITY AND CORRELATION BETWEEN CHEMICAL REACTIVITY AND LOAD CARRYING CAPACITY OF OILS CONTAINING EXTREME PRESSURE AGENTS.

Toshio Sakurai (Tokyo Institute of Technology, Tokyo, Japan) and Kachio Sato (Nippon Mining Co., Ltd., Central Research Laboratory, Toda-machi, Saitama-ken, Japan).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-11. 10 p. 8 refs.

The work to be described in this paper, is a study of chemical reaction between iron surfaces and various representative extreme pressure (EP) agents, such as chlorine type, sulfur type, Zndithiophosphate type, and the mixture of sulfur and chlorine type EP agents, by using the hot wire method. It has been observed that the corrosion rate of iron follows the parabolic law or the cubic law. The parabolic law can be explained by the diffusion mechanism of corrosion. In order to explain the cubic law, the corrosion retarding action of a barrier film has been assumed. From the Xray analysis of reaction products, the complexity of corrosion process has been revealed. Zinc-diisobutyldithiophosphate has shown the characteristic behavior in the corrosion process showing retardation against the corrosion. With a binary additives system, the joint reaction of sulfur and chlorine compounds on iron could not be satisfactorily supported in the scope of this study. Some interesting considerations are given for the correlation between chemical reactivity and load carrying capacity of oils containing EP agents.

A66-12255

RESEARCH AND DEVELOPMENT OF MATERIALS FOR USE AS LUBRICANTS IN A LIQUID HYDROGEN ENVIRONMENT.
W. H. Rempe, Jr. (United Aircraft Corp., Pratt and Whitney Aircraft Div., Florida Research and Development Center, West Palm Beach, Fla.).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-9. 9 p. 9 refs. Contract No. NAS 8-11537.

A program was conducted to evaluate materials that could be used as lubricants in rolling-contact bearings operating in a liquid hydrogen environment at DN values up to 4 million mm-rpm. A unique ball and plate test apparatus was used to test twenty candidate lubricant materials selected for screening in the initial phase of the program. The ball-plate tester eliminated the use of test bearings in the initial material screening phase where the important factor was to evaluate the lubricants and bearing materials without the confounding effect of other bearing parameters. No tests were conducted in a nuclear radiation field; however, consideration was given to such an environment in the selection of the candidate materials. The lubricant investigation described herein resulted in the selection of four materials, bronze-filled fluorocarbon, bronzefilled polyimide, Ag-WSe2-polyimide and Ag-MoS2, for further evaluation in actual bearing tests. These materials show promise of providing a significant increase in bearing life when operating in a liquid hydrogen environment.

A66-12259

A NEW SYNTHETIC HYDROCARBON LUBRICANT FOR EXTREME-TEMPERATURE APPLICATIONS.

I. N. Duling, J. Q. Griffith, and R. S. Stearns (Sun Oil Co., Research and Development Div., Marcus Hook, Pa.).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif.. Oct. 18-20, 1965, Preprint 65 LC-1. 11 p. 32 refs.

Polyolefin fluids covering a wide viscosity range have been produced in quantities sufficient for direct comparison with petroleum oils and with existing synthetic-lubricants. Preliminary studies, conducted to choose the best synthesis route, revealed that hydrogenated oligomers of octene-l offered the optimum balance of high viscosity index, low pour point, and excellent stability. Further work with alpha-olefin blends, aimed at the most economical approach, now shows that essentially equivalent results can be obtained with the proper blend of C6 to C10 olefins. Such fluids when produced in large volumes could compete economically with present synthetics. Tests on two candidate products - an automatic transmission fluid for high-temperature service and a jet engine lubricant - demonstrate product capabilities under conditions which cannot be satisfied with conventional petroleum oils. (Author)

A66-12261

METHYL ALKYL SILICONES - A NEW CLASS OF LUBRICANTS. E. D. Brown, Jr. (General Electric Co., Silicone Products Dept., Waterford, N.Y.).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-4. 6 p. 7 refs.

A new family of lubricants, hybrids between silicones and hydrocarbons, is introduced and characterized. The physical properties of representative members of the series are presented and their exceptional lubricating ability is shown. A possible mechanism for such lubricity is postulated. (Author)

A66-12298

EVALUATION OF CORROSION CONTROL ON AIRCRAFT SKIN COUNTERSINKS AND FASTENERS.

A. R. Erben (McDonnell Aircraft Corp., St. Louis, Mo.). (National Association of Corrosion Engineers, Annual Conference, 20th, Chicago, Ill., Mar. 9-13, 1964, Paper.)

Materials Protection, vol. 4, Aug. 1965, p. 18-22.

Description of an investigation to determine best method and material for preventing corrosion in countersink areas of fasteners

A66-12299

on aircraft skin. Methods evaluated include sealant type coatings, chemical treatments, mechanical barriers, platings on fasteners, and organic coatings on fastener heads. Test was as follows: two hours at 250°F (121°C) before load cycling at -65°F (-54°C) for each chemical and sealant type barrier material, then all materials were subjected to load cycling at the low temperature. Thereafter specimens were exposed to 675 hours of salt spray, followed by visual and metallographic examination. Evaluations showed zinc chromate primer, two sealant materials, and epoxy primer on fastener head to be best materials of those tested.

A66-12299

STRESS CORROSION OF SOME AIRCRAFT MATERIALS AT HIGH TEMPERATURE.

George Martin (North American Aviation, Inc., Los Angeles, Calif.). (National Association of Corrosion Engineers, Annual Conference, 20th, Chicago, Ill., Mar. 9-13, 1964, Paper.)

Materials Protection, vol. 4, Aug. 1965, p. 23, 24, 26.

Discussion of the results of a 15,000-hour test with two titanium alloys, two precipitation hardening steels, and two superalloys exposed at 6500F (3430C). Specimens of the test materials were stressed at 23 to 90% of yield. Surface treatments of the specimens were salt coatings, braze coating, and salt coated braze coating. Stress corrosion characteristics and mechanical and metallurgical property changes are discussed.

A66-12300

CORROSION AND THE WHIRLYBIRDS.

A. S. Falcone (Kaman Aircraft Corp., Bloomfield, Conn.). (National Association of Corrosion Engineers, Annual Conference, 20th, Chicago, Ill., Mar. 9-13, 1964, Paper.) Materials Protection, vol. 4, Aug. 1965, p. 27, 28, 30, 31.

Discussion of corrosion problems encountered in application of protective treatments on helicopters. The author also discusses causes of corrosion attack on various components such as transmission gears and rotor blades; he emphasizes that proper design could have eliminated some corrosion problems. The materials engineering specialist is required by policy in design stage of helicopter manufacturing to specify on blueprints those features necessary to (Author) prevent corrosion...

A66-12317

EXPLOSION CLAD PLATE FOR CORROSION SERVICE. Andrew Pocalyko (Du Pont de Nemours and Co., Inc., Explosives Dept., Pompton Lakes, N.J.).

(National Association of Corrosion Engineers, South Central Region Conference, Dallas, Tex., Oct. 20-22, 1964, Paper.) Materials Protection, vol. 4, June 1965, p. 10-15. 21 refs.

Explosion cladding is a joining process in which energy of detonating explosives is controlled so that similar and dissimilar metals are metallurgically bonded, without intermediate metal and without externally applied heat. The author (1) explains advantages of this bonding method, (2) discusses metallurgical bond achieved and properties of clad products including corrosion resistance, and (3) briefly discusses several applications using clad plate.

(Author)

A66-12318

EDGE CORROSION ON AIRCRAFT - EXPERIMENTING WITH ALUMINUM, MAGNESIUM, AND STEEL.

S. L. Chisholm (U.S. Navy, Naval Air Station, San Diego, Calif.). (National Association of Corrosion Engineers, Western Region Conference, Anaheim, Calif., Sept. 25-27, 1963, Paper.)

Materials Protection, vol. 4, Apr. 1965, p. 48-50.

Discussion of experiments to determine causes and methods for prevention of metallic edge corrosion of naval aircraft. Metals tested were carbon steel, 7075T6 aluminum, and AZ31B magnesium. The primary purpose of the experiments was to evaluate surface treatments, primers, and performance of epoxy enamels as compared to acrylic-nitro-cellulose lacquer systems. (Author)

A66-12371

DIFFUSED ALUMINUM COATINGS FOR HIGH TEMPERATURE SERVICE.

Robert S. Brown (Union Carbide Corp., Stellite Div., New Products Dept., Kokomo, Ind.). (National Association of Corrosion Engineers, North Central Region

Conference, Minneapolis, Minn., Sept. 28-30, 1964, Paper.)
Materials Protection, vol. 4, July 1965, p. 50, 51.

Brief description of the performance of diffused aluminum coatings in high temperature applications. The method of applying diffused aluminum to several different base alloys is outlined, and an oxidation test is described and certain of its results are tabulated. The equipment required for application is discussed, and the reactions occurring during the coating process are examined.

A66-12723

STUDY OF Al-Zn-Mg ALLOYS. II.
Takuichi Morinaga, Tsuneo Takahashi, and Junichiro Yamashita
(Tokyo Institute of Technology, Tokyo, Japan). Light Metals (Tokyo), vol. 15, Sept. 1965, p. 280-286. 6 refs.

In Japanese.

Study of the effects of Cr and Mn on the aging mechanism and anticorrosion properties of Al-Zn-Mg permanent mold-casting alloys with the following compositions: 4% Zn and 2% Mg; 4% Zn, 2% Mg, and 0.3% Cr; and 4% Zn, 2% Mg, 0.3% Cr, and 0.5% Mn. In experiments on natural aging at room temperature the hardness is found to approach an approximately stable state from about the 21st day after casting and to be slightly improved in comparison with ordinary alloys by the addition of Cr and (Cr + Mn).

A66-13059

STRESS CORROSION AND TITANIUM ALLOY DESIGN FOR HIGH TEMPERATURE APPLICATIONS.

H. Rosenberg, H. Cox, and E. Erbin (Titanium Metals Corporation of America, West Caldwell, N. J.).

American Institute of Aeronautics and Astronautics, Royal Aeronautical Society, and Japan Society for Aeronautical and Space Sciences, Aircraft Design and Technology Meeting, Los Angeles, Calif., Nov. 15-18, 1965, Paper 65-764. 12 p. Members, \$0.50; nonmembers, \$1.00.

Investigation of stress corrosion cracking (hot-salt stress corrosion) in titanium alloys in the presence of salt (chloride), elevated temperatures, and sustained stress. The time-temperaturestress parameters are examined, and attempts are made to discover and apply to new alloys the basic mechanisms at work. The peculiarity of the fact that corrosion has been observed to occur at temperatures as low as 525°F is pointed out. Data concerning the threshold stresses of 5 commercial titanium alloys, and the limiting stresses for cracking at 800°F vs design properties, are presented. Based on the 525°F threshold temperature - which was the same for all alloys - the basic conclusion is drawn that no known metallurgical reaction is responsible, but rather an external factor. It is concluded that cracking is due to an external reaction between salt and water which produces HCl, and that the latter attacks the alloys; also that a vapor phase, rather than an electrochemical reaction, is involved. Grain boundaries and the propagation of cracking along them are discussed. Improved alloys are expected to result from M. L. the investigation.

A66-13221

FUELS AND LUBRICANTS FOR THE NEXT GENERATION AIR-CRAFT - THE SUPERSONIC TRANSPORT. W. G. Dukek (Esso Research and Engineering Co., Linden, N.J.). (Esso Air World, vol. 17, Mar. - Apr. 1965, p. 119-125; Institute of Petroleum, Meeting, London, England, May 20, 1964, Paper.) Esso Air World, vol. 18, July-Aug. 1965, p. 7-12. 8 refs. [For abstract see Accession no. A65-27161 16-27]

A66-13374

THE BEHAVIOR OF MATERIALS IN CORROSIVE ENVIRONMENTS. W. C. Herron (Lockheed Aircraft Corp., Lockheed-Georgia Co., Materials Sciences Laboratory, Marietta, Ga.). Industrial Research, vol. 7, Nov. 1965, p. 76-82.

Discussion of the effects of corrosive environments and corrosion on various metals and a description of several anticorrosion techniques which are applicable to protecting the surfaces of such

metals. Any environment containing moisture or oxygen can be thought of as being corrosive to metals. The principal factors involved in corrosion are (1) two areas of different potential, (2) an internal electrical path, and (3) an external electrolyte. Variations in composition, temperature, stress, oxygen concentration, and many other conditions may cause a difference in potential. In order to inhibit corrosion, the circuit between two dissimilar areas must be broken by the use of barrier materials such as - in a simple case - paint. It is noted that anodic coatings are very effective on aluminum. Magnesium has a high resistance to alkalis but is susceptible to attack by acids. It requires a special oxidizing treatment followed by an organic sealant. D.P.F.

A66-13398

THE EFFECTS OF REACTOR RADIATION ON THREE HIGH-TEMPERATURE SOLID-FILM LUBRICANTS.

R. H. McDaniel (General Dynamics Corp., General Dynamics/Fort Worth, Nuclear Aerospace Research Facility, Fort Worth, Tex.). (American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-1, 1900, Preprint 65AM 5C1.)

Lubrication Engineering, vol. 21, Nov. 1965, p. 463-471; Discussion, H. E. Sliney (NASA, Lewis Research Center, Cleveland, Ohio), Mel Lavik (Midwest Research Institute, Kansas City, Mo.), p. 472; Author's Closure, p. 473. ll refs. Contract No. AF 29(601)-6213.

[For abstract see issue 14, page 2034, Accession no. A65-24248]

A66-13834

FRICTION AND WEAR.

I. V. Kragelskii (Academy of Sciences, Institute of Mechanical Engineering, Laboratory of Friction and Friction Materials, Moscow, USSR).

Washington, D.C., Butterworth, Inc., 1965. 346 p. Translation. \$16.50.

The main purpose of this book is to present a general picture of the nature of the interaction between solid surfaces, to establish general concepts in this relatively new field of science, and finally to demonstrate the possibility, in some cases, of making engineering and design calculations. A general description of the process is given. Three successive phases are considered: interaction between the surfaces, the changes occurring in the surface layer, and the various ways in which the surfaces are changed. The concept of a frictional junction is introduced; a classification is given of types of frictional junctions, and definitions of friction and wear are proposed. The contact of real surfaces and the extent to which they approach each other are studied. Three types of contact are investigated: elastic, plastic, and contacts involving work hardening. Expressions are given to determine the contact area and the approach of the surfaces in terms of the load, surface roughness, and the mechanical properties of the materials. The basic mathematical expressions required to determine the temperature rise produced during sliding is given. Various temperature problems arising during friction are investigated, and examples of temperature calculations are given. Transition criteria of two types are considered. The first corresponds to the transition from elastic to plastic deformation, the second from plastic displacement to cutting. The analysis of the wear process is dealt with. It is shown that various forms of wear can occur: microcutting, plastic displacement of a surface layer, elastic deformation of interlocked material, and destruction of surface films. Mathematical expressions for each form are given. An analysis of the friction process is given and it is shown that fric tion is of a composite nature. Various types of resistance are considered, including elastic displacement of material, plastic displacement, cutting and destruction of surface films. An analysis of sliding friction is given. The rheological phenomena taking place at a frictional contact are described; a quantitative method is given for analyzing mechanical relaxation oscillations. Boundary friction and the way in which it is affected by various factors are considered. Some results are also given relating to lubricants and the mechanism of action of additives. A hydrodynamic theory of semifluid friction developed by Kudinov is given. A description of experimental methods used in friction and wear investigations is also given. Friction and antifriction materials are considered. A theory of friction and antifriction characteristics is given, together with some information on the main types of materials used. M.F.

A66-13933

MEASURING METALLIC CORROSION BY RADIATION BACKSCAT-TERING AND RADIATION INDUCED X-RAYS. Sigmund Berk (U.S. Army, Pitman-Dunn Institute for Research, Radioisotope Laboratory, Frankford Arsenal, Philadelphia, Pa.). (American Nuclear Society and Atomic Industrial Forum, Joint Meeting and Atom Fair, San Francisco, Calif., Nov. 30-Dec. 3, 1964, Paper.)

Materials Protection, vol. 4, Nov. 1965, p. 39-41. 10 refs. Description of a nondestructive method of measuring metallic corrosion in which a Pm-147 beta-backscattering device is used to determine the relative amount of corrosion on several metallic specimens. It is concluded that the method is effective in measuring the extent of oxidation or corrosion of nickel, niobium, and tantalum. A brief description is also given of a beta-particle induced X-ray method for measuring corrosion of copper, steel, and brass.

A66-14156

SOME PROBLEMS IN THE THEORY OF GAS LUBRICATION WITH allowance for temperature variations [nekotorye ZADACHI TEORII GAZOVOI SMAZKI S UCHETOM TEMPERATUR-NYKH IZMENENII).

I. I. Shidlovskaia.

Inzhenernyi Zhurnal, vol. 5, no. 5, 1965, p. 958-967. 5 refs. In Russian.

Derivation of the equations of gas-lubricated bearings, valid over a wide range of temperatures and Mach numbers. Also derived is an equation for determining the pressures in steady-state lubrication, at small Mach numbers. The solutions of this equation are analyzed for lubricant layers between plane surfaces the temperatures of which can differ without bound.

A66-14240

POSSIBLE ROLE OF COMPRESSIONAL VISCOELASTICITY IN CONCENTRATED CONTACT LUBRICATION. R. S. Fein (Texaco, Inc., Research Center, Beacon, N.Y.). American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Paper 65 - Lub-4. 5 p. 17 refs. Members, \$0.50; nonmembers, \$1.00.

An equation relating liquid density and viscosity under transient pressure conditions is derived. The derivation combines approximate phenomenological descriptions of the viscoelastic compression of a liquid and the dependence of viscosity on pressure and density. Solutions of the equation for a "step"-pressure increase and a semielliptical pressure cycle show that density and viscosity of Newtonian lubricants may significantly lag pressure transients under concentrated-contact lubrication conditions. Qualitatively, the lag effects appear to account at least partially for anomalous experimental observations involving asperity interactions and elastohydrodynamic lubrication of rollers. (Author)

A66-14241

FRICTION-INDUCED VIBRATION.

C. A. Brockley (British Columbia, University, Dept. of Mechanical Engineering, Vancouver, Canada), R. Cameron (Cambridge, University, Cambridge, England), and A. F. Potter (Honeywell Controls, Ltd., Aeronautical Div., Minneapolis, Minn.). American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Paper 65 - Lub-5. 7 p. 12 refs. Members, \$0.50; nonmembers, \$1.00. National Research Council Grant No. A1065.

Friction-induced vibration has been studied in a system consisting of an elastically suspended, damped slider which is loaded against a surface moving at a constant velocity. Exact analysis reveals a critical velocity which limits the incidence of vibration. The critical velocity depends on damping, load, stiffness, and friction characteristics which vary with time and velocity. Approximations in the theory yield an amplitude-velocity equation and another critical velocity relationship. Reasonable agreement is found to exist between the exact and approximate theories for critical velocity. Experimental results for several systems illustrate amplitude-velocity relationships and the existence of critical velocities. The correlation between the experimental

A66-14244

results and the approximate theory indicates that the analytical method could be used to predict the vibration behavior of actual systems.

(Author)

A66-14244

A THEORY OF LUBRICATION BY MICROIRREGULARITIES.
D. B. Hamilton, J. A. Walowit, and C. M. Allen (Battelle Memorial Institute, Columbus, Ohio).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Paper 65 - Lub-11. 9 p. 10 refs.

Members, \$0.50; nonmembers, \$1.00.

Description of a theory of liquid lubrication applicable to parallel surfaces, such as the surfaces of a rotary-shaft face seal. The lubrication mechanism presented is based on surface micro-irregularities and associated film cavities. Closed-form analytical solutions are obtained giving load capacity as a function of speed, viscosity, and surface-asperity dimensions. The theoretical results agree qualitatively with load capacity determined experimentally for three asperity distributions. (Author)

A66-14247

A CORRELATION OF THE FRICTIONAL AND VISCOELASTIC PROPERTIES OF PLASTICS AND RUBBER.

K. C. Ludema (Michigan, University, Ann Arbor, Mich.) and D. Tabor (Cambridge, University, Cavendish Laboratory, Cambridge, England).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Paper 65 - Lub-15. 9 p. 13 refs.

Members, \$0.50; nonmembers, \$1.00.

Demonstration that variations in the coefficient of sliding friction of rubber and plastics by amounts ranging from 200 to 800% with variations in sliding speed and temperature are related to the viscoelastic properties of the plastics and rubbers. A model of the friction mechanism in rubber is presented. In this model it is assumed that for a particular sliding speed the strain rate in the adhesion bonds is much higher than the strain rate in the substrate. Thus, in the equation for friction force, F = AS, the strain rate that controls the shear strength, S, of the adhesion bonds is much greater than the strain rate that controls the area of contact, A. A correlation with rubber using values of A and S derived from published data shows a variation in F that closely approximates experimental results for F. No correlation was made for plastics, but friction data for six plastics are presented, showing large variations in friction with variations in sliding speed and temperature. (Author)

AAA-14240

ANALYSIS OF TURBULENT LUBRICATION USING PRANDTL'S MIXING-LENGTH THEORY.

Elmer L. Wheeler (Garrett Corp., AiResearch Manufacturing Company of Arizona, Phoenix, Ariz.).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Paper 65 - Lub-17. 11 p. 10 refs.

Members, \$0.50; nonmembers, \$1.00.

AEC-supported research.

Following the methods proposed by Constantinescu (1959), a solution has been developed for predicting the performance of journal bearings operating in the turbulent regime. The factor defining the magnitude of the mixing length has been determined in a manner that appears to be free from the effects of Reynolds number and bearing geometry. Numerical solutions for pressures, friction, and load are compared with experimental data, and calculated load data for turbulent bearing operation are presented in the form of a dimensionless design curve. (Author)

A66-14933

BRITTLE AND PLASTIC BEHAVIOR OF HOT-PRESSED BeO.
G. G. Bentle and R. M. Kniefel (North American Aviation, Inc., Atomics International Div., Canoga Park, Calif.).
(American Ceramic Society, Annual Meeting, 66th, Chicago, Ill., Apr. 22, 1964, Paper.)
American Ceramic Society, Journal, vol. 48, Nov. 21, 1965,

p. 570-577. 26 refs. AEC Contract No. AT (11-1)-GEN-8. The flow and fracture mechanisms of well-characterized hotpressed polycrystalline BeO were studied. Modulus of rupture tests were made from -196 to 1800°C on specimens of constant density and varying grain size. The fracture surfaces were studied with fractography and X-ray rocking curves. Compression tests were performed both below and above the phase transformation temperature for BeO (2050°C). A model was developed for fracture below 1000°C, involving propagation of existing surface cracks through dissimilar barriers to form a crack front of irregular shape which generates dislocations near the tip. Above 1000°C a model of grain boundary sliding to open cracks at grain boundary junctions was indicated. Permanent deformation under compression was attributed to grain separation and void formation. (Author)

A66-15526

HYDRODYNAMIC LUBRICATION OF PARTIAL POROUS METAL BEARINGS.

C. A. Rhodes (California Institute of Technology, Jet Propulsion Laboratory, Pasadena, Calif.) and W.T. Rouleau (Carnegie Institute of Technology, Dept. of Mechanical Engineering, Pittsburgh, Pa.). American Society of Mechanical Engineers, Winter Annual Meeting, Chicago, Ill., Nov. 7-11, 1965, Paper 65 - WA/Lub-3. 8 p. 10 refs. Members, \$0.75; nonmembers, \$1.50.

Partial porous metal bearings are analyzed to determine their performance during steady-state operating conditions with a full film of lubricant. The pressure distribution is determined by a simultaneous solution of the two-dimensional Reynolds equation in the film region and the Laplace equation within the porous bearing material. An infinite-series solution is obtained for pressure utilizing the Galerkin method to determine coefficients. Numerical values of load capacity and coefficient of friction are presented for bearing arcs of 180, 150, and 1200. (Author)

A66-15544

1965, 12 p. 8 refs.

STATUS REPORT ON THEORY AND EXPERIMENTS ON HEAT PIPES AT LOS ALAMOS.

T. P. Cotter, J. Deverall, G. F. Erickson, G. M. Grover, E. S. Keddy, J. E. Kemme, and E. W. Salmi.
IN: EUROPEAN NUCLEAR ENERGY AGENCY AND INSTITUTION OF ELECTRICAL ENGINEERS, INTERNATIONAL CONFERENCE ON THERMIONIC ELECTRICAL POWER GENERATION, LONDON, ENGLAND, SEPTEMBER 20-25, 1965. [A66-15532 05-03]

Survey of experiments performed on the characteristics of heat pipes. The status of corrosion studies at elevated temperatures is reviewed. A quantitative engineering theory for the design and performance analysis of heat pipes is described. The experimental investigations were divided into three temperature regimes which reflect the application areas of interest. The lowest temperature regime is of little concern for thermionic applications. Water and the alcohols are used as working fluids, and control of satellite component temperatures is one objective. The next temperature regime is from 700 to 1400°K for heat removal from the collectors of thermionic converters. While the heat transfer rates are not excessive in most applications, the lifetime requirement is long. Therefore, life testing of suitable material combinations is of importance. The high-temperature regime of 1400 to 2100°K presents the most challenging area of heat pipe application. Test heat pipe sizes ranged from 1 to 2 cm in diameter and from 10 to 43 cm in length. The capillary structure was formed from 100-mesh screen with 0,003-in.-diam wire. Lithium is an ideal heat pipe fluid because of its high latent heat of vaporization and its high surface tension. Tantalum and tantalum alloys are used as heat pipe container tubes at temperatures above 1500°C. Examination of a sectional heat pipe after operation with silver for 100 hr at 1900°C was made. The total mass of silver circulated during this period was 200 kg. Estimates based on three pipes operated at 1900° C gave mass transport rates between 2 and 4 x 10^{-9} grams per joule of heat transferred. These rates indicate a tantalum solubility in silver of the order of 10 ppm.

A66-15622

LUBRICANT EFFECTS ON FATIGUE IN A STATIONARY CONCENTRATED CONTACT UNDER VIBRATORY LOADING.

R. A. Burton and J. A. Russell (Southwest Research Institute, San Antonio, Tex.).

American Society of Mechanical Engineers, Winter Annual Meeting, Chicago, Ill., Nov. 7-11, 1965, Paper 65 - WA/CF-3. 8 p. 11 refs. Members, \$0.75; nonmembers, \$1.50. Contract No. NOw-64-0460-d.

Contact fatigue, brinnelling, and erosion are reported, for a stationary ball-on-flat contact, subjected to oscillatory normal load. Damage was least in the absence of lubricant, and greatest with a diester lubricant. Low-viscosity mineral oil was less severe in its effects than was a high-viscosity mineral oil. In those cases where damage was least, it could be attributed to a process of fatigue spalling. In those cases where it was severe, other processes such as fretting could be postulated, but fatigue still appeared to be the favored cause. (Author)

A66-15624

CORRELATION OF THE PITTING FATIGUE LIFE OF BEARINGS WITH ROLLING CONTACT RIG DATA.

JoDean Morrow (Illinois, University, Urbana, Ill.).

American Society of Mechanical Engineers, Winter Annual Meeting, Chicago, Ill., Nov. 7-11, 1965, Paper 65 - WA/CF-5, 4 p. 6 refs. Members, \$0.75; nonmembers, \$1.50.

The general method for correlating the fatigue pitting life of simple rolling elements with the life of bearings is discussed. A "correlation equation" is presented which permits the pitting fatigue life of full-scale bearings to be estimated from minimal rolling contact rig data. Three M-50 (MV-1) bearings are analyzed using this equation. In all three cases the life is predicted within a factor of two. (Author

A66-15849

HEMISPHERICAL TOTAL-EMITTANCE MEASUREMENT IN THE TEMPERATURE RANGE 175 TO 350°K FOR SELECTED THERMAL-CONTROL AND CORROSION-PROTECTION COATINGS.

W. D. Wood and C. J., Coffin (Batielle Memorial Institute, Columbus

W. D. Wood and C. L. Coffin (Battelle Memorial Institute, Columbus, Ohio).

American Institute of Aeronautics and Astronautics, Aerospace
Sciences Meeting, 3rd, New York, N.Y., Jan. 24-26, 1966, Paper
66-18. 12 p. 10 refs.

Members, \$0.50; nonmembers, \$1.00.

Thermal analyses of the guidance system and support equipment located in the Saturn IB/V Vehicle Instrument Unit indicated that a hemispherical total emittance in the range 0.1 to 0.4 would serve to minimize stabilized-platform temperature excursions and to maximize peripheral electronic-component life in the event of coolantsystem failure. These findings prompted a study, which was conducted by the Battelle-Columbus Laboratories for NASA, MSFC, to measure surface emittance of a number of electrochemical and paint coatings on 6061 T-6 aluminum, Type QMV beryllium, and Type AZ-91-CT6 magnesium in the temperature range 175 to 350°K. Emittance was measured by a transient calorimetric technique wherein an emittance specimen is suspended inside a blackened, cold-walled, vacuum chamber and allowed to cool by radiation to the cold, absorbing chamber walls. In addition to emittance, effects of surface and substrate roughness and coating thickness on hemispherical total emittance were investigated, and emittance variations resulting from surface fingerprints were assessed. This paper presents measured emittance values for the coatings and tempera ture range selected and discusses their significance. Also included are descriptions of emittance-measurement apparatus and procedures, with details of emittance-specimen surface preparation. (Author)

A66-15937

VAPOR DEPOSITED GOLD THIN FILMS AS LUBRICANTS IN VACUUM (10 $^{\rm 11}\,\rm mm$ Hg).

T. Spalvins and D. H. Buckley (NASA, Lewis Research Center, Cleveland, Ohio).

American Vacuum Society, Annual Vacuum Symposium, 12th, New York, N. Y., Sept. 29-Oct. 1, 1965, Paper. 21 p. 17 refs.

Gold thin films of 1800 Å to be used as lubricants were vapor-deposited on Ni, Ni-Cr, and Ni-Re substrates. Strong bonding (adhesion) and durability between the film and substrate were found to be essential when thin films are used as a lubricant. Factors which were investigated included the selection of the film and substrate material. Strong durability of the thin film is directly

related to the type and structure of the interfacial region. Two methods of substrate preparation prior to vapor deposition were investigated: (1) mechanically polished surface and (2) electron bombarded surface. Gold was vapor-deposited on the mechanically polished surface at room temperature and on the thermally etched surface at an elevated temperature approximately (800°F). Strength and durability of the films were investigated in sliding friction experiments with a hemispherical niobium rider sliding on the films at a velocity of 5 ft/min. Results obtained in these friction experiments indicated that the film endurance life was considerably better on the thermally etched surface. This increased film durability with the thermally etched surface is believed to be due to the formation of a diffusion-type interface between the film and the substrate. Due to the disregistry at grain boundaries, a higher rate of diffusion and preferential trapping in and around the grain boundaries occurs, with these regions acting as "lubricant reservoirs" during the friction experiments. (Author)

A66-16071

CORROSION OF REFRACTORY ALLOYS BY REFLUXING POTASSIUM.

C. M. Scheuermann (NASA, Lewis Research Center, Cleveland, Ohio).

American Institute of Mining, Metallurgical and Petroleum Engineers, Symposium on Refractory Metals, 4th, French Lick, Ind., Oct. 3-5, 1965, Paper. 17 p. 9 refs.

Outline of a corrosion capsule study for testing the resistance of columbium- and tantalum-base tubing alloys to refluxing potassium over the temperature range of 1800 to 2400°F, and for times up to 4000 hr. A proposed mechanism, for the corrosion of columbium metal and alloys by refluxing potassium, is discussed. The mechanism is described for both gettered and ungettered alloys. It is concluded that the ungettered refractory metal alloys are more rapidly and drastically attacked by refluxing potassium than are the gettered alloys.

B.B.

A66-16136

THE FRICTIONAL BEHAVIOR OF MATERIALS IN JP-4 FLUID. R. H. Krueger (Borg-Warner Corp., Roy C. Ingersoll Research Center, Des Plaines, Ill.).

Lubrication Engineering, vol. 21, Dec. 1965, p. 501-505. 6 refs.

A laboratory apparatus was used to measure friction of materials sliding in JP-4 fluid in order to predict the performance of a particular type of hydraulic pump. Only cemented tungsten carbide gave low friction. Lowest coefficients of friction were obtained with cermets containing uniform rounded tungsten carbide particles, 3 to 16% cobalt, and no apparent oxides or voids. Friction increased with increasing surface roughness of tungsten carbide. Repetitive testing of different tungsten carbide materials did not significantly change coefficient of friction in JP-4 at 300°F. Metal-PTFE compacted materials gave low friction in JP-4 but were not satisfactory because of a small amount of wear. (Author)

A66-16486

METHOD FOR DETERMINING THE SERVICE LIFE OF ANTI-FRICTION BEARINGS FROM TEST RESULTS.

András Horváth (Hungarian Antifriction Bearing Factories, Technological Section, Budapest, Hungary).

IN: HUNGARIAN ACADEMY OF SCIENCES, PROCEEDINGS OF THE CONFERENCE ON DIMENSIONING AND STRENGTH CALCU-LATIONS, 2ND, BUDAPEST, HUNGARY, OCTOBER 5-10, 1965. [A66-16472 06-32]

Edited by L. Kisbocskoi.

Budapest, Akadémiai Kiado, 1965, p. 303-312.

The service life of antifriction bearings is represented by the Weibull distribution law. Neither parameter of the distribution law is constant, but is to be calculated from test results. This discussion has introduced a method for computing the parameters of the distribution law, and deducted the density function of the Weibull distribution law which gives information about the frequency of the service life values varying within a wide range. (Author)

A66-16608

A66-16608 ∓

EFFECT OF ALUMINUM ADDITIONS ON THE CORROSION RESIS-TANCE OF TITANIUM IN SOLUTIONS OF ACETIC AND NITRIC ACIDS [VLIIANIE LEGIROVANIIA ALIUMINIEM NA KORROZION-NUIU STOIKOST' TITANA V RASTVORAKH UKSUSNOI I AZOTNOI KISLOT].

G. M. Kirkin and N. P. Zhuk.

Zashchita Metallov, vol. 1, Nov. -Dec. 1965, p. 648-651. 6 refs. In Russian.

Investigation of the corrosion resistance of titanium and its alloys with 0.1, 0.3, 0.6, 1.0, 3.0, and 5.0% Al in 5 to 80% acetic acid and 5 to 56% nitric acid at temperatures from 25 to 80°C. The high corrosion resistance of the samples, the high positive values of the stationary electrode potentials, and the absence of an active region on the anodic polarization curve indicate the passive state characteristic of these alloys under the experimental conditions. Aluminum additions are found to slightly reduce the corrosion resis-

A66-16690

THE EFFECT OF HEAT TREATMENT ON THE PROPERTIES OF POROUS STAINLESS STEEL.

S. M. Solonin and L. V. Globa (Akademiia Nauk Ukrainskoi SSR, Institut Problem Materialovedeniia, Kiev, Ukrainian SSR). (Poroshkovaia Metallurgiia, Jan. 1965, p. 13-19.) Soviet Powder Metallurgy and Metal Ceramics, Jan. 1965, p. 9-13.

7 refs. Translation.

Study concerning experiments which show that the structural factor exerts a marked influence on the properties of porous stainless steel. It is noted that accelerated cooling of ferritic-martensitic steel, KhI7N2, and ferritic steel, Kh30, after sintering, combined with additional heat treatment, produces a substantial increase of strength and corrosion resistance compared with the industrial heat treatment process employed for these steels (slow cooling with the muffle after sintering). Accelerated cooling of these steels from the sintering temperature also markedly increases their

strength and corrosion resistance. It has been established that, unlike cast stainless steels, which soften after homogenizing, porous sintered austenitic steels, 0Kh18N9 and Kh23N18, show a significant strength increase after such heat treatment. It is pointed out that accelerated cooling from the sintering temperature substantially increases the strength and corrosion resistance of austenitic steels, 0Khl8N9 and Kh23Nl8, compared with slow cooling with the muffle after sintering.

A66-16801

STRESS CORROSION CRACKING OF MARAGING STEEL. R. B. Setterlund (Bechtel Corp., Refinery and Chemical Div., San Francisco, Calif.).

(National Association of Corrosion Engineers, Annual Conference, 20th, Chicago, Ill., Mar. 9-13, 1964, Paper.)

Materials Protection, vol. 4, Dec. 1965, p. 27-29; Discussion, E. H. Phelps (U.S. Steel Corp., Applied Research Laboratory, Monroeville, Pa.), J. F. Mason (International Nickel Co., New York, N.Y.), J. R. Daesen, and P. D. Hedgecock, p. 29; Author's Reply, p. 29. Contract No. DA-04-495-ORD-3069.

Comparison of the fracture toughness and stress corrosion resistance of several heats of maraging steel with results for lowalloy and hot-work die steel. Environmental stress corrosion tests were conducted in distilled, tap, salt, and inhibited water solutions as well as in trichloroethylene, preservative oil, and natural seacoast and laboratory atmospheres. It is concluded that the 18%nickel grades of maraging steel possess high strength and toughness coupled with ease of welding and heat treatment. These properties make possible the construction of large-diameter rocket chambers of extremely high strength-to-weight ratios. It is noted, however, that despite its high toughness, maraging steel will fail in a brittle manner when stressed and exposed to corrosive aqueous solutions, such as distilled water, tap water, or salt water, M. M.

FUNGAL AND CORROSION RESISTANCE OF SEVERAL INTEGRAL TANK LINING MATERIALS.

G. F. Hazzard and E. C. Kuster (Department of Supply, Defence Standards Laboratories, Maribyrnong, Victoria, Australia). (Royal Aeronautical Society, Lecture, Melbourne, Australia, July 18, 1963.)

Royal Aeronautical Society, Journal, vol. 69. Dec. 1965, p. 869-875. 6 refs.

Experimental investigation of the fungus and corrosion resistance of various coatings for integral aircraft fuel tanks. Some of the conclusions drawn from the results of laboratory tests of basic film properties are: (1) both the polyurethane and the epoxy materials are markedly superior in resisting fungi to either the nitrile or polysulfide rubber materials; (2) incorporation of fungicides in nitrile rubber films does not appear to confer adequate resistance to fungus penetration; (3) the polyurethane films show very low moisture retention values and greater resistance to the passage of water through them than do the nitrile or polysulfide rubber films; and (4) the two-part polyurcthane films tested showed rapid breakdown in resistivity, and permitted visible corrosion in a very short time in immersion tests in which nitrile rubber provided protection, in the absence of fungus contamination, for over 200

A66.18284

FLUORIDE SOLID LUBRICANTS FOR EXTREME TEMPERATURES AND CORROSIVE ENVIRONMENTS.

Harold E. Sliney, Thomas N. Strom, and Gordon P. Allen (NASA, Lewis Research Center, Cleveland, Ohio).

(American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 5C5.) ASLE Transactions, vol. 8, Oct. 1965, p. 307-318; Discussion, C. D. Stuber (USAF, Wright Patterson Air Development Center, Dayton, Ohio), J. A. Nelson (Illinois, University, Dept. of Ceramic Engineering, Urbana, Ill.), and E. S. Bober (Westinghouse Electric Corp., Research Laboratories, Pittsburgh, Pa.), p. 319-321; Authors' Closure, p. 321, 322, 11 refs.

[For abstract see issue 14, page 2034, Accession no. A65-24249]

ON THE DETERMINATION OF FRICTION FORCES IN TURBULENT LUBRICATION.

V. N. Constantinescu (Rumanian Academy, Institute of Applied Mechanics, Hydrodynamic Lubrication Laboratory; Bucharest Polytechnic Institute, Bucharest, Rumania) and S. Galetuse (Bucharest, Polytechnic Institut, Bucharest, Rumania). (American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 3Al.) ASLE Transactions, vol. 8, Oct. 1965, p. 367-378; Discussion, Edward Saibel (Rensselaer Polytechnic Institute, Troy, N.Y.) and C. H. T. Pan (Mechanical Technology, Inc., Latham, N.Y.), p. 378, 379; Authors' Closure, p. 379, 380. 27 refs. [For abstract see issue 14, page 2034, Accession no. A65-24252]

A REFINED SOLUTION TO THE THERMAL-ELASTOHYDRODY-NAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS. H. S. Cheng (Mechanical Technology, Inc., Latham, N.Y.). (American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 4A2.)
ASLE Transactions, vol. 8, Oct. 1965, p. 397-407; Discussion,
J. C. Bell and J. W. Kannel (Battelle Memorial Institute, Columbus, Ohio), p. 407-409; Author's Closure, p. 409, 410. 21 refs. Navy-supported research. [For abstract see issue 14, page 2035; Accession no. A65-24256]

A66-18292

LUBRICANT FILM THICKNESS AND WEAR IN ROLLING POINT CONTACT.

T. E. Tallian, J. I. McCool (SKF Industries, Inc., Engineering and Research Center, Research Laboratory, King of Prussia, Pa.), E. F. Brady (Pennsylvania Military College, Chester, Pa.), and L. B. Sibley (SKF Industries, Inc., Engineering and Research Center, Mechanical Test Section, King of Prussia, Pa.). (American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 4A4.)

ASLE Transactions, vol. 8, Oct. 1965, p. 411-424, 14 refs. Contract No. NOw-61-0716-C.

[For abstract see issue 14, page 2034, Accession no. A65-24250]

A66-18519

COMPLEX IONS AND STRESS-CORROSION CRACKING IN α -BRASS.

E. N. Pugh and A. R.C. Westwood (Martin Marietta Corp., Martin Co., Research Institute for Advanced Studies, Baltimore, Md.). Philosophical Magazine, 8th Series, vol. 13, Jan. 1966, p. 167-183. 18 refs.

Army-supported research.

A study has been made of the stress-corrosion cracking, rate of weight loss and surface condition of an alloy containing 70% copper and 30% zinc in 15N aqueous ammonia. The behavior is shown to be strongly dependent on the concentration of the cupric complex ion Cu(NH₃)₅²⁺ present in the environment. Stress-corrosion life decreased significantly with increasing complex-ion concentration, the relationship exhibiting a well-defined inflection at a critical concentration. Specimens immersed in solutions of concentrations exceeding the critical value were tarnished, while those exposed to less concentrated solutions appeared tarnish-free. These and other observations indicate that two mechanisms of stress corrosion cracking are operative, one in the presence of tarnish and the other in the absence of this layer. Possible mechanisms are discussed. A model has been developed to explain the dependence of the tarnishing reaction on the chemical composition of the environment.

A66-18761

THE ROLE OF DISLOCATIONS IN THE STRESS-CORROSION CRACKING OF 7075 ALUMINUM ALLOY.

A. J. Jacobs (North American Aviation, Inc., Rocketdyne Div., Materials Research Dept., Canoga Park, Calif.). ASM Transactions Quarterly, vol. 58, Dec. 1965, p. 579-600. 8 refs.

NASA-supported research.

Dislocation structures in the 7075 forging alloy were studied by transmission electron microscopy and related to stress-corrosion cracking. It was possible to differentiate between a microstructure that is susceptible to stress-corrosion failure (T6) and one that is immune (T73). Various microstructures in 7075 alloy were correlated with their respective tendencies to stress-corrosion crack. The stress-corrosion prone structures contain networks of dislocations. Such networks are absent in the resistant condition. Because pitting proceeds identically in the T6 and the T73, viz., by the dissolution of large MgZn2 precipitate particles in the grain boundaries and grains, it is concluded that the critical role of the dislocations is to assist in the nucleation of cracks of appropriate geometry for propagation. A model is hypothesized to explain the course of stresscorrosion cracking in 7075-T6 and perhaps in other precipitation hardenable alloys as well. (Author)

A66-18838

SPARK IGNITER FOR HIGH-TEMPERATURE APPLICATIONS. Harold W. Wilson, Jr. (Union Carbide Corp., Research Institute, Tarrytown, N. Y.).

Journal of Spacecraft and Rockets, vol. 3, Jan. 1966, p. 160.

Account of the construction and testing of a new spark igniter that resists corrosive high-temperature environments. Unlike conventional spark plugs, this new spark igniter has operated successfully for more than 5 hr in $\rm H_2$ -CO- $\rm N_2$ -O₂ fuel-rich and fuellean flames, at 50 to 120 psig chamber pressure and 2300 to 3000 K, without observable evidence of thermal shock or appreciable eigetrode erosion. M. F.

A66-19601

STRESS-CORROSION FAILURE.

Peter R. Swann (United States Steel Corp., Edgar C. Bain Laboratory for Fundamental Research, Monroeville, Pa.).

Scientific American, vol. 214, Feb. 1966, p. 72-81.

Examination of the phenomena related to stress-corrosion effects in metals. Surface energy and elastic energy are explained in terms of the relative energies possessed by surface atoms and atoms at the tip of a crack which have been displaced from their normal position by stress. Adsorption phenomena are discussed as an explanation for the fact that fractures can occur under very small stresses; the adsorbed ions lower the binding energy between surface atoms so that crack propagation can occur. The alternative pit and tunnel theory for explaining stress-corrosion is described. Transgranular fractures have been investigated by transmission electron microscopy. A method for directly observing the

chemical activity of slip steps is described. The mechanism by which a corrosion tunnel forms at an active slip step is investigated.

A66-19714

REPORT OF SUBCOMMITTEE VIII ON FIVE-YEAR ATMOSPHERIC EXPOSURES OF MAGNESIUM PANEL-TYPE GALVANIC COUPLES. IN: AMERICAN SOCIETY FOR TESTING AND MATERIALS, ANNUAL MEETING, 68TH, PURDUE UNIVERSITY, LAFAYETTE, IND., JUNE 13-18, 1965, PROCEEDINGS. VOLUME 65. [A66-19713 08-17] Philadelphia, American Society for Testing and Materials, 1965, p. 172-181. 7 refs.

Discussion of a phase of a program to evaluate the galvanic corrosion caused by various dissimilar metals when coupled to magnesium alloys and exposed to different atmospheric conditions. The concern is with panel-type couples in which the galvanic effect of dissimilar metals could be evaluated through loss in tensile strength of the base panel when compared with similar uncoupled control panels exposed alongside of the coupled panels. The data presented were obtained on the third set of magnesium panel-type galvanic couples which were removed after five years' exposure at four different locations.

M. M.

A66-19953

THE SUPER 12% Cr STEELS.
J. Z. Briggs and T. D. Parker.

New York, Climax Molybdenum Co., 1965. 220 p.

A comprehensive literature survey of the Super 12% Cr family of steels, which find application in gas turbines and the aerospace industries, is offered. The effects of alloying elements are discussed, and various aspects of physical and mechanical properties of these steels are examined. A chapter is devoted to applications, and another to commercially produced grades and specifications. These steels can be heat-treated in large sections to tensile strengths over 200 ksi. Usable hot strengths at temperatures up to about 1200°F exceed those of other nonaustenitic steels, and compare favorably with those of austenitic steels in some ranges. Thermal stability is excellent. The steels have high hot ductility and resist embrittlement under stress. A damping capacity greater than that of austenitic steel, approaching that of the parent 12% Cr steel, is exhibited. The steels resist thermal shock and thermal fatigue, and have good corrosion resistance. They resist the effects of high-pressure hydrogen and stress-corrosion cracking, and are available in all forms. Processing and fabrication does not entail undue difficulties. An appendix contains over 1100 references classified according to subject.

A66-20156

LUBRICANTS FOR HIGH PERFORMANCE TURBINE ENGINES.
Kenneth L. McHugh (Monsanto Chemical Co., St. Louis, Mo.).
Society of Automotive Engineers, Automotive Engineering Congress,
Detroit, Mich., Jan. 10-14, 1966, Paper 660071. 12 p. 22 refs.
Members, \$0.75; nonmembers, \$1.00.

Description of the present status of aircraft turbine lubricant technology for high Mach number engines in general and SST's in particular. Performance capability criteria for aircraft lubricants are discussed in terms of stability, which includes autoignition temperature, degradation, coking, load carrying capacity, and toxicity characteristics. The advantages and disadvantages of the four basic types of lubricants are described. Graphs are given for the torque requirements in a gear box as a function of temperature and lubricant costs as a function of consumption and 0.1 drain frequency.

D.P.F.

A66-20157

LUBRICANT REQUIREMENTS FOR HIGH TEMPERATURE BEARINGS.

Richard P. Shevchenko (United Aircraft Corp., Pratt and Whitney Aircraft Div., East Hartford, Conn.).

Society of Automotive Engineers, Automotive Engineering Congress, Detroit, Mich., Jan. 10-14, 1966, Paper 660072. 15 p. Members, \$0.75; nonmembers, \$1.00.

Desirable lubricant properties for high-temperature bearings are discussed from the bearing application engineering standpoint. This discussion is preceded by a short description of a jet engine lubrication system. The need for more realistic overall engine

A66-20158

lubrication-system lubricant screening tests is stressed. Recommendations are made for incorporation of a thrust bearing rolling contact fatigue tester, an engine simulator, and more exhaustive engine evaluation in lubricant specifications. The case history of the compromises and their justification in the selection of a highly successful five-ring polyphenyl ether fluid (PWA 524 or Skylube 600) for 500°F oil-in supersonic engine applications is presented.

(Author)

A66-20158

FACTORS INFLUENCING AIRCRAFT TURBINE ENGINE OIL DRAIN PRACTICES

Donald W. Bedell (Humble Oil and Refining Co., Houston, Tex.). Society of Automotive Engineers, Automotive Engineering Congress, Detroit, Mich., Jan. 10-14, 1966, Paper 660073. 6 p. Members, \$0.75, nonmembers, \$1.00.

Consideration of optimum oil drain time in turbine engine operation. Engine design factors such as heat shielding to minimize hot spots, air flow, and the materials used in engine construction are discussed. Flow restrictions should be reduced to a minimum and a maximum drain time should be established to safeguard the engine. A fleetwide monitoring system is essential for adequate engine control and the detection of mechanically marginal engines. The nature of lubricant degradation is described in terms of sludging, increase in viscosity, increase in acidity, increase in corrosivity, and carbonaceous and varnish deposits.

A66-20159

MEANS OF ASSESSING AVIATION TURBINE LUBRICANT QUALITY. A. E. Smith, G. Cantini, and R. J. De Chard (Socony Mobil Oil Co., Inc., Aviation Dept., New York, N.Y.). Society of Automotive Engineers, Automotive Engineering Congress,

Detroit, Mich., Jan. 10-14, 1966, Paper 660074. 10 p. Members, \$0.75; nonmembers, \$1.00.

Review of some general methods in use for measuring turbine lubricant quality. The specification approach in determining lubricant quality is based on product approval against specific requirements issued by engine manufacturers. Inasmuch as overall performance has not been established this method alone is incomplete, The equipment strip approach is based on inspection reports of the internal condition of an engine; quality is here assessed on a performance basis. Measuring lubricant quality on the basis of recorded documentation covering various aspects of overall performance which include maintenance and operational factors is the most effective criterion. This criterion is not a fixed and rigid concept as demands on lubricant quality change with operating conditions.

D. P. F.

A66-20433

DEVICE FOR TAKING LONG-TIME CORROSION FATIGUE CURVES ON SMALL CROSS-SECTION SPECIMENS AT HIGH TEMPERATURES AND PRESSURES.

A. V. Riabchenkov, V. P. Sidorov, and N. F. Pongil'skii (Tsentral'nyi Nauchno-Issledovatel'skii Institut Tekhnologii i Mashinostroeniia, Moscow, USSR).

(Zavodskaia Laboratoriia, vol. 31, Aug. 1965, p. 1019-1020.) Industrial Laboratory, vol. 31, Jan. 1966, p. 1262, 1263. Trans-

Determination of comprehensive quantitative characteristics of the tendency of a metal to corrode under stress, by plotting the curves of the long-time corrosion-fatigue strength. A device for obtaining curves of the long-time corrosion strength on metal specimens in aqueous solutions at elevated temperatures and pressures is described and illustrated, and its operation is explained. It is concluded that for taking a complete curve of the long-time corrosion strength, the activity of the solution in the device must be increased by increasing the concentration of the chloride ions and the oxidation.

A66-20836

CORROSION OF METALS AND ALLOYS [KORROZIIA METALLOV I SPLAVOV).

Edited by N. D. Tomashov and E. N. Miroliubov. Moscow, Izdatel' stvo Metallurgiia, 1965. 378 p. In Russian.

CONTENTS:

EFFECT OF ALLOYING ELEMENTS ON THE ANODIC CORROSION AND PASSIVATION OF STAINLESS STEELS [VLIIA-NIE LEGIRUIUSHCHIKH ELEMENTOV NA ANODNOE RASTVORE-NIE I PASSIVIROVANIE NERZHAVEIUSHCHIKH STALEI]. G. P. Chernova and N. D. Tomashov, p. 7-13. 9 refs. [See A66-20837 09-171

STUDY OF THE CORROSION RESISTANCE AND ELECTRO-CHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF THE NIOBIUM-TITANIUM SYSTEM [ISSLEDOVANIE KORROZIONNOI STOIKOSTI, ELEKTROKHIMICHESKIKH I MEKHANICHESKIKH SVOISTV SPLAVOV SISTEMY NIOBII-TITAN]. A. I. Glukhova, V. V. Andreeva, S. G. Glazunov, O. P. Solonina, and V. F. Nikulova, p. 29-42. 8 refs. [See A66-20838 09-17]

STUDY OF THE CORROSION RESISTANCE AND ELECTRO-CHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF THE TITANIUM-NIOBIUM SYSTEM [ISSLEDOVANIE KORROZION-NOI STOIKOSTI, ELEKTROKHIMICHESKIKH I MEKHANICHESKIKH SVOISTV SPLAVOV SISTEMY TITAN-NIOBII]. V. V. Andreeva, V. I. Kazarin, E. L. Alekseeva, S. G. Glazunov, O. P. Solonina,

and V. F. Nikulova, p. 43-58. [See A66-20839 09-17] ELECTROCHEMICAL AND CORROSION BEHAVIOR OF ALUMINUM-BASED BINARY ALLOYS AND INTERMETALLIC COMPOUNDS [ELEKTROKHIMICHESKOE I KORROZIONNOE POVEDENIE DVOINYKH SPLAVOV I INTERMETALLICHESKIKH SOEDINENII NA OSNOVE ALIUMINIIA]. A. I. Golubev and M. N. Ronzhin, p. 59-79. 33 refs. [See A66-20840 09-17]

STUDY OF THE ELECTROCHEMICAL BEHAVIOR OF TITA-NIUM [ISSLEDOVANIE ELEKTROKHIMICHESKOGO POVEDENIIA TITANA]. N. D. Tomashov, V. N. Modestova, L. A. Plavich, and A. B. Averbukh, p. 80-102. 21 refs. [See A66-20841 09-17]

A66-20837

EFFECT OF ALLOYING ELEMENTS ON THE ANODIC CORROSION AND PASSIVATION OF STAINLESS STEELS [VLIIANIE LEGIRU-IUSHCHIKH ELEMENTOV NA ANODNOE RASTVORENIE I PASSI-VIROVANIE NERZHAVEIUSHCHIKH STALEI].

G. P. Chernova and N. D. Tomashov.

IN: CORROSION OF METALS AND ALLOYS [KORROZIIA ME-TALLOV I SPLAVOV].

Edited by N. D. Tomashov and E. N. Miroliubov. Moscow, Izdatel'stvo Metallurgiia, 1965, p. 7-13. 9 refs. In Russian.

Results of a study of the corrosion and electrochemical properties of stainless steel with 25% of Cr and 0.5, 1.0, 2.0, and $3.0\,$ wt% of Ni, Mo, or Re, treated with 1.0 N H2SO4 for 120 hr at 25, 50, or 75°C. It is found (1) that Ni, Mo, and especially Re additions of 0.5 to 3 wt% sharply reduce corrosion of this steel, (2) that $N_{\rm I}$, Mo, and Re stimulate passivation - reducing the passivation current by a factor of 6 to 12, and (3) that Ni and Mo slow down anodic corrosion and have virtually no effect on hydrogen cathodic depolarization while Re stimulates both the anodic corrosion and the cathodic depolarization.

A66-20838

STUDY OF THE CORROSION RESISTANCE AND ELECTROCHEMI-CAL AND MECHANICAL PROPERTIES OF ALLOYS OF THE NIO-BIUM-TITANIUM SYSTEM [ISSLEDOVANIE KORROZIONNOI STOI-KOSTT, ELEKTROKHIMICHESKIKH I MEKHANICHESKIKH SVOISTV SPLAVOV SISTEMY NIOBII-TITAN].

A. I. Glukhova, V. V. Andreeva, S. G. Glazunov, O. P. Solonina, and V. F. Nikulova.

IN: CORROSION OF METALS AND ALLOYS [KORROZIIA ME-TALLOV I SPLAVOV].

Edited by N. D. Tomashov and E. N. Miroliubov.

Moscow, Izdatel' stvo Metallurgiia, 1965, p. 29-42. 8 rets. In

Investigation of the corrosion resistance and electrochemical and mechanical properties of Nb(60 to 100%)-Ti(0 to 40%) alloys treated with 10, 40, 60, 75, and 94% H2SO4 at 40 and 100°C, with 88% (at 40°C) and 60, 75, and 88% H₃PO₄ at 100°C, with 5 to 30% hydrochloric acid at 40 and 100°C, with 57 and 98% HNO₃ at 100°C, and with 25% oxalic acid at 100°C. Maximum corrosion was established when the potential of the acid media is -100 mv. The high corrosion resistance observed at 40°C in alloys with up to 40% of Ti is found to decrease with temperature.

A66-20839

STUDY OF THE CORROSION RESISTANCE AND ELECTROCHEMI-CAL AND MECHANICAL PROPERTIES OF ALLOYS OF THE TITA-NIUM-NIOBIUM SYSTEM [ISSLEDOVANIE KORROZIONNOI STOI-KOSTI, ELEKTROKHIMICHESKIKH I MEKHANICHESKIKH SVOISTV SPLAVOV SISTEMY TITAN-NIOBII].

V. V. Andreeva, V. I. Kazarin, E. L. Alekseeva, S. G. Glazunov, O. P. Solonina, and V. F. Nikulova.

IN: CORROSION OF METALS AND ALLOYS [KORROZIIA ME-TALLOV I SPLAVOV].

Edited by N. D. Tomashov and E. N. Miroliubov.

Moscow, Izdatel stvo Metallurgiia, 1965, p. 43-58. In Russian.

Investigation of the microstructure and mechanical and electrochemical properties of Ti(50 to 98%)-Nb(50 to 2%) alloys and their corrosion resistance in H_2SO_4 , H_3PO_4 , HNO_3 , hydrochloric acid and oxalic acid. It is found that Nb additions (1) substantially increase the strength and hardness of titanium and its corrosion resistance in solutions of nonoxidizing acids, and (2) do not affect the high corrosion resistance of titanium in oxidizing solutions, such as 57% HNO $_3$ or mixtures of HNO $_3$ with hydrochloric acid in proportions 1 to 1 or 2 to 1 at 100°C.

A66-20840

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF ALUMINUM-BASED BINARY ALLOYS AND INTERMETALLIC COMPOUNDS [ELEKTROKHIMICHESKOE I KORROZIONNOE POVEDENIE DVOI-NYKH SPLAVOV I INTERMETALLICHESKIKH SOEDINENII NA OSNOVE ALIUMINIIA].

A. I. Golubev and M. N. Ronzhin.

IN: CORROSION OF METALS AND ALLOYS [KORROZIIA ME-TALLOV I SPLAVOV].

Edited by N. D. Tomashov and E. N. Miroliubov. Moscow, Izdateli stvo Metallurgiia, 1965, p. 59-79. 33 refs. In

Results of a study of the electrochemical properties and corrosion of Al-based Fe, Ni, Ti, Cu, and Sb binary alloys. Electrolytic dissolution of intermetallic compounds present in these alloys (FeAl3, NiAl3, CuAl2, TiAl3, AlSb, and Mg2Al3) is investigated. The maximum potential gradient between two components of these alloys is given as 1 to 15 mv in a 0.1 N solution of NaOH. For alkaline and neutral media, potential/current diagrams of these alloys are constructed from the polarization curves of their components. The diagrams show a good coincidence of calculated and experimental potentials. Factors determining the anodic behavior of these intermetallic compounds in alkaline media at various potential levels are identified.

A66-20841

STUDY OF THE ELECTROCHEMICAL BEHAVIOR OF TITANIUM [ISSLEDOVANIE ELEKTROKHIMICHESKOGO POVEDENIIA TITANA]. N. D. Tomashov, V. N. Modestova, L. A. Plavich, and A. B.

IN: CORROSION OF METALS AND ALLOYS [KORROZIIA METAL-LOV I SPLAVOV].

Edited by N. D. Tomashov and E. N. Miroliubov.

Moscow, Izdatel stvo Metallurgiia, 1965, p. 80-102. 21 refs. In Russian.

Investigation of the effect of a surface hydride film produced by corrosion on the electrolytic corrosion and oxidation of titanium. The hydride-oxide nature of titanium passivation in acid solutions, with hydrogen depolarization taking place during corrosion, is established. The passivation is believed to promote titanium stability against acid agents. The hydride surface film is found to depress anodic corrosion of titanium, v. z.

A66-21747

STUDY OF THE CORROSION PROPERTIES OF YTTRIUM. I -EFFECT OF pH ON THE ELECTROCHEMICAL AND CORROSION BEHAVIOR OF YTTRIUM [ISSLEDOVANIE KORROZIONNYKH SVOISTV ITTRIIA. I - VLIIANIE PH NA KORROZIONNOE I ELEKTROKHIMICHESKOE POVEDENIE ITTRIIA]. R. M. Al'tovskii, A. G. Fedotova, and S. I. Korolev. Zashchita Metallov, vol. 2, Jan. - Feb. 1966, p. 52-56. 8 refs.

Investigation of the electrode potential and corrosion of yttrium at pH from 2 to 13 in solutions of NaCl(NaNO3) + HCl(HNO3) and NaCl(NaNO3) + NaOH. It is found that the corrosion resistance of yttrium is higher at higher pH, because of a slower anodic process, and decreases in the presence of NO₃ ions and especially in the presence of Cl ions. At 25°C, corrosion of yttrium is accompanied by both hydrogen polarization and oxygen polarization at pH ≤ 10 , and by oxygen polarization

A66-21748

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF RHENIUM [KORROZIONNOE I ELEKTROKHIMICHESKOE POVEDENIE RENIIA]. N.D. Tomashov and T. V. Matveeva (Akademiia Nauk SSSR, Institut Fizicheskoi Khimii, Moscow, USSR). Zashchita Metallov, vol. 2, Jan.-Feb. 1966, p. 57-62. 7 refs.

Study of the corrosion behavior of rhenium in H_2SO_4 , HCl, H_3PO_4 , HNO_3 , NaCl, KOH, H_2O_2 , and distilled water at 25 and 10^{10} C. The corrosion rate is found to be negligible at 25°C and very low at 100°C in H2SO4, H3PO4, and HCl. In distilled water in the presence of air, corrosion is negligible at 20°C but increases at 100°C to a rate of 0.05 g/m-hr, approaching its rate in NaCl solutions. Alkali hydroxides have a greater corroding effect and the greatest effect have the oxidizing agents HNO₃ and H₂O₂. Rhenium corrosion by all these agents is of an electrochemical nature and is determined only by the kinetics of the anodic and cathodic processes involved.

A66-22040

DEVELOPMENTS IN HIGH-TEMPERATURE ULTRAHIGH-VACUUM FRICTION STUDIES.

L. G. Kellogg (North American Aviation, Inc., Atomics International Div., Canoga Park, Calif.).

(American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65AM 6Al.)
Lubrication Engineering, vol. 22, Feb. 1966, p, 57-66. 13 refs.
[For abstract see issue 14, page 2033, Accession no. A65-24242]

DIRECT EVIDENCE FOR THE CATHODIC DEPOLARIZATION THEORY OF BACTERIAL CORROSION.

Warren P. Iverson (U.S. Army, Biological Laboratories, Fort Detrick, Md.).

Science, vol. 151, Feb. 25, 1966, p. 986-988. 7 refs.

Cathodic depolarization of mild steel by Desulfovibrio desulfuricans was demonstrated with benzyl viologen used as an electron acceptor. Direct measurement of the cathodic depolarization current indicated a maximum current density of $1 \mu a/cm^2$. Aluminum alloys were also cathodically depolarized by the organism.

A66-22470

NONLINEAR BENDING OF A STRESS CORROSION SPECIMEN. Paul E. Wilson and Edward E. Spier (General Dynamics Corp., General Dynamics/Astronautics, Structures Research Group, San Diego, Calif.).

(American Society of Mechanical Engineers, Aviation and Space Conference, Los Angeles, Calif., Mar. 14-18, 1965, Paper 65 - Av-3.)

ASME, Transactions, Series B - Journal of Engineering for Industry, vol. 88, Feb. 1966, p. 31-36. 10 refs. [For abstract see issue 13, page 1957, Accession no. A65-23464]

A66-22747

EFFECT OF MOLYBDENUM AND TUNGSTEN ON THE PROPER-TIES OF Kh25N16G7AR STEEL [VLIIANIE MOLIBDENA I VOL! -FRAMA NA SVOISTVA STALI Kh25N16G7AR].

A. P. Boiarinova, T. S. Savel'eva, and A. N. Dubrovina (Zavod "Elektrostal', " USSR).

Metallovedenie i Termicheskaia Obrabotka Metallov, Jan. 1966,

p. 17-19. In Russian.

Investigation of the possibility of improvement of the strength and corrosion resistance of Kh25Nl6G7AR chromium steel by adding Mo and W. Mo additions are found to improve short-time strength

and the anticorrosion properties of this steel, and W additions increase markedly its endurance limit. Adding of 2.5% Mo and 4% W increases, however, the solubility limit of these elements in the steel, leading to the formation of intermetallide phases which results in brittleness at 700 to 1000°C.

A66-22951

REARINGS.

Convair Traveler, vol. 17, Jan.-Feb. 1966, p. 3-15.

Survey of the operation, maintenance, and installation of plain (friction) bearings and various types of antifriction bearings. The main characteristics of these different types of bearings are described, and fit tolerances for all types of plain bearings and bushings are given in a table. Some of the most common bearing problems and their causes are listed as a guide to maintenance personnel, Measures to be taken in installing and removing bearings are outlined, and methods of lubricating bearings are discussed.

A66-23014

CORROSION.

Field Service Digest, Dec. 1965, p. 3-35.

Discussion of the underlying principles of corrosion phenomena, their mode of occurrence, and measures for controlling them. It is noted that consideration of corrosion-prone areas, corrosion detection, and corrosion removal can provide a basis for establishing intelligent procedures to solve individual corrosion problems that arise in service.

A66-23071.

HYDROGEN PERMEATION IN METALS AS A FUNCTION OF STRESS, TEMPERATURE AND DISSOLVED HYDROGEN CONCEN-

W. Beck, J. O'M. Bockris, J. McBreen, and L. Nanis (Pennsylvania, University, Electrochemistry Laboratory, Philadelphia, Pa.). Royal Society (London), Proceedings, Series A, vol. 290, Feb. 22, 1966, p. 220-235. 36 refs.

Navy-supported research. An investigation of the diffusion of electrolytic hydrogen through membranes of (1) polycrystalline Armco iron, (2) single crystal Armco iron, (3) zone refined iron, and (4) A. I. S. I. 4340 has been made. The temperature and stress dependence of the permeation rate through the first and last of these metals was investigated, while the first three have been investigated under varying concentrations of hydrogen in the metal. From the results concerning Armco iron polycrystals and single crystals, and zone-refined iron it has been concluded that trace impurities and grain boundaries have negligible effects on the hydrogen permeation rate. Stress has been shown not to affect D, but it increases the solubility of hydrogen in the lattice. The D_0 and ΔH_p value for α -iron and the stress dependence of the hydrogen solubility indicate that the rate-determining step in diffusion is the formation of a cavity (a dilated octahedral hole) to accommodate the diffusion hydrogen. Maxima observed in the relation of the rate of permeation to time were explained in terms of "blister" formation; the temperature dependence of the critical hydrogen concentration necessary to form these blisters is in concordance with this hypothesis. The nucleation sites for such blisters are aggregates of dislocations. The mechanism proposed to explain the maxima in the permeation transients was used to rationalize the existing discrepancies in diffusion data found in the literature. It is suggested that the crack initiation site for stress corrosion cracking may be a highly localized density of dislocations, on a metal surface, generated by blister formation due to (Author) hydrogen.

A66-23120

STRESS CORROSION OF E-GLASS FIBERS.

G. K. Schmitz and A. G. Metcalfe (International Harvester Co., Solar Div., San Diego, Calif.).

I & EC - Industrial and Engineering Chemistry, Product Research and Development, vol. 5, Mar. 1966, p. 1-8. 13 refs. Contract No. Nonr-3654(00) (X) A2.

Study of stress corrosion on glass exposed to water vapor. This corrosion has long been assumed to occur on existing surface defects by a continuous process. The present work on glass filaments has shown that incubation and flaw growth by corrosion constitute the two stages preceding fracture. In the incubation

period, water reacts with cations in the glass leading to hydrolysis and increased concentration of hydroxyl ions. The incubation period continues until this concentration reaches the level necessary for corrosion to occur; this stage occupies most of the life of the fiber. Subsequent corrosion of the surrounding silica network takes place until the critical size flaw has formed, when fracture ensues. Stress corrosion was studied on E-glass fibers under constant load in both 50 and 100% relative humidity. Contrary to earlier assumptions, the growth rate of flaws was not controlled by a single exponent governing the growth equation. Stress corrosion occurs during typical tensile tests, and results of such tests were correlated M.F. with stress corrosion data.

SYNERGISTIC ANTIOXIDANTS FOR SYNTHETIC LUBRICANTS. T. G. Davis and J. W. Thompson (Eastman Kodak Co., Tennessee Eastman Co., Research Laboratories, Kingsport,

(American Chemical Society, Division of Petroleum Chemistry, Meeting, 149th, Detroit, Mich., Apr. 1965, Paper.)

I & EC - Industrial and Engineering Chemistry, Product Research and Development, vol. 5, Mar. 1966, p. 76-80, 24 refs.

Laboratory oxidation tests disclosed the high activity of alkali

metal salts of carboxylic acids and substituted phenols as synergists for arylamine antioxidants in ester-type synthetic lubricating oils for advanced jet engines. The results indicated that such oils would remain relatively stable and sludge-free at considerably higher engine temperatures than oils containing previous antioxidant systems. Similar salts of various other metals were inactive. Extensive testing of a representative oil by the Air Force disclosed good correlation between bearing rig and laboratory oxidation tests at 425°F; however, the oil did not perform well in an actual jet engine test. An investigation of possible causes was inconclusive. One possible but unusual explanation was that the oil performed best when large volumes of air were passed through it. Such aeration occurred during the laboratory and rig tests, but not in the engine test. No mechanism for the interaction between the metal salt and the arylamine antioxidant is known as yet. However, several factors which may be responsible (Author) are mentioned.

A66-23647

A NEW STRESS-CORROSION CRACKING TEST FOR HIGH-STRENGTH ALLOYS.

B. F. Brown (U.S. Naval Research Laboratory, Metallurgy Div., Physical Metallurgy Branch, Washington, D.C.). Materials Research and Standards, vol. 6, Mar. 1966, p. 129-133; Discussion, S. T. Rolfe (United States Steel Corp., Applied Research Laboratory, Monroeville, Pa.) and H. S. Reemsnyder (Bethlehem Steel Co., Homer Research Laboratories, Bethlehem, Pa.), p. 133. 8 refs.

Navy-supported research.

A stress-corrosion cracking test which employs a precracked bar stressed in bending as a cantilever beam is described. One end of the bar is attached to a rigid mast; weights are placed in a pail suspended from an arm attached to the other end of the specimen. The corrodent is contained in a polyurethane cell which surrounds the central cracked portion of the bar. Propagation of the stresscorrosion crack is detected by a standard dial gage. The crack is first provided by machining and is "sharpened" by fatiguing in a machine lathe. Tests conducted on specimens of a martensitic steel and a titanium alloy indicate that, if the other necessary conditions are met, stress-corrosion cracking can be expected to occur if a minimum value of stress KISCC is exceeded. That titanium alloys do not pit under aqueous conditions at room temperature may be responsible for previous reports that titanium alloys are immune to stress-corrosion cracking at room temperature.

SIMULATION OF THE OIL CIRCULATION IN TURBINE ENGINES AND ITS SIGNIFICANCE IN THE PRACTICAL EVALUATION OF AVIATION TURBINE OILS [DIE SIMULIERUNG DES ÖLKREISLAUFS VON TURBINENTRIEBWERKEN UND SEINE BEDEUTUNG FÜR DIE PRAXISNAHE UNTERSUCHUNG VON FLUGTURBINENÖLEN].

G. Spengler and E. K. Jantzen (Deutsche Versuchsanstalt für Luftund Raumfahrt, Institut für Flugtreib- und Schmierstoffe, Munich, West Germany).

Zeitschrift für Flugwissenschaften, vol. 14, Feb. 1966, p. 99-102. In German.

Discussion of the basic conditions under which lubricating oil circulates in aviation turbine engines and examination of the requirements for constructing a model of such oil circuits. A satisfactory model developed by the DVL for representing oil circulation is described. This model includes a bearing simulating device, an apparatus to remove all foam from the oil, an oil reservoir, a cooler, and a heat exchanger for preheating the oil. The experimental results obtained with this simulator are analyzed and it is shown that upon increasing the maximum operating temperature from 150 to 250°C the oil characteristics, such as viscosity, acid number, and electrical conductivity, are changed radically. D.P.F.

A66-23844

EXTENSION OF DRAIN PERIODS IN GAS-TURBINE ENGINES USING IMPROVED SYNTHETIC LUBRICANTS.

H. W. Reynolds, Jr. (United Aircraft Corp., Pratt and Whitney Aircraft Div., East Hartford, Conn.).

(Society of Automotive Engineers, National Aeronautics and Space Engineering and Manufacturing Meeting, Los Angeles, Calif.,

Oct. 4-8, 1965, Paper 650814.) Esso Air World, vol. 18, Jan. - Feb. 1966, p. 91-97.

[For abstract see issue 23, page 3491, Accession no. A65-34699]

A66-23849

EFFECTS OF STRESS WAVE FORMS ON LOW CYCLE CORROSION FATIGUE STRENGTH.

Kichiro Endo and Kenjiro Komai (Kyoto University, Dept. of Mechanical Engineering, Kyoto, Japan).

Kyoto University, Faculty of Engineering, Memoirs, vol. 27, Oct. 1965, p. 415-432, 7 refs.

Study of the effect of trapezoidal stress waveforms on low-cycle corrosion fatigue strength in order to clarify the mechanism of corrosion fatigue. The fatigue tests were carried out with a carbon steel and an aluminum alloy. A 1% NaCl aqueous solution was used as the corrosive environment. In the testing machine, trapezoidal stress waves were formed mechanically, and the stress rate, stressless time, and maximum stress time were variable. F.R.L.

A66-24099

SOLID AND BONDED-FILM LUBRICANTS.

Alfred DiSapio and Harry S. Gerstung (Dow Corning Corp., Midland,

Machine Design, vol. 38, Mar. 10, 1966, p. 8-11.

Discussion of solid and dry-film lubricants. The basic requirements of a boundary lubricant are reviewed. Solid lubricant kinetic coefficients of friction are tabulated. Also tabulated are the principal solid lubricants of industrial importance and their characteristics. These include molybdenum disulfide, graphite powder, and TFE fluorocarbons. The choice of lubricant depends on several factors which are discussed separately: particle size, viscosity or consistency, availability, and compliance with military specifications. The characteristics of dry-film lubricants are discussed and representative bonded lubricant coatings are tabulated. Application conditions which call for solid lubricants are high load, low sliding velocity, wear life, high temperature, high vacuum, radiation, and pressfits. A discussion is included of the cost, method of application and surface preparation of dry films.

A66-24100

POWDER-METAL BEARINGS.

Edward T. Johnson (Chrysler Corp., Amplex Div., Detroit, Mich.). Machine Design, vol. 38, Mar. 10, 1966, p. 40-44.

Discussion of custom powder-metal bearings and the ranges of suitable shapes, sizes, and proportions that are practical for manufacture. The configurations of powder-metal bearings are reviewed. Bearing dimensions discussed include sleeve, flange and thrust bearings, chamfers and densities. The dimensional tolerances for bronze and iron-base powder-metal bearings are tabulated. The design and installation procedure of powder-metal bearings is

outlined. A convenient method of computing limits of bearing ID and clearance is described.

LUBRICATION IN A VACUUM.

Donald H. Buckley (NASA, Lewis Research Center, Space Environment Unit, Cleveland, Ohio) and Robert L. Johnson (NASA, Lewis Research Center, Lubrication Branch, Cleveland, Ohio). Machine Design, vol. 38, Mar. 17, 1966, p. 164-169.

Description of the effects of a vacuum on lubricants and bearing materials. A vacuum differs from a normal atmospheric environment in two important respects: (1) ambient pressure is reduced, and (2) the concentration of oxidizing gases is lower. These differences account for the effects of a vacuum environment on both lubricants and lubricated components. The reduced ambient pressure affects the evaporation rate of the lubricant. Other factors which influence the evaporation of oils are temperature and the relation of the evaporation rate of the lubricant to its molecular weight. The effects of vacuum on the lubricated components are studied. Recommendations are made for lubricant selection and system design. The possible cold welding of metals upon loss of lubricants suggests that mechanical components for such systems should be constructed of metals and alloys having little tendency to

A66-24425

MAGNETOHYDRODYNAMIC THEORY OF THE LUBRICATION OF A CYLINDRICAL BEARING [MAGNITOGIDRODINAMICHESKAIA TEORIIA SMAZKI TSILINDRICHESKOGO PODSHIPNIKA]. I. A. Shvarts.

Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, Jan.-Feb. 1966, p. 9-15. 14 refs. In Russian.

Solution of a plane magnetohydrodynamic problem of the pressure distribution of a viscous electrically conducting fluid in the lubrication layer of a cylindrical bearing. A constant magnetic field is assumed to be directed along the axis of the Bearing with a potential difference being applied between the pivot and the bearing from an external source. Since the radial gap in the bearing is not assumed to be small, the problem is reduced to a two-dimensional system of magnetohydrodynamics equations. An expression is obtained for the additional pressure in the lubrication layer caused by electromagnetic forces. In the special case of a very thin layer a previously obtained result is confirmed.

A66-24550

A THEORY OF LUBRICATION BY MICROIRREGULARITIES. D. B. Hamilton, J. A. Walowit, and C. M. Allen (Battelle Memorial Institute, Columbus, Ohio). (American Society of Lubrication Engineers and American Society

of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Paper 65 - Lub-11.) ASME, Transactions, Series D - Journal of Basic Engineering, vol. 88, Mar. 1966, p. 177-185. 10 refs. [For abstract see issue 04, page 527, Accession no. A6614244]

A66-24900

EFFECT OF HEAT TREATMENT ON THE STRUCTURE AND PROP-ERTIES OF VT1 TITANIUM AND OT4 ALLOY [VLIIANIE TERMICHE-SKOI OBRABOTKI NA STRUKTURU I SVOISTVA TITANA VTI I SPLAVA OT4].

A. P. Akshentseva and G. N. Shumratova.

Metallovedenie i Termicheskaia Obrabotka Metallov, Feb. 1966, p. 51-55. In Russian.

Investigation of the effect of various heat treatments on the structure, hardness, microhardness, and corrosion resistance of 1.5 to 14 mm sheets of VT1 titanium and 1.5 to 5 mm sheets of OT4 titaniummanganese-aluminum industrial alloy. Heating in air noticeably increased the hardness of VTl. The formation of an oxide layer up to 15 μ thick with a 10 μ diffusion sublayer was established in both alloys following 2 hr heating at 750 to 850°C. A hard oxide surface layer is formed on both alloys when they are heated from 950 to 1050°C.

A66-24929

A NEWLY-EQUIPPED TEST RIG FOR GAS-LUBRICATED JOURNAL BEARINGS AND SOME OF ITS TEST RESULTS.

Norimune Soda, Hitoshi Marumo, and Shinobu Saito.

Tokyo, University, Institute of Space and Aeronautical Science, Bulletin, vol. 1, no. 4(B), Dec. 1965, p. 499-509. In Japanese.

Description of the details of a test rig for studying the general performance of a 50 mmé x 100 mm gas-lubricated journal bearing which can be operated at speeds up to 20,000 rpm. Certain problems encountered during the preliminary testing of this facility are also mentioned. By its use, such factors can be measured as frictional torque, pressure distribution in the gas film, and the static and dynamic changes of eccentricity, both in hydrodynamically and hydrostatically lubricated conditions.

B. B.

A66-24986

A NEW SYNTHETIC HYDROCARBON LUBRICANT FOR EXTREME-TEMPERATURE APPLICATIONS.

I. N. Duling, J. Q. Griffith, and R. S. Stearns (Sun Oil Co., Research and Development Div., Marcus Hook, Pa.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-1.)

ASLE Transactions, vol. 9, Jan. 1966, p. 1-10; Discussion, K. R.

ASLE Transactions, vol. 9, Jan. 1966, p. 1-10; Discussion, K. R. Bunting, T. P. Traise (American Oil Co., Whiting, Ind.), and A. Beerbower (Esso Research and Engineering Co., Products Research Div., Linden, N.J.), p. 11; Authors' Closure, p. 11, 12, 32 refs.

[For abstract see issue 02, page 238, Accession no. A66-12259]

A66-24989

METHYL ALKYL SILICONES - A NEW CLASS OF LUBRICANTS. E. D. Brown, Jr. (General Electric Co., Silicone Products Dept., Waterford, N.Y.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-4.)
ASLE Transactions, vol. 9, Jan. 1966, p. 31-35. 7 refs.
[For abstract see issue 02, page 238, Accession no. A66-12261]

A66-24993

STUDY OF CORROSIVITY AND CORRELATION BETWEEN CHEMICAL REACTIVITY AND LOAD-CARRYING CAPACITY OF OILS CONTAINING EXTREME PRESSURE AGENTS.

Toshio Sakurai (Tokyo Institute of Technology, Tokyo, Japan) and Kachio Sato (Nippon Mining Co., Ltd., Central Research Laboratory, Toda-machi, Saitama-ken, Japan).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-11.)

ASLE Transactions, vol. 9, Jan. 1966, p. 77-85; Discussion, P. A. Asseff (Lubrizol Corp., Cleveland, Ohio) and N. E. Gallopoulos (General Motors Corp., Research Laboratories, Warren, Mich.), p. 86, 87; Authors' Closure, p. 87.

[For abstract see issue 02, page 237, Accession no. A66-12254]

A66-24999

DYNAMIC BEHAVIOR OF ROTATING SHAFTS WITH ALLOWANCES FOR THE ELASTICITY OF THE LUBRICATING FILM IN THE BEARINGS - THE UNSYMMETRICAL SHAFT WITH A SINGLE DISK [DAS DYNAMISCHE VERHALTEN VON ROTIERENDEN WELLEN UNTER BERÜCKSICHTIGUNG DER SCHMIERFILMELASTIZITÄT IN DEN LAGERN - DIE UNSYMMETRISCHE, EINFACH BESETZTE WELLE].

Herbert Pfützner.

Forschung im Ingenieurwesen, vol. 32, no. 1, 1966, p. 19-28. 7 refs. In German.

Investigation of the effect of oil cushion resilience in hydrodynamic bearings on the dynamic behavior of an unsymmetrical shaft with one disk - i.e., on a shaft with two bearings, which may be different, and one disk at an arbitrary position. Oil cushion resilience can shift the critical speeds of bending; the anisotropic oil-film elasticity can cause the motion of the shaft to become unstable. The equations of motion are derived and solved for shafts with end bearings. The eigenvalues of the dynamic behavior of a

simple anisotropically supported shaft are developed. A generalized expression is obtained for the stability boundary of shafts supported by bearings at two points.

D.P.F.

A66-25303

COMPRESSION AND FRICTION PROPERTIES OF RIGID POLY-URETHANE FOAMS.

N. Chessin and W. E. Driver (Martin Marietta Corp., Martin Co., Orlando, Fla.).

IN: SOCIETY OF PLASTICS ENGINEERS, ANNUAL TECHNICAL CONFERENCE, 22ND, MONTREAL, CANADA, MARCH 7-10, 1966 TECHNICAL PAPERS. VOLUME 12. [A66-25301 13-18] Conference sponsored by the Quebec Section of the Society of Plastics Engineers.

Stamford, Conn., Society of Plastics Engineers, Inc., 1966. 6 p.

Analysis of sliding friction and compression tests of a series of rigid polyurethane foams. Although the elastic region appeared to vary from 5 to 10% of the initial deflection, the stress-strain curve between 1 and 2% compression formed a very straight line. To develop engineering-type design data, the modulus of the straight line portion of the curve was evaluated as a function of foam density, direction of foam rise, strain rate, and thickness of samples tested. The effects of the presence of molded skins were also examined, and friction tests were conducted with three types of surfaces against painted steel. It is concluded that foams may be selected for structural applications on the basis of their compression moduli, and that the rate of load application up to 177 in./in./min does not seem to affect the materials or change the response to loads.

B.B.

AAA.25367

INFLUENCE OF SURFACE ROUGHNESS ON BOUNDARY FRICTION. Yukio Miyakawa (National Aerospace Laboratory, Tokyo, Japan). (American Society of Lubrication Engineers, Annual Meeting, 20th, Detroit, Mich., May 4-7, 1965, Preprint 65 AM 6AZ.)
Lubrication Engineering, vol. 22, Mar. 1966, p. 109-116. 7 refs.
[For abstract see issue 14, page 2035, Accession no. A65-24258]

A66-25771

SHOT PEENING FOR RESISTANCE TO STRESS-CORROSION CRACKING.

H. W. Zoeller and B. Cohen (USAF, Systems Command, Research and Technology Div., Materials Laboratory, Wright-Patterson AFB, Ohio).

(American Society for Metals, Metals/Materials Congress, Detroit, Mich., Oct. 18-22, 1965, Paper.)

Metals Engineering Quarterly, vol. 6, Feb. 1966, p. 16-20.

The increased emphasis by the Air Force in the area of corrosion prevention and control is discussed. Typical stress-corrosion cracking failures are described. Attention is directed to the importance of extensive use of shot peening to reduce susceptibility to stress-corrosion cracking and to improve fatigue life of landing gears, wing spars, jet engine components, and other structural parts. The more extensive use of ultrahigh-strength alloys in Air Force systems has increased the importance and value of shot peening. (Author)

A66-25779

CURRENT STATUS OF COMPOSITE CASTING AS BONDING TECHNIQUE.

J. H. Beile and C. H. Lund (Martin Marietta Corp., Martin Metals Div., Wheeling, Ill.).

(American Society for Metals, Metals/Materials Congress, Detroit, Mich., Oct. 18-22, 1965, Paper.)

Metals Engineering Quarterly, vol. 6, Feb. 1966, p. 63, 64.

Discussion of composite casting, a method of metallurgical bonding which can be considered as a modification of foundry practice wherein the molten alloy is poured into a casting mold for the purpose of bonding with one or more inserts of similar or dissimilar alloys. Details of the technique are presented. Use of the method permits the designer to take best advantage of the specific merits of each alloy. Some of the advantages are weight reduction and improved corrosion resistance.

F.R.L.

A66-25883

EFFECT OF CORROSIVE AND SURFACE-ACTIVE MEDIA ON THE FATIGUE STRENGTH OF ALUMINUM ALLOYS.

A. V. Karlashov, A. D. Gnatiuk, and V. P. Tokarev (Kievskii Institut Grazhdanskogo Vozdushnogo Flota, Kiev, Ukrainian SSR), (Fiziko-Khimicheskaia Mekhanika Materialov, vol. 1, no. 1, 1965, p. 7-II.)

Soviet Materials Science, vol. 1, Jan. - Feb. 1965, p. 1-4. 5 refs.

Experimental study of the effect of corrosive and surface-active media on the fatigue strength of aluminum alloys D16 and V95, which are widely used in aircraft construction. Fresh water and a 3% solution of NaCl were chosen to simulate sea water. As the surface-active medium, liquid AMG-10 was chosen, which is used in hydraulic systems of aircraft, activated with 2% oleic acid. The metals were tested at 6000 stress reversals per min with a test base of 20 x 10^6 cycles. The smooth, round testpieces were prepared to industrial specifications in accordance with Soviet Standard GOST 2860-45 from bars of D16 and V95 from the same melt. The chemical composition and mechanical properties of the materials tested are tabulated. Analysis of the fatigue tests on the alloys D16 and V95 exposed to corrosive and surface-active media indicates that these media lower the fatigue extrength of the materials in question.

A66-25884

LUBRICATING OIL ADDITIVES AND THEIR FUNCTION IN FRICTION PROCESSES.

B. I. Kostetskii, L. F. Kolesnichenko, Iu. D. Ostrovoi, M. E. Natanson, K. Z. Skarchenkov, and P. K. Topekha (Kievskii Institut Grazhdanskogo Vozdushnogo Flota, Kiev, Ukrainian SSR). (Fiziko-Khimicheskaia Mekhanika Materialov, vol. 1, no. 1, 1965, p. 32-39.)

Soviet Materials Science, vol. 1, Jan. - Feb. 1965, p. 20-25. 13 refs. Translation.

Study of the structural changes that occur in metal surface layers under boundary friction conditions in the presence of surface-active substances. Observations are made of the changes in fine structure characteristics of the surface layers and of the correlation of these changes with the total frictional heat balance, the characteristics of the rubbing surfaces, and certain of the friction parameters. It is shown that a surface-active medium (pure vaseline oil with a 0.2% oleic acid addition) has a marked effect on the degree of plastic deformation and resultant work hardening; it also causes an increase in the dislocation density, reduces the block dimensions, and changes the dislocation structure. Rolling and sliding friction tests led to similar conclusions; showing that the presence of surface active substances gives rise to heavier plastic deformation reflected in higher hardness values and more severe distortion of the metal structure.

A66-25887

STUDY OF DISLOCATION STRUCTURE FOR STATIC AND DYNAMIC FRICTION.

B. I. Kostetskii and P. V. Nazarenko (Kievskii Institut Grazhdanskogo Vozdushnogo Flota, Kiev, Ukrainian SSR).

(Fiziko-Khimicheskaia Mekhanika Materialov, vol. 1, no. 1, 1965, p. 73-77.)

Soviet Materials Science, vol. 1, Jan. - Feb. 1965, p. 49-52. 7 refs. Translation,

Analysis of the mechanism of plastic deformation in crystalline bodies. The static and dynamic frictional forces are investigated in relation to the dislocation structure of the bodies in contact. Static and dynamic friction are studied for the alkali halides NaCl, KCl, KBr, KI, and LiF, and also for zinc crystals. The friction was created on a machine which allowed the normal load and sliding rate to be varied over a wide range. Experiments were made using the friction of a single indentor along the (100) planes of the crystals, and values indicating the variation of static and dynamic friction with normal pressure for LiF and Zn at a rate of 0.0001 m/sec for a single passage of the indentor are plotted.

B. B.

A66-25912 =

EFFECT OF THE ORIENTATION AND CRYSTALLINITY ON FRICTION AND WEAR OF POLYTETRAF LUOROETHYLENE (VLIIANIE ORIENTATSII I KRISTALLICHNOSTI NA TRENIE I IZNOS POLITETRAFTORETILENA).

G. A. Gorokhovskii and I. I. Agulov (Kievskii Institut Grazhdanskoi Aviatsii, Kiev, Ukrainian SSR).

Mekhanika Polimerov, no. 1, 1966, p. 87-92. 8 refs. In Russian.

Experimental study of the effect of the crystalline state and structural orientation of the polymer on the endurance of couplings with polytetrafluoroethylene (PTFE) components. Dry friction and wear on metal-polymer interfaces are investigated for polymer components made of materials crystallized to 33, 40, 60, 71, 88, and 95%. The phase composition of a polymer is found to be a major factor of wear. The existence of an optimum crystallinity level is established; this level varies with the character of friction and load.

A66-26026

THE MECHANISM OF CORROSION OF MAGNESIUM-ZINC ALLOYS. I. K. Marshakov, Ia. A. Ugai, and V. I. Vigdorovich (Voronezhskii Gosudarstvennyi Universitet, Voronezh, USSR).

(Zashchita Metallov, vol. 1, Mar. -Apr. 1965, p. 190-194.)

Protection of Metals, vol. 1, Mar. -Apr. 1965, p. 161-164. 6 refs.

Translation.

Study of the corrosion of alloys of the Mg-Zn system in halide solutions, and comparison of the results obtained with the phase diagram. In processing the results, the composition diagram of Hume-Rothery and Raunsefell was used.

M.M.

A66-26281

ANTI-FRICTION BEARINGS. (2nd Edition).

H. T. Morton.

Ann Arbor, Mich., H. T. Morton, 1965. 512 p.

This is a comprehensive book on the various aspects of antifriction bearings. It was written for machine designers, manufacturers, and engineers. Tables include such items as fits, standard shoulder heights, and dimensions of mating parts, required data for the proper mounting of bearings. Typical applications and mountings are shown for the various bearing types. Topics discussed include ball bearings, roller bearings, thrust bearings, bearing capacity and selection, miniature and instrument bearings, and completion of bearing life.

M.F.

A66-26304

THE FRICTION AND LUBRICATION OF POLYMERS.

S. C. Cohen and D. Tabor (Cambridge, University, Cavendish Laboratory, Cambridge, England).

Royal Society (London), Proceedings, Series A, vol. 291, Apr. 5, 1966, p. 186-207. 23 refs.

Research supported by the Imperial Chemical Industries. Study of the friction of a typical polar polymer, nylon, and of a typical nonpolar polymer, polyethylene. The friction of unlubricated surfaces varies with load and geometry in a manner that can be explained in terms of the multiasperity model of Howell and Lodge, modified to allow for a deformation mode that is intermediate between elastic and plastic deformation. Nylon is markedly plasticized by water and its effect as it diffuses into the bulk of the polymer has been studied using hardness measurements. Initially the water produces a softening restricted to the surface layers and this leads to a modest reduction in friction. After a protracted period the bulk softening of the polymer causes an increase in the area of contact and the friction again rises. Polyethylene surfaces are lubricated by surface films of oleamide or stearamide. These materials may also be incorporated, in small quantities, within the bulk of the polymer and can diffuse to the surface to provide an effective lubricating laver.

A66-26973

STRESS-CORROSION SUSCEPTIBILITY OF HIGH-STRENGTH STEEL, IN RELATION TO FRACTURE TOUGHNESS.

J. H. Mulherin (U.S. Army, Pitman-Dunn Research Laboratories, Frankford Arsenal, Philadelphia, Pa.).

American Society of Mechanical Engineers, Metals Engineering
Conference, Cleveland, Ohio, Apr. 18-22, 1966, Paper 66-Met-5,
6 p. 10 refs.

Members, \$0.75; nonmembers, \$1.50.

The stress-corrosion susceptibility of several ultrahigh-strength ferrous alloys is described on the basis of fracture-mechanics parameters. Two general conditions were considered: first, the susceptibility of a material at various levels of tensile yield strength and fracture toughness; and second, the susceptibility as a function

of applied subcritical stress-intensity levels. Experimentally, a notched and fatigue-cracked bend-bar specimen configuration was used. Under a subcritical load, fracture of the specimen occurs upon sufficient environmentally influenced crack extension. The susceptibility criterion adopted in this investigation was the time period to catastrophic fracture of the specimen. The results are evaluated in terms of strength level and fracture toughness, and the usefulness of the data generated is examined in terms of material evaluation and application.

A66-27774

EVALUATION OF SOLID LUBRICANT DISPERSIONS ON A FOUR-BALL TESTER.

A. J. Stock (Acheson Colloids Co., Inc., Port Huron, Mich.). (American Society of Lubrication Engineers, Annual Meeting, 20th,

Detroit, Mich., May 4-7, 1965, Paper.)
Lubrication Engineering, vol. 22, Apr. 1966, p. 146-151; Discussion,
D. R. Wilson and V. Hopkins (Midwest Research Institute, Kansas City, Mo.), p. 151, 152; Author's Closure, p. 152. 14 refs.

Results of four-ball wear tests undertaken on a series of solidlubricant dispersions in order to ascertain the variables involved in this type of testing. After determining that the length of a run can be set at one minute, with loads over the "apparent critical stress" (ACS), a new method of measuring wear under boundary conditions is proposed. With the aid of this method, which involves multiple one-minute runs at two pressures higher than the ACS, the differences in the performance of various grades of molybdenum disulfide are determined. Suggestions concerning the means used to record the data are made in an effort to improve the accuracy of the method.

EXPERIMENTAL OBSERVATION OF A TYPICAL CASE OF FRIC-TION CORROSION ON A LIGHT ALLOY [OBSERVATION EXPERI-MENTALE D'UN CAS TYPIQUE DE CORROSION DE FROTTEMENT SUR UN ALLIAGE LEGER].

Jean-Claude Gourjault, René Lachenaud, and Robert Courtel (Sud-Aviation, Laboratoire Central Courbevoie; Centre National de la Recherche Scientifique, Centre Technique d'Analyse des Surfaces de Frottement, Bellevue, Seine-et-Oise, France).

Académie des Sciences (Paris), Comptes Rendus, Série A - Sciences Mathématiques, vol. 262, no. 13, Mar. 28, 1966, p. 776-779. 5 refs. In French.

Study of the development of friction corrosion caused by the alternate pivoting of a steel ball on a plane made of light alloy. The mechanism of destruction is observed and analyzed, and the correlation with a case of practical interest is established.

A66-28006

MATERIALS FOR SPACE RATING ELECTROMECHANICAL

J. E. Kingsbury (NASA, Marshall Space Flight Center, Materials Div., Huntsville, Ala.) and E. C. McKannan (NASA, Marshall Space Flight Center, Materials Div., Engineering Physics Branch,

IN: AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAU-TICS, AND AMERICAN SOCIETY OF MECHANICAL ENGINEERS, STRUCTURES AND MATERIALS CONFERENCE, 7TH, COCOA BEACH, FLA., APRIL 18-20, 1966. TECHNICAL PAPERS. [A66-27986 14-32]

New York, American Institute of Aeronautics and Astronautics, 1966, p. 208-215. 16 refs.

Discussion of developments of critical nonstructural materials, specifically lubricants, sliding electrical contacts, and dielectrics. The limitations of hydrocarbon and synthetic lubricants are discussed, and a development program for stable solid lubricants is outlined. A result of the program has been the development of sliding electrical contact materials (an area where problems were first encountered in high-altitude aircraft). The growth of aerospace technology has extended the environment to include not only reduced pressure but particulate radiation. It is shown to be feasible to use unprotected sliding electrical contact materials in space vehicles, as well as in satellite and planetary exploration equipment. The problem of dielectric failures, which have resulted in more functional satellite problems than any other type of material failure, is discussed with reference to wire and cable insulation, potting and conformal coating compounds, and encapsulants and varnishes.

Their roles in dc motors, and the advantages of such motors in F. R. L. space are considered.

A66-28010 #

THE EFFECT OF EXPLOSIVE DEFORMATION ON THE STRESS-CORROSION AND MECHANICAL PROPERTIES OF 7075 ALUMINUM ALLOY.

A. J. Jacobs (North American Aviation, Inc., Rocketdyne Div., Canoga Park, Calif.).

IN: AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAU-TICS, AND AMERICAN SOCIETY OF MECHANICAL ENGINEERS, STRUCTURES AND MATERIALS CONFERENCE, 7TH, COCOA BEACH, FLA., APRIL 18-20, 1966. TECHNICAL PAPERS. [A66-27986 14-32]

New York, American Institute of Aeronautics and Astronautics, 1966, p. 243-255. ll refs.

Contract No. NAS 7-162.

The yield strength of 7075-T73 aluminum has been increased to the 70,000-psi level by explosively shocking at 204 Kb. After deformation, this material maintains its excellent stress-corrosion resistance in a saline environment. Similar strengthening should occur in shocked 7075-T6, if precautions are taken to prevent overaging at room temperature. The shock loading also confers excellent stress-corrosion resistance upon the -T6. If solutiontreated 7075 is first shocked and then given a -T6 aging treatment, it has poor stress-corrosion resistance. This poor resistance is attributed to the pinning of dislocations by particles precipitating out during aging. Shocked 7075-T6 and -T73 are believed to have high resistance, because they contain enough unpinned or weakly pinned dislocations to permit localized plastic deformation in the vicinity of grain boundary pits. A mechanism to explain the stresscorrosion cracking of 7075 is proposed, in which dislocations are assigned an essential role in the initiation stage of the cracking process. Transmission electron microscopy has disclosed the same sort of dislocation substructure in each of the three 7075 conditions studied. This is characterized by a high density and uniform distribution of dislocations, and the presence of numerous loops. (Author)

A66-28196

INVESTIGATION OF THE SEIZING OF SAP MATERIALS [ISSLE-DOVANIE SKHVATYVANIIA MATERIALA SAP]. G. S. Sakharov, V. F. Manuilov, and A. M. Galkin. IN: MECHANICAL WORKING OF LIGHT ALLOYS [OBRABOTKA DAVLENIEM LEGKIKH SPLAVOV). Edited by A. I. Kolpashnikov.

Moscow, Izdatel stvo Mashinostroenie (Moskovskii Aviatsionnyi Tekhnologicheskii Institut, Trudy, no. 62, 1965), p. 38-47. In Russian.

Investigation of the seizing effect at interfaces SAP-SAP (sintered aluminum powder) and SAP-Al by pressing cylindrical dies into sheets or by forcing together rods of these materials under load. The experimental setup and technique are described. Optimum thermomechanical conditions for intense seizure at SAP-SAP interfaces are indicated.

A66-28197 #

SEIZING OF STRUCTURAL ELEMENTS (SKHVATYVANIE ELE-MENTOV KONSTRUKTSII].

G. S. Sakharov, A. I. Kolpashnikov, and V. F. Manuilov. IN: MECHANICAL WORKING OF LIGHT ALLOYS [OBRABOTKA DAVLENIEM LEGKIKH SPLAVOV].

Edited by A. I. Kolpashnikov. Moscow, Izdatel stvo Mashinostroenie (Moskovskii Aviatsionnyi Tekhnologicheskii Institut, Trudy, no. 62, 1965), p. 48-56. In Russian.

Results of experimental studies of a technique for connecting individual structural elements into nondetachable structures with the aid of seizing phenomena. Pipes and rods of SAP and Al-alloys were used in the experiments to determine the effect of technical parameters on the quality of permanent connections. Conditions are outlined for obtaining one-piece structures from elements of various configurations.

A66-28202 =

INVESTIGATION OF METAL FLOW DURING THE STAMPING OF THIN PARTS [ISSLEDOVANIE TECHENIIA METALLA PRI IZGOTOVLENII DETALEI MALYKH TOLSHCHIN SHTAMPOVKOI]. N. G. Evlanov and G. S. Sakharov.

IN: MECHANICAL WORKING OF LIGHT ALLOYS [OBRABOTKA DAVLENIEM LEGKIKH SPLAVOV].

Edited by A. I. Kolpashnikov.

Moscow, Izdatel¹stvo Mashinostroenie (Moskovskii Aviatsionnyi Tekhnologicheskii Institut, Trudy, no. 62, 1965), p. 101-115. In Russian.

Investigation of the performance of various lubricants in the upsetting of VT3-1 titanium alloy blanks (8 mm high, 54 mm in diameter) in an upset forging machine at 800 to 100°C under a load of 1500 tons. The friction coefficient was determined and the macrostructure of upset products was examined following the use of machine oil, colloidal graphite, aluminum powder, water glass, barium chloride, an aviation lacquer, and an aviation enamel as lubricants. It is found that BaCl₂ and AE8 enamel are suitable lubricants and that the friction coefficient could be determined most accurately by measuring tangential and normal stresses in an experimental device. The device and procedure are described.

A66-28207 =

INVESTIGATION OF INDUSTRIAL LUBRICANTS IN HOT STAMPING [ISSLEDOVANIE TEKHNOLOGICHESKIKH SMAZOK DLIA GORIACHEI SHTAMPOVKI].

G. S. Sakharov.

IN: MECHANICAL WORKING OF LIGHT ALLOYS [OBRABOTKA DAVLENIEM LEGKIKH SPLAVOV].

Edited by A. I. Kolpashnikov.

Moscow, Izdatel'stvo Mashinostroenie (Moskovskii Aviatsionnyi Tekhnologicheskii Institut, Trudy, no. 62, 1965), p. 160-171. In Russian.

Investigation of the performance of 26 lubricants in experiments with upsetting of cylindrical samples in a conical matrix. The various individual lubricants are assessed in terms of thermal stability, prevention of adhesion, stress and die wear reduction, and air pollution.

V.Z.

A66-28465

OBSERVATIONS ON SOME EXPERIMENTAL LUBRICATION PARAM-ETERS. 1 [BETRACHTUNGEN ÜBER EINIGE EXPERIMENTELLE SCHMIERUNGSPARAMETER, 1].

Ch. Vasilca (Rumānische Akademie, Institut für Strömungsmechanik, Bucharest, Rumania).

Revue Roumaine des Sciences Techniques, Série de Mécanique Appliquée, vol. 10, no. 6, 1965, p. 1385-1401. 13 refs. In German.

Investigation of some lubrication parameters with respect to their experimental values and their reproducibility. Such parameters as load coefficient, oil quantity, coefficient of friction, and bearing temperature are studied.

R.A.F.

A66-28466

ASPECTS OF WEAR EVOLUTION RELATED TO THE STATISTICAL CHARACTER OF THE RADIOACTIVE ISOTOPE MEASURING TECHNIQUES.

Dan Pavelescu (Rumanian Academy, Centre of the Mechanics of Solids, Bucharest, Rumania).

Revue Roumaine des Sciences Techniques, Série de Mécanique Appliquée, vol. 10, no. 6, 1965, p. 1403-1420. 22 refs.

Discussion of aspects pertaining to the correlation of the dynamic and statistical laws of the evolution of the sliding wear process. Consideration is given to the reproducibility of experimental determinations using radioactive tracers.

F.R.L.

A66-29407

THE MAGNETOHYDRODYNAMIC INCLINED SLIDER BEARING. Sahib Singh Chawla (Institute of Technology, Dept. of Mathematics, Kharagpur, India).

Japanese Journal of Applied Physics, vol. 5, Mar. 1966, p. 234-237. 9 refs.

Research supported by the Institute of Technology.

Analysis of the MHD inclined slider bearing with an azimuthal magnetic field. The inclined slider bearing under a variable magnetic field is discussed, where the magnetic field is produced by an isolated line current along the line of intersection of the bearing

surface and the slider. It is shown that the load capacity can be appreciably increased by such an arrangement. The results are in contrast to those of Elco and Hughes in the case of a tangential or transverse applied magnetic field.

M. L.

A66-29418

HOW DISLOCATIONS AFFECT STRESS CORROSION CRACKING IN ALUMINUM ALLOYS.

Alvin J. Jacobs (North American Aviation, Inc., Rocketdyne Div., Canoga Park, Calif.).

Metal Progress, vol. 89, May 1966, p. 80, 81.

Study of the problem of stress corrosion failures in aluminum forging alloys, particularly 7075. During an electron-microscopic study of this alloy, ways were found to distinguish material in the T6 condition (quenched from 895 F and aged for 24 hr at 250°F) from that in the T73 condition (slightly overaged). The first finding was expected on the basis of classic aging behavior: the precipitate responsible for hardening is larger and more widely dispersed in T73 material (which has the greater resistance to stress corrosion). The second difference was inexpected: T6 material (which is stronger, but has little resistance to stress corrosion) contains numerous dislocations, while the 7075-T73 is dislocation-free. Causes of corrosion and of stress concentration are reviewed.

M.F.

A66-29723

STRESS CORROSION TESTING OF ALLOYS.

A. W. Loginow (United States Steel Corp., Applied Research Laboratory, Monroeville, Pa.).

Materials Protection, vol. 5, May 1966, p. 33-39. 10 refs.

Discussion of the factors governing the selection of test conditions and specimen types for the stress-corrosion testing of alloys. The types of specimens used in such testing are described, and their advantages and disadvantages are analyzed in relation to the type of alloy and its intended use. The parameters used to describe the stress-corrosion behavior of alloys are explained.

R.A.F

A66-29724

CORROSION OF MAGNESIUM IN AQUEOUS MEDIA.
Joseph J. Hydock (Hughes Aircraft Co., Research and Development Div., Materials Technology Dept., Culver City, Calif.).
Materials Protection, vol. 5, May 1966, p. 58-61. 14 refe

Materials Protection, vol. 5, May 1966, p. 58-61: 14 refs.

Description of a program for screening inhibited aqueous coolants for an aircraft cooling system of AZ31B magnesium which might also incorporate such metals as copper, aluminum, and stainless steel. The program included static beaker tests and a dynamic test using regenerated deionized water. The corrosion data obtained from the tests are tabulated.

R.A.F.

A66-30253

THE FRICTIONAL PROPERTIES OF SILICON NITRIDE AND SILICON CARBIDE.

C. A. Brookes and M. Imai (Cambridge, University, Cavendish Laboratory, Cambridge, England).

IN: SPECIAL CERAMICS 1964; PROCEEDINGS OF THE BRITISH CERAMIC RESEARCH ASSOCIATION SYMPOSIUM, 3RD, STOKE-ON-TRENT, STAFFS., ENGLAND, JULY 8-10, 1964. [A66-30244 16-18]

Edited by P. Popper.

London-New York, Academic Press, 1965, p. 259-266; Discussion, p. 267, 268. 18 refs.

The frictional properties of reaction-sintered silicon nitride and silicon carbide have been studied during reciprocating, sliding between a hemispherical stylus and a polished horizontal specimen. The effects of changes in the load, temperature, and the possibility of lubricating these materials have been investigated and are discussed. Measurements were made in normal atmospheric conditions and at pressures of approximately 10^{-5} torr. Comparisons are drawn between the frictional properties of these compounds and those of other refractory compounds. (Author)

A66-30402

PERFORMANCE OF HIGH SPEED BALL BEARINGS WITH JET OIL LUBRICATION.

R. J. Matt and R. J. Giannotti (General Motors Corp., New Departure-Hyatt Bearings Div., Bristol, Conn.).

American Society of Lubrication Engineers, Annual Meeting, 21st, Pittsburgh, Pa., May 2-5, 1966, Paper 66AM 1B4. 22 p.

Members, \$0.60; nonmembers, \$1.20.

Jet-oil lubrication and scavenging techniques for a 20 mm high speed ball bearing were studied under a controlled environment. Results indicate that bearing speed appears to be a primary cause of increase of temperature and torque, with increasing oil flows and thrust loads being secondary causes of temperature and torque increase. Tests were run at speeds to 1.8×10^6 DN (30, 000 to 90, 000 RPM). Rig design comparison for a given bearing environment requires considerable understanding of the bearing and keen judgment as to the value of each design parameter. (Author)

A66-30405

IMPROVING THE ENDURANCE LIFE AND CORROSION PROTECTION PROVIDED BY SOLID FILM LUBRICANTS.

G. P. Murphy and F. S. Meade (U.S. Army, Weapons Command, Rock Island Arsenal, Rock Island, Ill.).
American Society of Lubrication Engineers, Annual Meeting, 21st, Pittsburgh, Pa., May 2-5, 1966, Paper 66AM 1C3. 20 p. 5 refs.
Members, \$0.60; nonmembers, \$1.20.

Study of ways of improving the wear life and corrosion protection of solid film lubricants. The improved wear life and corrosion protection were obtained through the elimination of graphite and the addition of other lubricative pigments, using a pigment-to-resin ratio such that the pigment volume concentration is equal to the critical pigment volume concentration and increasing the film thickness to 0.0010 in. Such factors as lubricative pigments, pigment-to-binder ratios, degree of pigment dispersion, and effect of film thickness were studied. These factors have resulted in a Falex wear life of 700 to 800 min under a 1000-1b gage load and given corrosion protection (as determined by the 20% salt fog test) equal to that obtained with a good paint or to approximately 600 hr. M.F.

A66-30406

A REVIEW OF THE PROPERTIES AND POTENTIALS OF THE NEW HEAVY METAL DERIVATIVE SOLID LUBRICANTS.
P. M. Magie (Bernol, Inc., Newton, Mass.).
American Society of Lubrication Engineers, Annual Meeting, 21st,

American Society of Lubrication Engineers, Annual Meeting, 21st, Pittsburgh, Pa., May 2-5, 1966, Paper 66AM 2B3. 19 p. 16 refs. Members, \$0.60; nonmembers, \$1.20.

Review and comparison of the relatively new group of solid lubricants, the sulfides, selenides and tellurides of Groups IVB, VB, VIB, VIB, And some actinide metals. The physical and chemical properties of these compounds suggest new and broader uses for solid lubricants, particularly in the aerospace, electronics and instrumentation fields. Also discussed is the use of these new solid lubricants where vacuum-stable, electrically conducting lubricants with improved chemical and radiation stability are required. M.F.

A66-30409

ADVANCED AEROSPACE GREASES.

J. B. Christian (USAF, Wright-Patterson AFB, Ohio) and K. R. Bunting (American Oil Co., Chicago, Ill.). American Society of Lubrication Engineers, Annual Meeting, 21st, Pittsburgh, Pa., May 2-5, 1966, Paper 66AM 3C2. 16 p. Members, \$0.60; nonmembers, \$1.20.

Development and investigation of advanced grease lubricants for aerospace applications to determine their physical properties and their utility in space. The results of investigations conducted at 400°F, under vacuums of 10⁻⁷ and 10⁻⁹ forr have shown that the highly advanced greases can successfully lubricate both small- and large-diameter bearings operating at high speeds and under heavy loads for very long periods of time without relubrication. M.F.

A66-30412

A THEORY OF LIQUID-SOLID HYDRODYNAMIC FILM LUBRICA-TION.

H. Grady Rylander (Texas, University, Mechanical Engineering Dept., Austin, Tex.).

American Society of Lubrication Engineers, Annual Meeting, 21st, Pittsburgh, Pa., May 2-5, 1966, Paper 66AM 5D3. 25 p. 14 refs. Members, \$0.60; nonmembers, \$1.20. NSF-supported research.

The investigation was undertaken for the purpose of extending the design theories for hydrodynamic bearings to include the effects of solid particles in a liquid base lubricant. A set of nonlinear, coupled partial differential equations is developed to include the effects of the solid particles. Solutions of the mathematical model by numerical analysis are compared to the results obtained in actual bearing tests using a universal bearing test machine. Increased friction from the solids is shown to be limited to a certain medium range of operation such that at Sommerfeld numbers above or below this range there is only a slight increase in the friction above that obtained with the liquid alone. Good agreement between the theoretical solutions and experimental values was obtained by using experimentally determined particle shear strengths. (Author)

A66-30413

PREDICTION OF BALL-SPIN AND INTERFACIAL SLIP FRICTION FROM ROOM TO 2500 F.

A. R. Leveille, C. J. Zupkus, and H. R. Ludwig (General Motors Corp., Detroit, Mich.).

American Society of Lubrication Engineers, Annual Meeting, 21st, Pittsburgh, Pa., May 2-5, 1966, Paper 66AM - 5D4. 37 p. 11 refs. Members, \$0.60; nonmembers, \$1.20. Contract No. AF 33(615)-1208.

Two materials, an intermetallic designated LT-2 and a stabilized formulation of zirconium oxide designated 1027-2rO₂, were tested in rolling friction studies from room to 2500°F.
V-groove and circular groove tests were performed with resulting friction forces measured. The friction behaviors were correlated against previously established mathematical models. It was found that these models were adequate to predict observed friction behavior for the 1027-2rO₂ material. The LT-2 material was found to experience a creep behavior which limited the accuracy of the models in the circular groove configuration when load and time at load were sufficient to cause noticeable creep. It is shown in a quantitative manner that the LT-2 creep behavior is sufficient to cause the observed deviation from the circular groove friction model. (Author)

A66-30414

SNAP 8 REACTOR BEARING DEVELOPMENT.

L. G. Kellogg and W. G. Dewart (North American Aviation, Inc., Atomics International Div., Development and Product Operations Div., Canoga Park, Calif.).

American Society of Lubrication Engineers, Annual Meeting, 21st, Pittsburgh, Pa., May 2-5, 1966, Paper 66AM 7Al. 21 p. 9 refs. Members, \$0.60; nonmembers, \$1.20. AEC Contract No. AT (II-1)-GEN-8.

Description of a four-phase program that has successfully developed low-speed oscillating bearings, designed to provide low-friction self-lubrication at Il50°F while in the environment of a nuclear reactor operating in space. Phase I was the study and screen testing of static adhesion of bearing materials; phase II was the study and screen testing of bearing materials in sliding couple; phase III applied the materials to bearing designs where prototypes were fabricated and tested; and phase IV was the optimizing and testing of the final designs for reactor ground test in 'poor' vacuum (10-5 torr), and simulated space-ultrahigh 'clean' vacuum (10-9 torr). Results of shock and vibration tests are presented. F.R.L.

A66-30415

STATUS OF LUBRICANTS FOR MANNED SPACECRAFTS. F. G. A. de Laat, R. V. Shelton (North American Aviation, Inc., Space and Information Systems Div., Downey, Calif.), and J. H. Kimzey (NASA, Manned Spacecraft Center, Structures and Mechanics Div., Houston, Tex.).

American Society of Lubrication Engineers, Annual Meeting, 21st, 21st,

Pittsburgh, Pa., May 2-5, 1966, Paper 66AM 7A2, 23 p. 7 refs.
Members, \$0.60; nonmembers, \$1.20.

Discussion of lubricants selected for use on lunar missions and manned spacecraft, such as Apollo. Selection was primarily based on lubricant compatibility with oxygen-rich environment for crew compartment toxicity-odor hazard evaluations, lubricant-propellant compatibility investigations for long-exposure endurance, solid-dry-film lubricant compatibility with various anodic coatings, and studies of lubricant sliding-friction behavior in vacuum as encountered in

space. Several solid-dry-film lubricants were selected. Among the most outstanding greases was a completely polymeric perfluorinated material with a fluorocarbon-telomer thickener. F.R.L

A66-30416

LUBRICANT LIFE TESTS ON BALL BEARINGS FOR SPACE APPLICATIONS.

Paul Lewis (Mechanical Technology, Inc., Latham, N.Y.), A. J. Babecki (NASA, Goddard Space Flight Center, Greenbelt, Md.), and S. F. Murray.

American Society of Lubrication Engineers, Annual Meeting, 21st, Pittsburgh, Pa., May 2-5, 1966, Paper 66AM 7A3. 30 p. 5 refs. Members, \$0.60; nonmembers, \$1.20. Contract No. NAS 5-9028.

An experimental program has been conducted to compare the effective lives of ball bearings operating in vacuum with various types of MoS2 solid films, and with a special high vacuum oil, as lubricants. The test bearings were size 205 bearings running at 30 rpm under a 10-lb radial load. Two particular combinations were also evaluated in oscillating motion tests. Torque was used as the criterion for failure. Prior to test the bearings were subjected to a 2100-lb static load to simulate launch loading. The results of these tests showed that most of the solid film-lubricated bearings were effective for the first several hundred hours, then gave high and erratic torque values as the result of debris being formed by wear of the lubricant film. A sodium-silicate bonded solid lubricant film, which contained MoS2 and graphite, was found to be particularly promising in both rotation and oscillation. One particularly significant finding was that the oil-lubricated bearings showed a sudden, large increase in torque after running effectively for about 1400 hr in vacuum. This behavior has often been predicted but has apparently never been observed experimentally, at least for rolling-contact bearings.

A66-30568

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS AS RELATED TO CRYSTAL STRUCTURE AND LATTICE PARAMETERS IN VACUUM.

Donald H. Buckley and Robert L. Johnson (NASA, Lewis Research Center, Cleveland, Ohio).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65-LC-18.)

ASLE Transactions, vol. 9, Apr. 1966, p. 121-132; Discussion,

H. Wilman (London, University, Imperial College of Science and Technology, London, England), M. B. Peterson (Mechanical Technology, Inc., Latham, N.Y.), R. P. Steijn (Du Pont de Nemours and Co., Inc., Wilmington, Del.), p. 132-134; Authors' Closure, p. 134, 135. 40 refs.

[For abstract see issue 02, page 237, Accession no. A66-12252]

A66-30569

SLIDING BEHAVIOR OF SOME LAYER LATTICE COMPOUNDS IN ULTRAHIGH VACUUM.

A. J. Haltner (General Electric Co., Missile and Space Div., Space Sciences Laboratory, Philadelphia, Pa.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-19.)

ASLE Transactions, vol. 9, Apr. 1966, p. 136-146; Discussion, R. L. Johnson (NASA, Lewis Research Center, Cleveland, Ohio),

W. A. Glaeser (Battelle Memorial Institute, Columbus, Ohio), and M. T. Lavik (Midwest Research Institute, Kansas City, Mo.), p. 146-148; Authors' Closure, p. 148. 28 refs. Contract No. AF 33(657)-10493.

[For abstract see issue 02, page 237, Accession no. A66-12251]

A66-30570

THE EFFECT OF TIME, TEMPERATURE, AND ENVIRONMENT ON THE SLIDING BEHAVIOR OF POLYTETRAFLUOROETHYLENE.

R. P. Steijn (Du Pont de Nemours and Co., Inc., Engineering Research Div., Engineering Materials Laboratory, Wilmington, Del.). (American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Paper.)

ASLE Transactions, vol. 9, Apr. 1966, p. 149-157; Discussion, A. J. Haltner (General Electric Co., Missile and Space Div., Space Sciences Laboratory, Philadelphia, Pa.) and G. S. Reichenbach (Massachusetts Institute of Technology, Cambridge, Mass.), p. 157-159; Author's Closure, p. 159. 24 refs. Contract No. AF 33(615)-1201.

Description of experimental observations pertinent to the following aspects of polytetrafluoroethylene (PTFE): (1) time effects during sliding tests; (2) sliding tests in dry nitrogen and other environments; and (3) friction tests with curved sliders. It is shown conclusively that the time at rest between sliding experiments has considerable bearing on the sliding speed of the next traverse. This is the same as saying that so-called equilibrium sliding speed depends on an arbitrary parameter. For PTFE sliding on PTFE, sliding velocity under a stationary friction force is influenced by (1) the time lapse between sliding experiments; (2) the nature of the preceding sliding experiment, especially its speed; and (3) the thermal history of the sliding components. For PTFE sliding on PTFE, prolonged experiments in dry nitrogen resulted in poor sliding behavior that was remedied by introducing air of 50% RH into the environment. This effect appears to be associated with the formation and subsequent behavior of wear detritus on the tract. Curved contact surfaces in sliding tests (crossed cylinders, sphereon-flat) in addition to manifesting the effects listed above provide means of studying the relative roles that the adhesion and deformation components play in the sliding process.

A66-30571

EFFECT OF VARIOUS LUBRICANTS AND BASE MATERIALS ON FRICTION AT ULTRAHIGH LOADS.

K. E. Demorest and A. F. Whitaker (NASA, Marshall Space Flight Center, Propulsion and Vehicle Engineering Laboratory, Materials Div., Huntsville, Ala.).

American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-23.)

ASLE Transactions, vol. 9, Apr. 1966, p. 160-169; Discussion,

ASLE Transactions, vol. 9, Apr. 1966, p. 160-169; Discussion, D. H. Gaddis (Midwest Research Institute, Engineering Div., Kansas City, Mo.), p. 169, 170; Authors' Closure, p. 170. 5 refs. [For abstract see issue 02, page 237, Accession no. A66-12249]

A66-30572

EXPERIMENTAL STUDY OF SPLINE WEAR AND LUBRICATION EFFECTS.

W. D. Weatherford, Jr., M. L. Valtierra, and P. M. Ku (Southwest Research Institute, San Antonio, Tex.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Paper.)

ASLE Transactions, vol. 9, Apr. 1966, p. 171-178; Discussion, R. B. Waterhouse (Nottingham, University, Nottingham, England) and Douglas Godfrey (Chevron Research Co., Richmond, Calif.), p. 178; Authors' Closure, p. 178. 11 refs.

Contracts No. NOw-63-0511-d; No. NOw-64-0341-d.

The development of a laboratory method for simulating the wear experienced by misaligned splines is described, and typical experimental data are presented. The experimental program involves the use of matched spline specimens subjected to relative oscillatory motion simulating angular misalignment, under the influence of an applied torque. The test specimens are maintained at 250°F, either with or without lubrication, in the presence of dry air, moist air, JP-5 fuel, or JP-6 fuel. The extent of spline wear is quantitatively monitored on a continuous basis. The experimental results obtained with the above environments and seven different greases reveal significantly different wear mitigation characteristics for the various greases. Moreover, the influences of the spline environments differ for the different greases. (Author)

A66-30574

A66-30574

ANALYTICAL ASPECTS OF GEAR LUBRICATION ON THE DISENGAGING SIDE.

J. W. McCain and E. Alsandor (North American Aviation, Inc., Rocketdyne Div., Canoga Park, Calif.).

(American Society of Lubrication Engineers and American Society of Mechanical Engineers, Lubrication Conference, San Francisco, Calif., Oct. 18-20, 1965, Preprint 65 LC-16.)

ASLE Transactions, vol. 9, Apr. 1966, p. 202-210; Discussion, E. I. Radzimovsky (Illinois, University, Urbana, Ill.), p. 211. 5 refs.

[For abstract see issue 02, page 237, Accession no. A66-12253]

A66-31392

THE EFFECT OF ALLOYING ELEMENTS ON THE CORROSION OF ALUMINIUM.

K. F. Lorking (Department of Supply, Australian Defence Scientific Service, Aeronautical Research Laboratories, Melbourne, Australia). (Australasian Corrosion Association, Annual Conference, 6th, Melbourne, Australia, Nov. 15-19, 1965, Paper.) Australasian Corrosion Engineering, vol. 9, Oct. 1965, p. 3-7.

Determination of the effect of the alloying elements copper, zinc, magnesium, silver, silicon, chromium and manganese on the corrosion of aluminum over a wide pH range in water and alkali and in 0.1N solutions of the anions chromate, benzoate, chloride, sulfate, and phosphate. The effect of the anion was found to be specific although chromate inhibited corrosion of all alloys. Alloying elements may be divided into two groups - those causing a significant but small increase in weight losses due to corrosion and those such as zinc, silver, and copper which cause a marked increase in corrosion weight losses.

A66-31597

STUDY OF CORROSION OF METALS UNDER HEAT TRANSFER CONDITIONS.

P. I. Zarubin, L. A. Poluboiartseva, and V. M. Novakovskii (Ural'skii Nauchno-Issledovatel'skii Khimicheskii Institut, Sverdlovsk: Nauchno-Issledovatel'skii Fiziko-Khimicheskii Institut, Moscow, USSR).

(Zashchita Metallov, vol. 1, May-June 1965, p. 297-303.) Protection of Metals, vol. 1. May-June 1965, p. 259-264. 14 refs. Translation.

[For abstract see issue 18, page 2058, Accession no. A65-29311]

A66-31675

STUDY OF THE CHEMICAL STABILITY OF SOLID LUBRICANTS AT HIGH TEMPERATURES. I [ISSLEDOVANIE KHIMICHESKOI USTOI-CHIVOSTI TVERDYKH SMAZOK PRI VYSOKIKH TEMPERATURAKH]. M. E. Belitskii (Kievskii Institut Inzhenerov Grazhdanskoi Aviatsii, Kiev, Ukrainian SSR).

Poroshkovaia Metallurgiia, vol. 6, Apr. 1966, p. 40-44. 7 refs. In Russian.

Study of the chemical stability of silver graphite, MoS2, ZnO, BN, and muscovite and phlogopite mica at high temperatures, in media of air, hydrogen, argon, and nitrogen. BN at temperatures to 800-900°C and phlogopite mica at higher temperatures are found to be solid lubricants that make better substitutes for graphite than the other materials studied.

A66-31899

DIFFERENTIAL THERMAL ANALYSIS FOR ESTIMATION OF THE RELATIVE THERMAL STABILITY OF LUBRICANTS.

A. A. Krawetz and Theodore Tovrog (Phoenix Chemical Laboratory, Inc., Chicago, Ill.).

I & EC - Industrial and Engineering Chemistry, Product Research and Development, vol. 5, June 1966, p. 191-198. 16 refs. Contract No. AF 33(657)-8771.

Demonstration of the applicability of the techniques of differential thermal analysis to the study of the thermal decomposition of organic lubricant systems. It is shown that the techniques of differential thermal analysis, applied at ambient as well as elevated

pressures, can be highly effective in the analysis of data by permitting a distinction to be made between pressure-dependent and pressure-independent reactions and by providing a means for the isolation of thermal effects due to decomposition reactions occurring at or near the normal boiling point of the sample being studied.

(Author)

A66-31932

FRICTION AND DEFLECTION CHARACTERISTICS OF PTFE LINE BEARINGS.

W. D. Craig, Jr. (Grumman Aircraft Engineering Corp., Mechanical Systems Section, Bethpage, N.Y.) and R. P. Remorenko (Fainir Bearing Corp., New Britain, Conn.).

Lubrication Engineering, vol. 22, May 1966, p. 181-186. 8 refs.

An experimental study was made of starting and kinetic friction of PTFE (polytetrafluoroethylene) fabric lined spherical bearings at loads between 1600 and 35,000 psi. Measurements of starting friction were made at temperatures between -200 and + 255°F. Kinetic friction at room temperature was measured at sliding velocities between .0003 and .06 fps. Deflection and permanent set under static radial load were measured up to 36,600 psi. The lowest starting coefficient of friction occurred at loads around 10,000 psi from -100 to +255°F. Starting coefficient of friction varied as an exponential function of absolute temperature, showing a transition between 170 and 215°K that was dependent on load. The lowest transition temperature occurred in the 10,000 psi load range. Kinetic friction was relatively independent of velocity up to .0017 fps, increasing rapidly at higher velocities. From .003 to .06 fps, the coefficient of friction varied as an exponential function of velocity; at a given velocity the coefficient of friction decreased with an

A66-31933

recoverable after unloading.

GRAPHITE LUBRICANT COMBINATIONS FOR HIGH TEMPERATURE APPLICATIONS.

L. C. Lipp (Boeing Co., Seattle, Wash.) and E. N. Klemgard. Lubrication Engineering, vol. 22, May 1966, p. 187-195. 16 refs. Research sponsored by the Boeing Co.

increase in load. Static deflection measurements up to loads of

36,500 psi showed that about 87% of the total radial deflection was

Discussion of the high-temperature and -pressure lubrication properties of chemical and physical combinations of graphite with inorganic binders, metal halides, organic dyes, and inorganic polymers. It is thought that interaction of these materials in the interstitial positions and shearing edges of the graphite lattice to form intercalated edge compounds may account for the enhanced lubrication properties obtained above 1000°F. The combination of graphite with the inorganic polymer of phosphonitrilic chloride is found to be particularly effective in reducing friction and wear on an Ni-Cr-Co alloy. The coefficient of friction through the 100-to-1700°F range using this lubricant does not exceed 0.15. Modification of the graphite lattice by nuclear irradiation is proposed as a means of providing further improvement of high-temperature friction and wear of the graphite lubricants discussed. A. B. K.

A66-31979

VAPOR DEPOSITED GOLD THIN FILMS AS LUBRICANTS IN VACUUM (10-11 mm Hg).

T. Spalvins and D. H. Buckley (NASA, Lewis Research Center, Cleveland, Ohio).

Journal of Vacuum Science and Technology, vol. 3, May-June 1966, p. 107-113. 17 refs.

Gold thin films of 1800 A to be used as lubricants were vapor deposited on Ni, Ni-Cr, and Ni-Re substrates. Strong bonding (adhesion) and durability between the film and substrate were found to be essential when thin films are used as a lubricant. Factors that were investigated included the selection of the film and substrate material. Strong durability of the thin film is directly related to the type and structure of the interfacial region. Two methods of substrate preparation prior to vapor deposition were investigated: (1) mechanically polished surface and (2) electron bombarded surface. Gold was vapor deposited on the mechanically polished surface at room temperature and on the thermally etched surface at an elevated temperature approximately (800°F). Strength and durability of the films were investigated in sliding friction

experiments with a hemispherical niobium rider sliding on the films at a velocity of 5 ft/min. Results obtained in these friction experiments indicated that the film endurance life was considerably better on the thermally etched surface. This increased film durability with the thermally etched surface is believed to be owing to the formation of a diffusion type interface between the film and the substrate. Because of the disregistry at grain boundaries, a higher rate of diffusion and preferential trapping in and around the grain boundaries occurs, with these regions acting as lubricant reservoirs during the friction experiments.

A66-32605 3

DAMPING OF OSCILLATIONS OF GYROSCOPE ROTORS EMPLOY-ING SLIDING BEARINGS [DEMPFIROVANIE KOLEBANII GIROSKO-PICHESKIKH ROTOROV S PODSHIPNIKAMI SKOL'ZHENIIA].
S. 1. Sergeev.

Inzhenernyi Zhurnal - Mekhanika Tverdogo Tela, Mar. -Apr. 1966, p. 189, 190. In Russian.

Discussion of rotor oscillations excited by the effect of the lubricant layer in plain bearings under the effect of the gyroscopic moment of rotor inertia. The stability of motion is analyzed for an unloaded symmetrical rigid rotor rotating in lubricated cylindrical plain bearings mounted on elastically damped supports. V.P.

A66-33143 =

OPERATING LIFETIME OF POROUS BEARINGS AS A FUNCTION OF THE GRADE OF THE IMPREGNATING LUBRICANT [O DLITE L'NOSTI RABOTY PORISTYKH PODSHIPNIKOV V ZAVISIMOSTI OT SORTA PROPITYVAIUSHCHIKH SMAZOK].

V. D. Zozulia (Akademiia Nauk Ukrainskoi SSR, Institut Problem Materialovedeniia, Kiev, Ukrainian SSR).

Poroshkovaia Metallurgiia, vol. 6, May 1966, p. 103-106. 5 refs. In Russian.

Estimate of the lifetime of self-lubricating, porous bearings. The dependence of the lifetime on the grade of the lubricant used to impregnate the bearings is determined.

R. A. F.

A66-33178

THE STEADY-STATE AND DYNAMIC CHARACTERISTICS OF A FULL CIRCULAR BEARING AND A PARTIAL ARC BEARING IN THE LAMINAR AND TURBULENT FLOW REGIMES.
F. K. Orcutt and E. B. Arwas (Mechanical Technology, Inc.,

Latham, N. Y.).

American Society of Mechanical Engineers, Lubrication Symposium,
New Orleans, La., June 5-9, 1966, Paper 66-LubS-4. 11 p.

Members, \$0.75; nonmembers, \$1.50.

Contract No. NASw-771.

The steady-state and dynamic characteristics of a full circular bearing and a centrally loaded, 100-deg, arc bearing are calculated for a range of eccentricity ratios to 0.95 and of mean Reynolds numbers to 13, 300, and presented in design charts. These are compared with the measured performance of these bearings over the same ranges of the operating parameters. There is good correlation between the theoretical and test data, leading to the conclusion that the present turbulent lubrication analysis may be used to obtain general design data for self-acting bearings, operating in the superlaminar flow regime, to supplement that presently existing for laminar flow bearings. (Author)

A66-33181

THE MHD HYDROSTATIC THRUST BEARING - THEORY AND EXPERIMENTS.

R. J. Krieger, H. J. Day, and W. F. Hughes (Carnegie Institute of Technology, Pittsburgh, Pa.).

American Society of Mechanical Engineers, Lubrication Symposium, New Orleans, La., June 5-9, 1966, Paper 66-LubS-8. 7 p. Members, \$0.75; nonmembers, \$1.50.

An analytical and experimental investigation is made of magneto hydrodynamic lubrication flow between parallel stationary disks in an axial magnetic field. The effect of the fluid inertia is analyzed by a single iteration of the appropriate differential equations. For a given pressure, the approximate solution indicates that the inertia forces increase the load capacity and flow rate. Experimental flow rates are obtained by varying the Hartmann number with a constant

head and by varying the head with a constant Hartmann number.

Good agreement is found between the theory and experimental results
until the transition to turbulent flow occurs. The effect of the magnetic field on this transition is evident from the data.

(Author)

A66-33182

EFFECTS OF ROUGHNESS IN HYDROMAGNETICALLY LUBRICATED BEARINGS.

J. B. Shukla (Institute of Higher Technology, Kanpur, India) and R. Prasad (V.S. Sanatan Dharam College, Kanpur, India).

American Society of Mechanical Engineers, Lubrication Symposium, New Orleans, La., June 5-9, 1966, Paper 66 - LubS-9, 5 p. Members, \$0.75; nonmembers, \$1.50.

In this paper, the effects of surface roughness are considered in the following two cases: (1) hydromagnetically lubricated externally pressurized bearings; and (2) hydromagnetic squeeze film between two circular plates. For sufficiently rough surfaces, it is shown that the load capacity mainly depends upon the amplitudes of the roughness waves, and the contribution to the load capacity due to roughness increases as the strength of the magnetic field increases.

(Author)

A66-33183

GAS TURBINE BALL BEARING DESIGN.

C. C. Moore (General Electric Co., Flight Propulsion Div., Advanced Engine and Technology Dept., Evendale, Ohio).

American Society of Mechanical Engineers, Lubrication Symposium, New Orleans, La., June 5-9, 1966, Paper 66-LubS-10. 13 p. 13 refs.

Members, \$0.75; nonmembers, \$1.50.

The design of split-inner-race ball bearings for use as thrust bearings on aircraft gas turbines is discussed. There bearings normally operate at a $1 \text{ to } 1.5 \times 10^6$ DN value (bore in mm x speed in rpm) and are lubricated and cooled by oil jets. For a given set of conditions, a bearing of suitable life to fit the shaft is designed and a vendor drawing is presented to permit manufacture. Bearing heat generation and oil flow are calculated and the effect of multiple bearing lives on overall system life is discussed. (Author)

A66-33184

A COMPARISON OF TURBULENT LUBRICATION THEORIES AND A SOLUTION OF CONSTANTINESCU'S EQUATION FOR A FINITE-LENGTH BEARING.

J. A. Edwards, J. U. Crowder, T. K. Mann, Jr. (North Carolina, University, North Carolina State, Engineering Mechanics Dept., Raleigh, N.C.), and J. P. Lamb (Texas, University, Mechanical Engineering Dept., Austin, Tex.).

American Society of Mechanical Engineers, Lubrication Symposium, New Orleans, La., June 5-9, 1966, Paper 66-LubS-II. 13 p. 16 refs.

Members, \$0.75; nonmembers, \$1.50.

This paper presents a numerical solution of the Constantinescu equation of turbulent hydrodynamic lubrication for a finite-length journal bearing. A critical review of the present state of knowledge of turbulent hydrodynamic lubrication is offered. The theories proposed by Smith and Fuller, Tao, Chou and Saibel, and Constantinescu are examined in regard to their conformity with one another and with the data of Smith and Fuller. It is tentatively concluded that the approach of Constantinescu is the most promising formulation upon which to base further research. The value of the empirical constant which best fits the numerical solution to the data of Smith and Fuller is found to be considerably less than that suggested by Constantinescu. Further, the centerline pressure distribution of the numerical solution deviates appreciably from that measured by Smith and Fuller. (Author)

A66-33185

THE NUMERICAL SOLUTION OF A SPECIAL HILL EQUATION IN LUBRICATION THEORY.

Donald F. Hays (General Motors Corp., Research Laboratories, Mechanical Development Dept., Warren, Mich.).

American Society of Mechanical R.

American Society of Mechanical Engineers, Lubrication Symposium, New Orleans, La., June 5-9, 1966, Paper 66-LubS-13. Il p. 26 refs.

Members, \$0.75; nonmembers, \$1.50.

A66-33186

The heretofore untabulated eigenvalues and eigenvectors of a special Hill equation are obtained through the use of numerical techniques. This Hill equation is generated when the method of separation of variables is used to achieve a formal solution for the Reynolds equation as applied to finite journal bearings. To illustrate the numerical methods, the specific example of a complete journal bearing is taken and the results compared with previously recorded values. The first fifteen eigenvalues are computed for the odd and even eigenvectors of the Hill equation. These eigenvectors are (Author) defined over the region $(-\pi, \pi)$ at intervals of $\pi/90$.

A66-33186

IMPROVED METHOD FOR NUMERICAL SOLUTIONS OF THE GENERAL INCOMPRESSIBLE FLUID FILM LUBRICATION PROB-LEM.

V. Castelli (Columbia University, New York, N.Y.) and W. Shapiro (Franklin Institute, Research Laboratories, Philadelphia, Pa.). American Society of Mechanical Engineers, Lubrication Symposium, New Orleans, La., June 5-9, 1966, Paper 66-LubS-14. Members, \$0.75; nonmembers, \$1.50.

Research sponsored by the Franklin Institute.

A numerical analysis for determining performance characteristics of hydrodynamic, hydrostatic, or hybrid bearings with arbitrary clearance distribution is presented. Solution of the Reynolds lubrication equation for incompressible fluids is achieved by formation of coefficient matrices that act upon column vectors of the pressures progressively from one boundary to the other without requiring an iterative scheme. Multiple recesses are handled by component solutions. The external supply system is included and solved for an arbitrary type of individual recess compensation and supply circuit network. Sample results are indicated. (Author)

A66-33426

AIR CONTAMINATION IN TITANIUM ALLOYS Ti-679 AND Ti-8-1-1. K. C. Antony (General Electric Co., Flight Propulsion Div., Advanced Engine and Technology Dept., Cincinnati, Ohio). (American Society for Testing and Materials, Pacific Area National Meeting, 5th, Seattle, Wash., Oct. 31-Nov. 5, 1965, Paper.)
Journal of Materials, vol. 1, June 1966, p. 456-477. 13 refs.

The oxidation characteristics of titanium alloys Ti-679 and Ti-8Al-1Mo-1V were determined using conventional weight-gain techniques. The air oxidation of both alloys followed parabolic rate laws at 1000 and 1100°F. Metal losses (spalling) were excessive in the Ti-679 alloy at higher temperatures. The static weight-gain measurements were supplemented with metallographic, electronmicroscopic, and X-ray diffraction analyses. An outer scale identified as rutile titanium oxide (TiO2) and an inner subscale characterized by interstitial contamination were noted. The interstitial distribution in the subscale and core was measured indirectly, and oxygen diffusion rates were calculated. The diffusion of oxygen in the alpha allotropes of Ti-679 and Ti-8-1-1 were expressed best as D (Ti-679) = 0.12 exp -48,000/RT and D (Ti-8-1-1) = 1.20 exp -52,300/RT, respectively. The extent of combined scale/ subscale reaction was generally greater in Ti-679 than in Ti-8-1-1. However, these scale/subscale reactions were quite limited in both alloys compared to specimen bulk. The tensile properties of Ti-679 and Ti-8-1-1 were measured after exposure in the temperature range 700 to 1100°F. Tensile ductility was decreased significantly under sufficiently severe exposure conditions. Parametric correlation of the times and temperatures necessary for oxidation embrittlement (Author) were proposed.

STRESS CORROSION, DELAYED FAILURES, FATIGUE CORRO-SION AND RELATIONS BETWEEN THESE PHENOMENA; COM-MISSARIAT A L'ENERGIE ATOMIQUE, METALLURGICAL COLLOQUIUM, 8TH, CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS [CORROSION SOUS CONTRAINTE, RUPTURES DIFFEREES, FATIGUE-CORROSION ET RELATIONS ENTRE CES PHENOMENES; COMMISSARIAT A L'ENERGIE ATOMIQUE, COLLOQUE DE METALLURGIE, 8TH, CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS]. Paris, Presses Universitaires de France, 1965. 145 p. \$10.15.

CONTENTS:

INTRODUCTION. Georges Chaudron. 1 p.

EMBRITTLEMENT OF TANTALUM BY HYDROGEN AT ROOM TEMPERATURE (FRAGILISATION DU TANTALE PAR L'HYDRO-GENE, A TEMPERATURE AMBIANTE]. M. A. Clauss (Strasbourg, Université, Strasbourg, France), p. 29-39. 10 refs. [See A66-33441 17-17]

OBSERVATIONS OF DELAYED FAILURES IN STAINLESS STEEL USED FOR BOLTS (OBSERVATIONS SUR LES RUPTURES DIFFEREES D'ACIERS INOXYDABLES DE BOULONNERIE]. M. Weisz, P. Le Bret, G. Brionne, G. Allegraud, and G. Didout (Commissariat a l'Energie Atomique, Gif-sur-Yvette, Seine-et-Oise, France), p. 41-56. 8 refs. [See A66-33442 17-17]
PRESENT STATE OF KNOWLEDGE OF FATIGUE CORROSION

IN METALS (CONNAISSANCES ACTUELLES SUR LA FATIGUE-CORROSION DES METAUX). A. Royez (Usines Renault, Boulogne-Billancourt, Seine, France), p. 95-110. 21 refs. [See A66-33443 17-171

DISLOCATION DISTRIBUTION AND CRACK FORMATION UNDER STRESS CORROSION (LA DISTRIBUTION DES DISLOCA-TIONS ET LA FORMATION DES FISSURES PAR CORROSION SOUS TENSION]. J. Nutting (Leeds, University, Leeds, England), p. 111-116. 7 refs. [See A66-33444 17-17]

AUSTENITIC STAINLESS STEELS RESISTANT TO STRESS CORROSION (ACIERS INOXYDABLES AUSTENITIQUES RESISTANT A LA CORROSION SOUS TENSION]. J. Hochmann (Compagnie des Ateliers et Forges de la Loire, Unieux, Loire, France), p. 127-133. 13 refs. [See A66-33445 17-17]

CONCLUSION. Georges Chaudron, p. 143, 144.

A66-33441

EMBRITTLEMENT OF TANTALUM BY HYDROGEN AT ROOM TEMPERATURE [FRAGILISATION DU TANTALE PAR L'HYDRO-GENE, A TEMPERATURE AMBIANTE].

M. A. Clauss (Strasbourg, Université, Laboratoire de Chimie Generale, Strasbourg, France).

IN: STRESS CORROSION, DELAYED FAILURES, FATIGUE CORROSION AND RELATIONS BETWEEN THESE PHENOMENA; COMMISSARIAT A L'ENERGIE ATOMIQUE, METALLURGICAL COLLOQUIUM, 8TH, CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS [CORROSION SOUS CONTRAINTE RUPTURES DIFFEREES, FATIGUE-CORROSION ET RELATIONS ENTRE CES PHENOMENES; COMMISSARIAT A L'ENERGIE ATOMIQUE, COLLOQUE DE METALLURGIE, 8TH, CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS). [A66-33440 17-17]

Paris, Presses Universitaires de France, 1965, p. 29-38; Discussion, p. 38, 39. 10 refs. In French.

Study of the abnormal brittleness exhibited by tantalum when it is deformed in the presence of hydrogen. It was found that the appearance of brittleness depends on the presence of oxygen dissolved in the tantalum lattice. The effects of the rate of deformation and of the dissolved oxygen content are defined. A comparable brittleness is observed when nitrogen is substituted for oxygen in the tantalum lattice.

OBSERVATIONS OF DELAYED FAILURES IN STAINLESS STEEL USED FOR BOLTS [OBSERVATIONS SUR LES RUPTURES DIF-FEREES D'ACIERS INOXYDABLES DE BOULONNERIE]. M. Weisz, P. Le Bret, G. Brionne, G. Allegraud (Commissariat à l'Energie Atomique, Centre d'Etudes Nucléaires de Saclay, Département de Métallurgie, Services Technologie, Section d'Etude des Métaux de Structure, Gif-sur-Yvette, Seine-et-Oise, France), and G. Didout (Commissariat à l'Energie Atomique, Centre d'Etudes Nucléaires de Saclay, Département de Métallurgie, Services Technologie, Section d'Etude des Alliages d'Uranium, Gif-sur-Yvette, Seine-et-Oise, France). IN: STRESS CORROSION, DELAYED FAILURES, FATIGUE CORROSION AND RELATIONS BETWEEN THESE PHENOMENA; COMMISSARIAT A L'ENERGIE ATOMIQUE, METALLURGICAL COLLOQUIUM, 8TH. CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS [CORROSION SOUS CONTRAINTE, RUPTURES DIFFEREES, FATIGUE-CORROSION ET RELATIONS ENTRE CES PHENOMENES; COMMISSARIAT A L'ENERGIE

ATOMIQUE, COLLOQUE DE METALLURGIE, 8TH, CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS]. [A66-33440 17-17]

Paris, Presses Universitaires de France, 1965, p. 41-55; Discussion, De Leiris and P. Bastien (Etablissements Schneider, Paris, France), p. 55, 56. 8 refs. In French.

Definitions of the concepts of stress level for crack initiation and for crack propagation using delayed failure tests with samples which were simultaneously subjected to tensile loading and cathode charging with hydrogen. It is found that while the stress required for crack initiation appears to depend only on the structure, the rate of crack propagation is also dependent on experimental factors—such as temperature and current density—which determine the rate of hydrogen penetration and its diffusion in the metal. D.P.F.

A66-33443

PRESENT STATE OF KNOWLEDGE OF FATIGUE CORROSION IN METALS (CONNAISSANCES ACTUELLES SUR LA FATIGUE-CORROSION DES METAUX).

A. Royez (Usines Renault, Régie Nationale, Direction des Recherches, Boulogne-Billancourt, Seine, France).

IN: STRESS CORROSION, DELAYED FAILURES, FATIGUE CORROSION AND RELATIONS BETWEEN THESE PHENOMENA; COMMISSARIAT A L'ENERGIE ATOMIQUE, METALLURGICAL COLLOQUIUM, 8TH, CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS [CORROSION SOUS CONTRAINTE, RUPTURES DIFFEREES, FATIGUE-CORROSION ET RELATIONS ENTRE CES PHENOMENES; COMMISSARIAT A L'ENERGIE ATOMIQUE, COLLOQUE DE METALLURGIE, 8TH, CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS].

[A66-33440 17-17]

Paris, Presses Universitaires de France, 1965, p. 95-109; Discussion, p. 109, 110. 21 refs. In French.

Study of the simultaneous and synergistic action of dynamic stresses and corrosive media in which it is shown that the mechanism of such action is electrochemical and that oxygen plays an important role. It is shown that certain parts of a metal component act as an anode and provide the starting point for fissures of an intergranular type. Fatigue resistance appears to be of less importance than corrosion resistance. The role of dynamic stresses is to break up protective films and to propagate cracks.

D.P.F.

A66-33444

DISLOCATION DISTRIBUTION AND CRACK FORMATION UNDER STRESS CORROSION [LA DISTRIBUTION DES DISLOCATIONS ET LA FORMATION DES FISSURES PAR CORROSION SOUS TENSION]. J. Nutting (Leeds, University, Leeds, England). IN: STRESS CORROSION, DELAYED FAILURES, FATIGUE CORROSION AND RELATIONS BETWEEN THESE PHENOMENA; COMMISSARIAT A L'ENERGIE ATOMIQUE, METALLURGICAL COLLOQUIUM, 8TH, CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS [CORROSION SOUS CONTRAINTE, RUPTURES DIFFEREES, FATIGUE-CORROSION ET RELATIONS ENTRE CES PHENOMENES; COMMISSARIAT A L'ENERGIE ATOMIQUE, COLLOQUE DE METALLURGIE, 8TH, CADARACHE, RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS]. [A66-33440 17-17]

Paris, Presses Universitaires de France, 1965, p. 111-115; Discussion, H. Coriou (Commissariat à l'Energie Atomique, Centre d'Etudes Nucléaires de Saclay, Département de Chimie, Service d'Etude de la Corrosion Aqueuse et d'Electrochimie, Gif-sur-Yvette, Seine-et-Oise, France), Salesse (Commissariat à l'Energie Atomique, Centre d'Etudes Nucléaires de Saclay, Département de Métallurgie, Gif-sur-Yvette, Seine-et-Oise, France), Plateau, and T. P. Hoar (Cambridge, Université, Département de Métallurgie, Cambridge, England), p. 115, 116. 7 refs. In French.

Study of the phenomena related to the distribution of dislocations and cracks caused by stress corrosion. Under low stresses cumulative dislocations occur only at the grain boundaries and crack linking leads to intercrystalline failure. Under high stresses dislocation groups are formed along the slip planes and the pits at individual dislocation sites link up to form transcrystalline cracks.

A66-33445

AUSTENITIC STAINLESS STEELS RESISTANT TO STRESS CORROSION [ACIERS INOXYDABLES AUSTENITIQUES RESISTANT A LA CORROSION SOUS TENSION].

J. Hochmann (Compagnie des Ateliers et Forges de la Loire, Département des Recherches, Unieux, Loire, France).

In: STRESS CORROSION, DELAYED FAILURES, FATIGUE
CORROSION AND RELATIONS BETWEEN THESE PHENOMENA;
COMMISSARIAT A L'ENERGIE ATOMIQUE, METALLURGICAL
COLLOQUIUM, 8TH, CADARACHE, RHONE, FRANCE, JUNE
25, 26, 1964, PROCEEDINGS [CORROSION SOUS CONTRAINTE,
RUPTURES DIFFEREES, FATIGUE-CORROSION ET RELATIONS
ENTRE CES PHENOMENES; COMMISSARIAT A L'ENERGIE
ATOMIQUE, COLLOQUE DE METALLURGIE, 8TH, CADARACHE,
RHONE, FRANCE, JUNE 25, 26, 1964, PROCEEDINGS].
[A66-33440 17-17]

Paris, Presses Universitaires de France, 1965, p. 127-132; Discussion, p. 132, 133. 13 refs. In French.

Examination of the effect of surface finishing on the stress corrosion resistance of austenitic stainless steels. It is found that the worst surfaces are those obtained by mechanical working, grinding, or polishing. Chemical pickling lowers the sensitivity to corrosion. Sand blasting or shot peening gives rise to compressive stresses which prevent cracking. Stable austenites are more prone to stress corrosion after cold working; pseudomartensitic structures obtained by deformation have a better resistance to this type of corrosion.

D. P. F.

Subject Index

LUBRICATION, CORROSION AND WEAR / a continuing bibliography OCTOBER 1966 with indexes

Typical Subject Index Listing

-[ACID-BASE BALANCE COMPARISON OF POTENTIOMETRIC AND INDICATOR
TITRATIONS FOR ACID-ALKALINE PROPERTIES OF OILS
WITH ADDITIONS

(A65-14: A65-14877 NOTATION ACCESSION SUBJECT HEADING CONTENT

A Notation of Content (NOC), rather than the title of the document, is used to give a more exact description of the subject matter. In order to provide the user with more than one approach in the search for specific information, a subject may be listed under several subject headings. The accession number is included to assist the user in locating the abstract in the abstract section.

ABRASION

METAL WEAR RESISTANCE DEPENDENCE ON HARDNESS DETERMINED BY RUBBING AGAINST ABRASIVE SURFACE 465-18629

WEAR DURABILITY AND ABRASION RESISTANCE OF POLYTETRAFLUOROETHYLENE COATINGS ON ELASTOMERIC VULCANIZATES. N65-36319 NRL-6298

NEW METHOD OF EVALUATING EFFECTIVENESS OF ANTIABRASIVE PROPERTIES OF FUEL AND OIL ADDITIVES

TESTING AUTOMOBILE TRANSMISSION OIL WITH DIFFERENT ADDITIVES FOR ANTIWEAR, ANTIABRASSIVE, ANTICORROSIVE, STABILITY, AND FOAM PROPERTIES N66-11127

LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES OF CERTAIN POLYAMIDES N66-22761

ABSTRACT

ANNOTATED BIBLIOGRAPHY OF ABSTRACTS ON LUBRICATION, CORROSION, AND WEAR NASA-SP-7020

N65-29845

ALUMINUM SALTS OF SUBSTITUTED BENZOIC ACIDS FOR USE AS HIGH TEMPERATURE GREASE THICKENERS - BIBLIOGRAPHY WITH ABSTRACTS AFML-TR-64-324

ANNOTATED BIBLIOGRAPHY ON SOLID LUBRICANTS - WITH INDEXES NASA-SP-5037 N66-17358

EFFECTS OF SUBSTITUTING COBALT FOR NICKEL ON ACID CORROSION RESISTANCE OF STAINLESS STEEL BM-RI-6591 N65-16634

CORROSION RESISTANCE OF TITANIUM AND ITS ALLOYS IN SOLUTIONS OF ACETIC AND NITRIC ACIDS AS AFFECTED BY ALUMINUM ADDITIONS

CHLORIDEBENZYL QUINOLINE TO INCREASE CORROSION RESISTANCE OF IRON AND STEEL IN ACIDS FTD-TT-65-770/164 N66-10787

ACID-BASE BALANCE

COMPARISON OF POTENTIOMETRIC AND INDICATOR TITRATIONS FOR ACID-ALKALINE PROPERTIES OF OILS WITH ADDITIONS

CONFERENCE ON LUBRICATION TECHNIQUES AND SEAL DESIGN FOR ORBITAL MANNED SPACE LABORATORY DOOR ACTUATOR AD-623336 N66-17440

SOLID LUBRICATION OF MANNED ORBITAL SPACE STATION DOOR ACTIVATOR N66-17443

ADDITIVE

SYNTHESIS OF ORGANIC COMPOUNDS AS ADDITIVES TO FTD-TT-64-880/1 N65-19037

ADDITIVE EFFECT ON ANTIWEAR PROPERTIES OF JET FTD-TT-64-937/1&2

HIGHLY SULFUROUS ENGINE FUEL ADDITIVES -ANTICORROSION LUBRICANT ADDITIVES N65-28108

FTD-TT-64-778/1 ADDITIVES FOR FUEL GILS AND LUBRICANTS -

LITERATURE REVIEW FTD-TT-65-62/1 N65-30004

CLASSIFICATION OF SULFUR-CONTAINING LUBRICATING OILS, WITH AND WITHOUT ADDITIVES, FOR USE WITH

VARIOUS TYPES OF DIESEL ENGINES

ALKYLPHENOL ADDITIVES OF FORMALDEHYDE CONDENSATION FOR USE IN LUBRICATING MOTOR DILS

SYNTHESIS OF SULFONATES OF ALKYL AROMATIC
HYDROCARBONS FOR USE AS ADDITIVES TO DIESEL AND
MOTOR LUBRICATING DILS
N66-11

EFFECTIVENESS OF ORGANO-MOLYBDENUM AND ORGANO-SULFUR COMPOUNDS AS ANTIHEAR ADDITIVES TO N66-11085 LUBRICATING DILS

DIALKYLDITHIOPHOSPHATES WITH SECONDARY
HYDROCARBON RADICALS AS ANTIOXIDANT ADDITIVES
FOR LUBRICATING DILS
N66-1 N66-11087

SYNTHESIS OF CHLORINE AND SULFUR AROMATIC HYDROCARBON ADDITIVES AND ANTIWEAR PROPERTIES OF N66-11092 ADDITIVES TO LUBRICANTS

ALUMINUM STEARATE AND OLEOSTEARATE ADDITIVES FOR ANTIWEAR AND ANTICORROSION IMPROVEMENT OF LUBRICANTS

SYNTHESIS, PRODUCTION TECHNOLOGY, AND TEST OF BARTUM ALKYLPHENGLATE, ZINC DIALKYLPHENYLDITHIO PHOSPHATE, AND DIAKYLPHENYLDITHIOPHOSPHORIC ACID FOR MULTICOMPONENT ADDITIVES TO LUBRICANTS N66-11094

THERMAL DECOMPOSITION OF ORGANIC PHOSPHORUS COMPOUND ADDITIVES FOR REDUCTION OF FRICTION COFFETCIENT

VACUUM FRICTION MACHINE INVESTIGATIONS FOR FRICTION REDUCTION BY LUBRICATING OILS WITH OXYGEN AND OTHER GAS ADDITIVES N66-11105

RADIOACTIVE TRACER INVESTIGATION OF REACTION

MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH COPPER FILMS IN HYDROCARBON LUBRICATING OIL MEDIUM - FRICTION REDUCING ADDITIVES

N66-11106

REACTION MECHANISM OF ANTISCORING ADDITIVES IN LUBRICATING OILS FOR FRICTION REDUCTION

N66-11107

ORGANIC METALLIC SALTS AS OXIDATION CATALYSTS IN LUBRICATING OILS — CORROSION RESISTANT ADDITIVES

REACTION MECHANISM AND EFFECTIVENESS OF ADDITIVES IN LUBRICATING OILS FOR FRICTION REDUCTION

N66-11109

CHEMICAL KINETIC MECHANISMS IN OXIDATION RESISTANT ADDITIVES TO LUBRICATING OILS N66-11110

REACTION MECHANISMS OF OXIDATION RESISTANT ADDITIVES IN OXIDATION PROCESS IN LUBRICATING OILS - HYDROGEN PEROXIDE FORMATION

N66-11111

TEST METHODS AND MEASURING APPARATUS FOR RAPID APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL OILS, LUBRICATING OILS, AND ADDITIVES - SCALE MODELS AND MICROANALYSIS N66-11112

ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO PREVENT ASH DEPOSITS AND VANADIUM CORROSION
N66-11130

DATA ON USE OF ANTICORROSIVE ADDITIVES IN RESIDUAL FUELS CONTAINING VANADIUM AND SULFUR

N66-11131

ADDITIVE FOR SULFUROUS FUELS WITH CHROMIUM COMPOUND FOR PISTON CYLINDER WEAR RESISTANCE FTD-TT-65-1126/164 N66-19560

FUEL OIL ADDITIVE WITH BARIUM NAPHTHENATE FOR WEAR AND SCALE REDUCTION IN HIGH SPEED DIESEL ENGINE FTD-TT-65-1125/1&4

HEXACHLOROCYCLOPENTADIENE USED AS ANTIWEAR ADDITIVE TO LUBRICATING DILS FTD-TT-65-795/18284 N66-1977

EFFECTS OF ORGANIC ADDITIVES CONTAINING SULFUR, CHLORINE, AND PHOSPHOROUS ON POLYSILOXANE LUBRICANTS

FSTC-381-T65-553

N66-20010

ADDITIVE FOR SUPPRESSING VANADIUM CORROSION OF FUELS

FTD-TT-65-505/1&4

N66-29818

ADHESION

FRICTION AND WEAR OF SLIDING MATERIALS PREDICTED BY ADHESION-PLASTIC DEFORMATION THEORY

A65-18331

HARDNESS EFFECTS OF STEEL BRIDGES ON ADHESION TO COLD DRAWN MILD STEEL AS INITIAL STAGE OF FRETTING PROCESS IN INITIATION OF FATIGUE CRACKS

A65-18627

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA A65-23665

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA A65-31530

FRICTION, MEAR, AND ADHESION CHARACTERISTICS OF TITANIUM-ALUMINUM ALLOYS IN VACUUM NASA-TN-D-3235 N66-15491

PLASTIC RESEARCH - SILICONE FLUIDS TO DECREASE ADHESION OF PLASTIC TO SOLID SURFACES, AND LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES OF POLYAMIDES
FTD-TT-65-909/16284

N66-227:

SURFACE TEMPERATURES AT SLIDING INTERFACES IN VACUA AND METAL ADHESION, AND FRICTION AND WEAR

APPARATUS ML-TDR-64-97

N66-27676

ADSORPTION

BOUNDARY LUBRICATION IN OIL SYSTEM DISCUSSED IN TERMS OF FILM STRENGTH COVERING ADSORBED, CHEMISORBED AND CHEMICAL REACTION FILM FORMATION A65-23505

ADSORPTION AND FRICTION OF MINERALS UNDER HIGH VACUUM AND EXTREME TEMPERATURE CONDITIONS — ENGINEERING BEHAVIOR OF PARTICULATE SYSTEM WITH CLEAN, DRY SURFACES R64-62 N65~30626

ADVANCED TEST REACTOR /ATR/

HIGH TEMPERATURE GAS CORROSION OF ADVANCED TEST
REACTUR / ATR / STRUCTURAL MATERIALS
RNHL-100 N65-35021

AERODYNAMICS

LOW TEMPERATURE CHARACTERISTICS OF LUBRICATING
OILS, PHOTOGRAMMETRIC CHECKING OF WIND TUNNEL
MODELS, MECHANICS, AERODYNAMICS, HYDRODYNAMICS,
AND THERMODYNAMICS
CME/NAE-1964/3/
N65-20570

AEROSPACE VEHICLE

DRY COMPOSITE LUBRICATED GEARS FOR AEROSPACE
ENVIRONMENTAL CHAMBER
AEDC-TR-65-45 N65-22375

AGE HARDENING

CR AND MN EFFECTS ON AGING MECHANISM AND ANTICORROSION PROPERTIES OF AL- ZN- MG ALLOYS

A66-12723

AGING

EFFECT OF AGE AND WEAR ON RELIABILITY OF MEASURING
DEVICE N65-24158

AIR COOLING

SUMFACE TEMPERATURE AND CORROSION IN AIR AND WATER COOLED TURBOCHARGERS OF MARINE DIESEL ENGINE TOCK-44575 N66-25815

AIR PURIFICATION

ABSTRACTS ON CORROSION OF CONCRETE AND STEEL,
PROTECTIVE COATING MATERIALS, MATERIAL TESTING,
WATER AND AIR PURIFICATION, PACKAGING, AND
BIBLIOGRAPHIC INFORMATION N66-20801

AIRCRAFT

ICING OF OIL AND GREASE LUBRICANTS USED IN
AIRCRAFT ORDNANCE
NRL-6329
N66-16738

AIRCRAFT CONSTRUCTION

CORROSION PREVENTION COATING BY ELECTROCHEMICAL OXIDATION / ELOXAL/ METHOD FOR ALUMINUM AIRCRAFT SURFACES A65-20692

AIRCRAFT CORROSION AND PROTECTIVE PAINTS, FINISHES AND ANTICORROSION PROCESSES A65-31372

PREVENTLIL EDGE CORROSION OF NAVAL AIRCRAFT, EVALUATING SURFACE TREATMENTS, PRIMERS, EPOXY ENAMELS, ETC A66-12318

AIRCRAFT ENGINE

AVIATION LUBRICATING OIL FOR JET AND TURBOPROP, NOTING REQUIREMENTS OF EACH SYSTEM

A65-22234

RATING SYSTEM ASSESSING PERFORMANCE OF AIRCRAFT GAS TURBINE SYNTHETIC LUBRICANTS BASED ON DEMERIT DEPOSITS A65-29501

CONSTANT OIL MONITORING SYSTEM USING ELECTRIC CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS TURBINE ENGINES SAE PAPER 650814

STATISTICAL STUDY OF SPECTROMETRIC OIL ANALYSIS
METHOD FOR AIRCRAFT ENGINE MONITORING SYSTEM
N65-22936

SYNTHETIC DILS FOR TURBINE ENGINES AND AIRCRAFT LUBRICATION

FTD-TT-64-117/182

N65-27856

AIRCRAFT TURBINE LUBRICANT TECHNOLOGY FOR HIGH MACH NUMBER ENGINES ESPECIALLY SST, NOTING STABILITY, AUTOIGNITION, COKING, TOXICITY, ETC SAE PAPER 660071 A66-20156

AIRCRAFT TURBINE ENGINE DIL DRAIN PRACTICES, DISCUSSING ENGINE DESIGN AND MATERIALS AND MINIMUM AND MAXIMUM DRAIN TIME SAE PAPER 660073

MEANS OF ASSESSING AVIATION TURBINE LUBRICANT QUALITY, CONSIDERING SPECIFICATION, MAINTENANCE, OPERATIONAL FACTOR AND EQUIPMENT STRIP APPROACH SAE PAPER 660074 A66-20159

SIMULATION OF LUBRICATING DIL CIRCULATION IN AVIATION TURBINE ENGINES BY CONSTRUCTED MODEL, NOTING CHANGE OF VISCOSITY, ACID NUMBER AND ELECTRICAL CONDUCTIVITY AT HIGH TEMPERATURES A66-23751

CONSTANT OIL MONITORING SYSTEM USING ELECTRIC CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS TURBINE ENGINES SAE PAPER 650814 466-23844

PISTON SHAPE CHANGED, BREATHING AND LUBRICATION IMPROVED TO INCREASE LIFESPAN OF INTERNAL COMBUSTION AIRCRAFT ENGINES FTD-TT-65-723/16264

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPIC ANALYSIS OF MIXED PENTAERYTHRITOL, DIPENTAERYTHRITOL, AND TRIMETHYLOLPROPANE ESTERS NRL-6307

PERFORMANCE OF AIRCRAFT GAS TURBINE MAINSHAFT BALL BEARINGS, SEALS, AND LUBRICANTS UNDER SIMULATED SUPERSONIC TRANSPORT ENGINE CONDITIONS NASA-CR-54312

OILS, LUBRICANTS, AND COOLANTS FOR DIESEL ENGINE, AIRCRAFT ENGINE, AND ROCKET ENGINE FTD-MT-64-382 N66-19816

AIRCRAFT FUEL

FUELS AND LUBRICANTS WITH THERMALLY STABLE MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET REQUIREMENTS OF SUPERSONIC TRANSPORT

A65-27161

IGNITION TEMPERATURE CHARACTERISTICS OF AIRCRAFT FUELS AND LUBRICANTS AFAPL-TR-65-18 N65-25889

FUFLS AND LUBRICANTS WITH THERMALLY STABLE MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET REQUIREMENTS OF SUPERSONIC TRANSPORT

A66-13221

AIRCRAFT FUEL SYSTEM
ULTRASONIC TECHNIQUE FOR DETECTING CORROSION IN AIRCRAFT FUEL TANKS RTD-TDR-63-4193, PT. II

AIRCRAFT FUEL TANK COATING CORROSION RESISTANCE. DISCUSSING POLYURETHANE AND EPOXY MATERIAL CHARACTERISTICS AND APPLICATION

466-17491

WEAR AND GREASE LUBRICATION EFFECTS IN MATCHED AIRCRAFT SPLINE SPECIMENS SUBJECTED TO OSCILLATORY A66-30572

AIRCRAFT MAINTENANCE

MILITARY SPECIFICATION FOR MULTIPURPOSE AERONAUTICAL LUBRICATING GREASE SAE PAPER 650817 A65-34831

DESIGN AND MAINTENANCE OF AIR TRANSPORT LANDING GEAR NOTING WEIGHT FACTOR, JOINTS, BUSHINGS AND CORROSION RESISTANCE SAE PAPER 650842 A65-34839

AIRCRAFT CORROSION FAILURES AND SOLUTIONS DISCUSSING HYDRAULIC LINES, ANGLE OF ATTACK INDICATOR, HOT AIR DUCTING, CONTROL CABLE AND BELLOWS

A65-35750

CORROSION CONTROL ON AIRCRAFT SKIN, COUNTERSINKS AND FASTENERS DESCRIBING TESTS, SEALANT COATINGS, CHEMICAL TREATMENTS, MECHANICAL BARRIERS, PLATINGS ON FASTENERS AND ORGANIC COATINGS

AIRCRAFT MATERIALS STRESS CORROSION AT HIGH TEMPERATURE DISCUSSING TEST AND RESULTS ON TITANIUM ALLOYS, PRECIPITATION HARDENING STEELS AND SUPERALLDYS A66-12299

FACTORS AFFECTING ICING RESISTANCE OF LUBRICANTS FOR ATRCRAFT ORDNANCE

AIRCRAFT POWER SOURCE

SPECTROMETRIC OIL ANALYSIS METHOD FOR MONITORING TURBOJET AIRCRAFT ENGINES AND OIL LUBRICATED AIRCRAFT MECHANISMS UA-20-64 N65-22928

AIRCRAFT STRUCTURE

TEXTEDOR ON CHARACTERISTICS OF PRINCIPAL METALLIC
AND NONMETALLIC MATERIALS USED IN AIRCRAFT

CORROSION CONTROL IN AIRCRAFT STRUCTURES, WEAPON SYSTEMS, AND GROUND SUPPORT EQUIPMENT N65-22212

PROTECTIVE COATING EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS N66-23647

AIRFRAME MATERIAL

STRESS RELIEVING ALPHA-TITANIUM ALLOY WELDMENTS IN VACUUM TO PREVENT CONTAMINATION IN A-5 VIGILANTE WING SECTIONS

ALKALI

DISSOLUTION OF ZINC IN ALKALI NAS A-TT-F-252

N65-32968

ALKALI METAL

ALKALI METAL STRESS CORROSION AND MASS TRANSFER EFFECTS ON REFRACTORY METAL AND STAINLESS STEEL ALLOYS NASA-CR-54281 N65-17992

REFRACTORY ALLOY CORROSION, DISCUSSING COLUMBIUM AND TANTALUM BASE TUBING ALLOY RESISTANCE TO REFLUXING POTASSIUM BETWEEN 1800 AND 2400 DEGREES

HIGH ACTIVITY OF ALKALI METAL SALTS OF CARBOXYLIC ACIDS AND SUBSTITUTED PHENOLS AS SYNERGISTS FOR ARYLAMINE ANTIOXIDANTS IN ESTER-TYPE SYNTHETIC LUBRICATING DILS A66-23123

PROCUREMENT AND QUALITY EVALUATION OF NIOBIUM ALLOY FOR BOILING ALKALI METAL CORROSION STUDIES ORNI -TM-1170

LIQUID MERCURY AND ALKALI HALIDE METALS LOOP FOR LIQUID METAL LUBRICATED ROTOR BEARINGS -SNAP

MT1-64TR72, REV.-2

N66-11728

ZIRCONIUM CORROSION IN MOLTEN EQUIMOLAR MIXTURE OF POTASSIUM AND SODIUM CHLORIDES

PURIFICATION OF ALKALI METALS FOR USE IN ADVANCED REFRACTORY ALLOY CORROSION LOOP NASA-CR-54911

PHYSICAL PROPERTIES OF METAL SOAP OIL SYSTEM BEHAVIOR NRL-6361 N66-22765

SYNTHESIS OF ALKYL, CYCLOALKYL, AND DICYCLOALKYL SULFIDES TO PROVIDE REFERENCE COMPOUNDS NECESSARY IN SEARCH FOR SIMILAR CLASSES OF SULFUR COMPOUNDS IN CRUDE OIL BM-RI-6796 N66-28345

ALLOY

FRICTION CORROSION CAUSED BY ALTERNATE PIVOTING OF

SUBJECT INDEX

STEEL BALL ON PLANE OF LIGHT ALLOY

A66-27934

HIGH TEMPERATURE TENSILE TESTS, ALLOY POWDER TREATMENT, DRY LUBRICANT FRICTION, AND WEIGHT LOSS MEASUREMENTS IN ULTRAHIGH VACUUM SYSTEM APS646

INERTIA OF MOVING BODY UNDER WATER, ATMOSPHERIC CIRCULATION IN STRATOSPHERE, AND CORROSION RESISTANCE OF ALLOYS - TRANSLATION FROM COMMUNIST CHINESE LITERATURE

JPRS-33046 N66-13388

IMPROVEMENT OF CORROSION RESISTANCE OF ALLOYS
N66-13391

STRESS CORROSION EFFECTS ON HEAT RESISTANT ALLOYS BY SODIUM CONTAINING ADMIXTURES FTD-TT-65-1050/18284 N66-1853

STRESS CORROSION CRACKING MECHANISM IN FACE-CENTERED CUBIC METALS AFOSR-65-2702

TESTING OF HOT-CORROSION-RESISTANT ALLOYS FOR

MARINE GAS TURBINES
MEL-131/66
N66-25844

ALTERNATING CURRENT /AC/

EFFECT OF 60-CYCLE ALTERNATING CURRENT ON CORROSION OF STEELS AND OTHER METALS BURIED IN SOIL N65-19465

WEAR OF ELECTRIC CONTACTS DURING SWITCHING OF LOW VOLTAGE DIRECT AND ALTERNATING CURRENTS

N66-13268

ALUMINUM

CORROSION PREVENTION COATING BY ELECTROCHEMICAL
OXIDATION / ELOXAL/ METHOD FOR ALUMINUM AIRCRAFT
SURFACES
A65-20692

FACTORS AFFECTING PERFORMANCE AND RELIABILITY OF THIN FILM CAPACITORS NOTING CORROSION EFFECT AT POINTS OF INTERMETALLIC MOUNTINGS

A65-23538

PATTERN-CONFORMING CRACKING OF OXIDE FILM ON ALUMINUM DURING HIGH TEMPERATURE OXIDATION MAY BE CAUSE OF DECREASE IN CORROSION RESISTANCE A65-34857

ALUMINUM ADDITIONS EFFECT ON TITANIUM CORROSION RESISTANCE AND ELECTROCHEMICAL CHARACTERISTICS WHEN IMMERSED IN SULFURIC ACID SOLUTIONS

A65-36014

MECHANISMS OF CORROSION PROCESSES ON ALUMINUM -CORROSION WEIGHT LOSSES, OXIDE FILM THICKNESS DETERMINATION AND ELECTROCHEMICAL MEASUREMENTS ARL/MET-54

STATIC TESTING FOR CHEMICALS EFFECTIVE FOR INHIBITING ALUMINUM AND STEEL CORROSION BNML-29

CORROSION PROTECTION OF REACTOR PARTS BY ION PLATED COATING OF ALUMINUM SC-DR-65-530 N66-15554

GALVANIC CORROSION OF ALUMINUM ASSEMBLIES BY
STAINLESS STEEL WIRE INSERTS
NASA-TM-X-53404
N66-19762

ALUMINUM ALLOY

AL- ZN- MG ALLUYS SENSITIVITY AND RESISTANCE TO WELDING AND STRESS CORROSION CRACKING

ALUMINUM ALLOY CORROSION AND FRACTURE UNDER TENSION SHOWING RELATION TO INTERGRANULAR

ALUMINUM ALLOY POWDER EXTRUSIONS EVALUATED FOR CORROSION RESISTANCE TO HIGH TEMPERATURE WATER FLOW, CONSIDERING RODS AND TUBINGS

A65-22133

HIGH STRESS CORROSION RESISTANCE OF 7075- T73 ALUMINUM ALLOYS VERIFIED BY SOLUTION POTENTIAL AND ELECTRIC CONDUCTIVITY MEASUREMENTS

A65-22215

ALUMINUM ALLOYS WITH IMPROVED CORROSION AND ABRASION RESISTANCE BY NEW PRODUCTION AND FABRICATION TECHNIQUES A65-30467

CORROSION CHARACTERISTICS OF AL- ZN- MG ALLOYS
A65-30744

LOW CORROSION RESISTANCE OF IRON-ALUMINUM ALLOYS IN FLUORINE ATMOSPHERE AT HIGH TEMPERATURE N65-1341

STRESS CORROSION OF WROUGHT HIGH-STRENGTH ALUMINUM ALLOYS, SUSCEPTIBILITY OF ALLOY STEEL TO HOT SALT STRESS CORROSION, AND KINETICS OF HOT SALT STRESS CORROSION CRACKING OF TITANIUM ALLOY ASD-TR-61-713, PT. III N65-13791

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS AD-453733 N65-143

MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS
OR-3
N65-16667

CORROSION OF ALUMINUM AND MAGNESIUM ALLOYS IN TROPICAL ENVIRONMENTS NRL-6105 N65-19255

MECHANICAL PROPERTIES OF FLAT POSITION TIG MELOMENTS, STRESS CORROSION TESTS, AND WELDABILITY OF ALUMINUM ALLOYS FOR MISSILE AND SPACE PROGRAM APPLICATION NASA-CR-62233 N65-21

HEAT TREATMENT VARIATIONS OF ALUMINUM ALLOYS TO STUDY ATMOSPHERIC STRESS CORROSION
RAE-MET-PHYS-96 N65-24010

RELATIVE RESISTANCE OF ALUMINUM ALLOYS, AND EFFECT OF GRAIN STRUCTURE ON SUSCEPTIBILITY TO STRESS CORROSION CRACKING DMIC-MEMO-202 N65-24445

ALTERNATE IMMERSION STRESS-CORROSION TESTS ON COMMERCIAL AND HIGH PURITY ALUMINUM ALLOYS M65-17-1 N65-28351

CATHODE PROTECTION OF ALUMINUM ALLOY UNDER STRESS CORROSIVE CONDITIONS IN ACID CHLORIDE SOLUTION - METALLURGY AD-615789 N65-29112

MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS AD-615789 N65-35437

TRANSMISSION ELECTRON MICROSCOPY STRUCTURAL ANALYSIS OF DISLOCATIONS IN STRESS-CORROSION CRACKING OF 7075 ALUMINUM ALLOY

A66-18761 STRESS CORROSION

SHOT PEENING FOR RESISTANCE TO STRESS CORROSION CRACKING OF HIGH STRENGTH STEEL AND ALUMINUM ALLOYS AND TO IMPROVE FATIGUE LIFE OF LANDING GEARS, WING SPARS, JET ENGINE COMPONENTS AND OTHER STRUCTURAL PARTS A66-25771

EFFECT OF CORROSIVE AND SURFACE ACTIVE MEDIA ON FATIGUE STRENGTH OF ALUMINUM ALLOYS WIDELY USED IN AIRCRAFT CONSTRUCTION A66-25883

EXPLOSIVE DEFORMATION EFFECT ON STRESS-CORROSION AND MECHANICAL PROPERTIES OF 7075 ALUMINUM ALLOY A66-2801

ELECTRON MICROSCOPE INVESTIGATION OF DISLOCATION EFFECT ON STRESS CORROSION CRACKING IN ALUMINUM ALLOY A66-29418

ALLOYING ELEMENTS EFFECT ON ALUMINUM CORROSION OVER WIDE P H RANGE IN WATER, ALKALI AND 0.1 N SOLUTIONS OF ANIONS A66-31392

CORROSION BEHAVIOR OF ALUMINUM ALLOY MATERIALS

FOR PERMANENT OR SEMIPERMANENT INSTALLATION IN HIGH FLUX ISOTOPE REACTOR / HFIR/ ORNL-TM-1029 N66-10698

ELECTROCHEMICAL ASPECTS OF CORROSION OF ALUMINUM ALLOYS IN SODIUM CHLORIDE AT ELEVATED TEMPERATURES IN TITANIUM DYNAMIC LOOP FACILITY ORNL-P-1430

SELECTION, MANUFACTURE, CORROSION RESISTANCE, AND PECULIARITIES OF ALUMINUM ALLOYS USED AS STRUCTURAL BUILDING MATERIALS N66-12735

CORROSION RESISTANCE OF STRUCTURAL ALUMINUM ALLOY BUILDING MATERIALS N66-12739

CORROSION RESISTANCE TESTS ON HIGH SILICON ALUMINUM ALLOYS
BNWL-125

STRESS CORROSION TESTS ON ALUMINUM ALLOYS WITH RESPECT TO STATISTICAL NATURE OF DISTRIBUTION OF FAILURE TIMES NASA-TM-X-53355 N66-14

FRICTION, WEAR, AND ADMESSION CHARACTERISTICS OF TITANIUM-ALUMINUM ALLOYS IN VACUUM NASA-TN-D-3235 N66-1549

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS
AD-625454

STRESS CORROSION CRACKING OF HIGH STRENGTH ALUMINUM ALLOYS NASA-CR-74443 N66-23655

URANIUM INTERMETALLIC FUEL SYSTEM AND ALUMINUM-BERYLLIUM ALLOY CORROSION PROPERTY STUDIES IDD-17154

ALUMINUM COMPOUND

ALUMINUM COMPLEX SOAPS AS THICKENERS FOR MULTIPURPOSE GREASE RIA-64-3160

N65-18869

ALUMINUM SALTS OF SUBSTITUTED BENZOIC ACIDS FOR USE AS HIGH TEMPERATURE GREASE THICKENERS - BIBLIOGRAPHY WITH ABSTRACTS AFML-TR-64-324 N65-31634

ALUMINUM STEARATE AND OLEOSTEARATE ADDITIVES FOR ANTIWEAR AND ANTICORROSION IMPROVEMENT OF LUBRICANTS N66-11093

HIGH TEMPERATURE OXIDATION RESISTANCE OF ALUMINUM COMPLEX SOAP GREASE RIA-65-3264 N66-20013

A I NOMMA

STRESS-CORROSION CRACKING, RATE OF WEIGHT LOSS AND SURFACE CONDITION OF 70-30 COPPER ZINC ALLOY IN CONCENTRATED AQUEOUS AMMONIA A66-18519

AMMONIA USED TO SUPPRESS OXYGEN PRODUCTION AND CORROSION IN BOILING WATER REACTOR AECL-2562 N66-28337

ANGULAR MOTION

FLEXURE-PIVOT BEARING TYPES, SPRING RATE AND
SINGLE STRIP DESIGN USEFUL FOR LIMITED ANGULAR
MOVEMENT
A65-25992

ANNEALING

DEFORMATION AND ANNEALING EFFECTS ON CORROSION
RESISTANCE OF PURE AND PALLADIUM-ALLOYED TITANIUM
IN SULPHURIC AND HYDROCHLORIC ACIDS

A65-34977

ANODE

ANODIC PASSIVATION OF STAINLESS STEEL BY
ELECTROCHEMICAL OXIDATION OF METAL SURFACE CORROSION RESISTANCE
RIA-65-1190
N65-36739

ANTIMONY ALLOY
INTERGRANULAR CORROSION OF LEAD-ANTIMONY ALLOY
BATTERY PLATE GRIDS

NRL-6387

N66-31332

ANTIOXIDANT

FUELS AND LUBRICANTS WITH THERMALLY STABLE MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET REQUIREMENTS OF SUPERSONIC TRANSPORT

A65-27161

ANTIOXIDATION, ANTICORROSION, AND DETERGENT ADDITIVES FOR LUBRICATING OILS OBTAINED BY TREATING PRODUCTS OF OXIDATION OF PARAFFIN WITH PHOSPHORUS PENTASULFIDE FTD-TT-64-1087/1

FUELS AND LUBRICANTS WITH THERMALLY STABLE MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET REQUIREMENTS OF SUPERSONIC TRANSPORT

A66-13221

SYNTHESIS, PRODUCTION, AND EFFECTIVENESS OF ANTIOXIDANT AND MULTIFUNCTIONAL ADDITIVES TO NATURAL AND SYNTHETIC FUEL OILS - COLLECTION OF ARTICLES
FTD-MT-64-213
N66-11076

MULTIFUNCTIONAL AND ANTIOXIDANT ADDITIVES
SYNTHESIZEU FROM DIESTERDITHICPHOSPHORIC ACID —
CHARACTERISTICS OF ALKYLPHENOLS AND DISULFIDES
OBTAINED AS INTERMEDIATE PRODUCTS

N66-11081

ORGANO-PHOSPHORUS ANTIOXIDANT LUBRICATING OIL ADDITIVES OBTAINED FROM REACTION OF PHOSPHORUS PENTASULFIDES AND TERPENES IN PRESENCE OF SULFURIC ACID N66-11086

DIALKYLDITHIOPHOSPHATES WITH SECONDARY
HYDROCARBON RADICALS AS ANTIOXIDANT ADDITIVES
FOR LUBRICATING OILS
N66-11087

SYNTHESIS OF THREE ANTIOXIDANT ADDITIVES OF SHIELDED PHENOLS N66-11088

DETERMINING ANTIOXIDATION EFFECTIVENESS OF MOTOR OIL ADDITIVES N66-11114

EFFECT OF LUBRICATING MATERIALS AND ADDITIVES ON PITTING FORMATION N66-11116

THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS OF ANTIOXIDANT ADDITIVES IN LUBRICATING OILS - U.S.S.R. N66-13718

EFFECT OF HYDROCARBON ANTIOXIDANTS ON SPLINE WEAR WHEN OPERATING SUBMERGED IN MINERAL DIL RS-485 N66-26576

POLYMER ADDITIVE EFFECTS ON OIL VISCOSITY AND ANTIOXIDANT ADDITIVE SYNTHESIS FTD-MT-64-512 N66-30272

BISPHENOL SYNTHESIS FOR ANTIOXIDANT ADDITIVE TO OILS AND GASOLINES N66-30274

APOLLO SPACECRAFT

LUBRICANT SELECTION FOR APOLLO AND OTHER MANNED
SPACECRAFT - COMPATIBILITY CRITERIA
NASA-TM-X-58002
N66-28033

ARCTIC

SUBSURFACE TRANSPORTATION TESTS FOR TRAFFICABILITY
OF WHEELED VEHICLES IN DEEP SNOW
TR-160
N66-29932

AROMATIC COMPOUND

EFFECT OF HALOGENS ON CORROSION OF TITANIUM BY HYDROHALIC ACIDS, CHEMICAL STABILITY OF TITANIUM TO CHLORINE, BROMINE, AND IODINE, AND EFFECT OF AROMATIC NITRO COMPOUND ON CORROSION OF TITANIUM N66-10297

SYNTHESIS OF SULFONATES OF ALKYL AROMATIC
HYDROCARBONS FOR USE AS ADDITIVES TO DIESEL AND
MOTOR LUBRICATING OILS N66-11082

SYNTHESIS OF CHLORINE AND SULFUR AROMATIC HYDROCARBON ADDITIVES AND ANTIWEAR PROPERTIES OF ADDITIVES TO LUBRICANTS N66-11092 ATMOSPHERIC CIRCULATION INERTIA OF MOVING BODY UNDER WATER, ATMOSPHERIC CIRCULATION IN STRATOSPHERE, AND CORROSION RESISTANCE OF ALLOYS - TRANSLATION FROM

COMMUNIST CHINESE LITERATURE N66-13388

ATMOSPHERIC PRESSURE ROLLING CONTACT LUBRICATION CHARACTERISTICS OF POLYPHENYL ETHERS AND MINERAL DILS AT REDUCED PRESSURES N66-12142 NASA-TN-D-3130

AUSTENITIC STEEL STACKING FAULT ENERGIES IN AUSTENITIC STAINLESS STEEL DETERMINED BY EXTENDED NODE MEASUREMENTS A65-14713

AUSTENITIC STAINLESS STEEL COLD WORKING EFFECTS ON STRESS CORROSION CRACKING IN HIGH TEMPERATURE SODIUM AND MAGNESIUM CLORIDE SOLUTIONS

EFFECT OF TITANIUM ADDITIONS ON RESISTANCE OF FERRITIC AUSTENITIC STEELS TO INTERCRYSTALLINE CORROSION AFTER QUENCHING

CORROSION RESISTANCE AND WELDABILITY OF AUSTENITIC HEAT-RESISTING STEELS FOR STEAM POWER GENERATORS

MICROSTRUCTURE AND DISLOCATION SUBSTRUCTURE RELATION TO STRESS CORROSION CRACKING SUSCEPTIBILITY IN AUSTENITIC STAINLESS STEEL N65-20710

NITROGEN CONTENT OF AUSTENITIC STAINLESS STEEL IN STRESS CORROSION N65-32322 FURAEC-1216

MOLTEN SODIUM CORROSION OF AUSTENITIC STEEL N65-32983

HEAT RESISTANCE IN AIR OF FOUR INDUSTRIAL AUSTENITIC-FERRITE STEELS WITH LOW NICKEL CONTENT AT 750-1050 DEGREES C, NOTING OXIDE SCALE 466-10988 FORMATION

HEAT TREATMENT CYCLE EFFECT ON MECHANICAL PROPERTIES OF CORROSION RESISTANT PRECIPITATION HARDENED STEEL AM 355 IN TERMS OF METALLOGRAPHIC STRUCTURE A66-11304 466-11304

SURFACE FINISHING EFFECT ON STRESS CORROSION RESISTANCE OF AUSTENITIC STAINLESS STEELS

NITROGEN CONTENT EFFECT ON STRESS CORROSION IN AUSTENITIC STAINLESS STEELS N66-18939 EURAEC-1424

RELATIONSHIP OF NITROGEN CONTENT OF AUSTENITIC STAINLESS STEELS TO STRESS CORROSION FURAFC-1579 N66-28987

PREDICTING INTERGRANULAR CORROSION OF AUSTENITIC STAINLESS STEELS N66-32514

AUTOMOBILE COMPARISON OF AUTOMOTIVE LUBRICATION GREASES

N65-19419 RIA-64-3578

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR BENDING THEORY ASME PAPER 65-AV-3 A65-23464

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LUADS, USING NONLINEAR BENDING THEORY A66-22470 ASME PAPER 65-AV-3

BALL BEARING BALL AND ROLLER BEARING USES AND LUBRICATION A65-16468 ROTORACE GYROS WHICH REDUCE GIMBAL FRICTION BY USE OF SPECIAL BALL BEARINGS
IME PAPER 13
A65-19706

REDUCTION OF MECHANICAL LOSSES DUE TO FRICTION IN SHAFT BEARINGS OF INSTRUMENTS BY FORCED MOTION OF OUTER RACES OF BALL BEARING

APPLICABILITY OF ELASTICITY THEORY EQUATIONS FUR CYLINDERS IN DRY CONTACT TO PRESSURE DISTRIBUTION AT ROLLER AND BALL BEARING CONTACT POINTS IN PRESENCE OF LUBRICATING FILM A65-2653: 465-26533

DRY AND FLUID LUBRICATION EFFECTS ON INSTRUMENT BALL BEARING TORQUES AT HIGH SPEED

A65-26662

LUBRICATION OF BALL BEARINGS IN HIGH SPEED APPLICATION NOTING OIL TYPES, GREASE SHEAR AND OIL CHURNING

LUBRICANT PROPERTIES OF REACTION PRODUCTS FROM INTERACTION OF VOLATILE COMPOUND GENERATED VAPORS FOR HIGH SPEED BALL BEARING NAFC-AML-2107

MEASURING APPARATUS FOR STUDYING BALL BEARING SPINNING FRICTION NASA-TN-D-2796

SPEED, LOAD, AND TEMPERATURE EFFECT ON MINIMUM OIL FLUM REQUIREMENTS OF 30 AND 75 MILLIMETER-BORE HALL BEARINGS NASA-TN-D-2908

REDUCTION OF FRICTION WITH FORCED ROTATION OF OUTER RACES OF BALL BEARINGS IN SUPPORTS OF INSTRUMENT SHAFTS N65-

BOOK ON DESIGN AND UTILIZATION OF ANTIFRICTION A66-26281 BEARINGS

JET OIL LUBRICATION AND SCAVENGING TECHNIQUE FOR 20 MM HIGH SPEED BALL BEARING ASLE PAPER 66AM 1B4 A66-3040

BALL BEARING LIFE OPERATING IN VACUUM WITH MOLYBDENUM DISULFIDE AND OILS AS LUBRICANT ASLE PAPER 66AM 7A3 A66-30416

SPLIT-INNER-RACE BALL BEARINGS DESIGN FOR USE AS THRUST BEARINGS ON AIRCRAFT GAS TURBINES ASME PAPER 66-LUBS-10

PERFORMANCE OF AIRCRAFT GAS TURBINE MAINSHAFT BALL BEARINGS, SEALS, AND LUBRICANTS UNDER SIMULATED SUPERSONIC TRANSPORT ENGINE CONDITIONS N66-15366 NASA-CR-54312

POLYPHENYL ETHER, POLYSILOXANE, SEBACATE, AND HIGH VISCOSITY MINERAL DIL AS IMPREGNATED LUBRICANTS IN BALL-BEARING RETAINERS AT .000010 TURR NAS A-TN-D-3259

ETHYLHEXYLAZELATE BASED LUBRICANTS FOR BALL BEARINGS NA6-21121

FAILURE MODE AND OPERATION LIFE OF BALL BEARINGS USING FLUID LUBRICANTS AT HIGH TEMPERATURES IN RECIRCULATING SYSTEM

NASA-CR-74097

BALL BEARING LIFE TESTS IN VACUUM USING MOLYBDENUM SULFIDE SOLID FILMS WITH HIGH VACUUM OILS AS LUBRICANTS NASA-CR-71695

ANGULAR CONTACT BALL BEARING-FLUID LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS, AND HIGH TEMPERATURES N66-27931 NASA-CR-75582

FRICTION DUE TO BALL MOTION IN ANGULAR CONTACT BALL BEARING NASA-TM-X-52207

EVALUATION OF PERFORMANCE OF VARIOUS LUBRICANTS ON BALL BEARINGS OPERATING IN SIMULATED SPACE

ENVIRONMENT

N66-32538

BARIUM COMPOUND

SYNTHESIS, PRODUCTION TECHNOLOGY, AND TEST OF BARTUM ALKYLPHENOLATE, ZINC DIALKYLPHENYLDITHIO PHOSPHORIC ACID FUR MULTICOMPONENT ADDITIVES TO LUBRICANTS

N66-11094

FUEL DIL ADDITIVE WITH BARIUM NAPHTHENATE FOR WEAR AND SCALE REDUCTION IN HIGH SPEED DIESEL ENGINE FTD-TT-65-1125/164 N66-19561

BEARING

SUPERCONDUCTIVE MAGNETIC BEARINGS ARE VIRTUALLY FRICTIONLESS AND CAN OPERATE IN VACUUM ASME PAPER 64-WA/PID-9 A65-13892

BEARINGS AND LUBRICANTS REVIEW AND DIGEST OF LITERATURE FROM 1962 TO 1953 A65-14065

DIAMAGNETIC, SUPERCONDUCTING, ELECTROSTATIC AND FREELY AND PARTIALLY SUSPENDED MAGNETIC BEARINGS

HYDRUDYNAMIC LUBRICATION EMPHASIZING THICKNESS OF LUBRICANT FILMS AND FORCES ON FILMS A65-15679

OIL, GAS AND SPIRAL BEARINGS, COMPARING PROPERTIES
AND APPLICATIONS
A65-16273

UNCONVENTIONAL LUBRICANTS CAPABLE OF WITHSTANDING EXTREMES OF TEMPERATURE, PRESSURE AND RADIATION

FAILURE OF W C- CO COATED ROD-GLAND BEARING CAUSED BY FRETTING AND PROTECTION MEASURES, EXAMINING HYDRAULIC ACTUATORS AS PRECISION POSITING DEVICES A65-18628

TRACK CURVE MADE BY PIVOT CENTER POINT OF
DYNAMICALLY LOADED CYLINDRICAL SLIDING BEARING OF
ARBITRARY CROSS SECTION A65-21245

NON- NEWTONIAN LUBRICANT FLOW IN SLIDER BEARING, USING CONSTITUTIVE EQUATION CONTAINING STRESS NONLINEARITIES

A65-227

GRAPHICAL METHOD FOR OPTIMIZING BEARING SPAN WITH RESPECT TO REDUCING SHAFT BENDING AND BEARING DEFLECTION TO MINIMUM A65-25644

FLEXURE-PIVOT BEARING TYPES, SPRING RATE AND SINGLE STRIP DESIGN USEFUL FOR LIMITED ANGULAR MOVEMENT A65-25992

BEARING SELECTION FOR MAXIMUM TOTAL PRODUCT
PERFORMANCE
ASME PAPER 65-MD-51
A65-28639

GRAPH-ANALYTICAL METHOD FOR DETERMINING EFFECT OF FORCES OF DRY FRICTION IN BEARINGS ON OPERATION OF GYROSCOPE SUSPENSION

A65-30288

LUBRICATION AND WEAR OF STEEL BEARING SURFACES AND MINERAL-UIL LUBRICANT SYSTEM A65-30599

ROTATING MACHINES IN EXTREME ENVIRONMENT DISCUSSING CONDUCTORS, MAGNETIC MATERIALS, INSULATIONS, BEARINGS AND PERFORMANCE

A65-31144

INERTIA, TURBULENT AND VISCOUS TERMS COMPUTED FOR SLIDER BEARING LUBRICATION, USING MATRIX ALGEBRA METHUDS
A55-31720

CONDUCTING LUBRICANT IN EXTERNALLY PRESSURIZED BEARING WITH VARIABLE FILM THICKNESS IN PRESENCE OF MAGNETIC FIELD DETERMINING FLOW, LOAD AND ELECTRICAL CHARACTERISTICS A65-32310

FOIL BEARING THEORY TO EXPLAIN LUBRICATION CONDITION OF LIP SEAL, TAKING INTO ACCOUNT SURFACE ROUGHNESS EFFECT AND VISCOELASTIC PROPERTY OF MATERIAL A65-32769

ELASTOHYDRODYNAMIC LUBRICATION, REVIEWING WORK ON FILM THICKNESS AND SHAPE, PRESSURE AND STRESS DISTRIBUTION, SIDE LEAKAGE, ETC

A65-33218

BIBLIOGRAPHY OF IME SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION AT LEEDS, ENGLAND IN SEPTEMBER 1965 A65-33220

M HD PARALLEL PLATE SLIDER BEARING UNDER NUNUNIFORM MAGNETIC FIELD ASME PAPER 64-MA/LUB-2 A65-33851

M HD SQUEEZE FILM BEARINGS IN PRESENCE OF ELECTROMAGNETIC FIELD ASME PAPER 64-WA/LUB-3 A65-3385

SINTERING METHOD TO PROVIDE DESIRED PRECIPITATION HARDENABLE HIGH TEMPERATURE BEARING MATERIAL WITH PREFERRED LATTICE STRUCTURE SAE PAPER 650796

FRICTION AND WEAR OF FIVE BEARING-RETAINER MATERIALS, AND THERMAL STABILITY AND LIQUID COMPATIBILITY OF POLYPHENYL ETHER LUBRICANTS FOR SNAP SPACE FÜWER GENERATOR NASA-TN-D-2663 N65-17328

DRY THIN-FILM LUBRICANTS AND SOFT-METAL LUBRICANTS APPLIED TO BEARINGS AND GEARS FOR USE UNDER HEAVY LOADS AND SLOW SPEEDS IN SPACE ENVIRONMENTS
AEOC-TR-65-1
N65-17429

ADAPTABILITY OF FABROID LOW FRICTION, SELF-LUBRICATING BEARING MATERIAL FOR OUTER SPACE ENVIRONMENT APPLICATION RR-8-3008

DRY CUMPOSITE LUBRICATED BEARINGS FOR AEROSPACE ENVIRUNMENTAL CHAMBER AEDC-TR-65-35 N65-19527

ULTRASUNIC INSPECTION OF ANTIFRICTION BEARINGS AD-454013 N65-19727

TOOL STEEL BEARING LUBRICANT ENDURANCE AT HIGH
SPEEDS AND TEMPERATURES
NASA-CR-57445 N65-19893

LUBRICATION OF BEARINGS AND GEARS FOR HEAVILY LOADED LOW VELOCITY SPACE SIMULATOR AEDC-TR-65-19 N65-19971

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND HIGH TEMPERATURES NASA-CR-57982 N65-21303

ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND TEMPERATURES ON BEARING LUBRICANT N65-22166

BEARING AND LUBRICANT PROBLEMS AD-429247

D-429247 N65-26280

MAGNETOHYDRODYNAMIC FLUID FLOW BOUNDARY LAYERS FOR LIQUID METAL BEARINGS N65-27510

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND TEMPERATURES NASA-CR-64183 N65-3105

SCREENING OF HIGH TEMPERATURE BEARING ELEMENTS PR-3 N65-31078

TEST RIG FUR RELIABILITY, DESIGN OF SLIDING FRICTION TEST SPECIMEN, AND CALIBRATION FECHNIQUE - HIGH TEMPFRATURE BEARING ELEMENTS INVESTIGATION PR-2

PLASTIC ORIFICE FOR FLOW CONTROL DEVICE IN GAS LUBRICATED BEARINGS - COMPUTER PROGRAMMING NASA-CR-64587 N65-31884

LIQUID POTASSIUM METAL LUBRICATED BEARINGS FOR SUPPORT OF ROTOR WITH SPACE POWER SYSTEM WEIGHT DISTRIBUTION R-5086-7 N65-33491 HYDRODYNAMIC BEARING LUBRICATION OF ROTATING CYLINDER WITH REFERENCE TO SUB-CAVITY PRESSURE AND CAVITATION REGIONS UDC-621-89-032

PARTIAL POROUS METAL BEARINGS PERFORMANCE DURING STEADY STATE OPERATION WITH FULL FILM OF LUBRICANT, DETERMINING PRESSURE DISTRIBUTION A66-15526 ASME PAPER 65-WA/LUB-3

CORRELATION EQUATION ESTIMATING PITTING FATIGUE LIFE OF BEARINGS FROM MINIMAL ROLLING CONTACT RIG DATA ASME PAPER 65-WA/CF-5

SERVICE LIFE OF ANTIFRICTION BEARINGS REPRESENTED BY WEIBULL DISTRIBUTION LAW, WITH COMPUTER METHOD FOR PARAMETERS AND DENSITY FUNCTION

A66-16486

HIGH TEMPERATURE BEARING LUBRICANT REQUIREMENTS FOR JET ENGINE LUBRICATION SYSTEMS SAE PAPER 660072 A66-20157

DPERATION, MAINTENANCE AND INSTALLATION OF FRICTION AND NONFRICTION BEARINGS, NOTING A66-22951 CHARACTERISTICS, PROBLEMS, ETC.

POWDER METAL BEARINGS MANUFACTURE NOTING SHAPES, SIZES, TOLERANCES, MATERIALS, DESIGN, INSTALLATION, ETC A66-24100

PRESSURE DISTRIBUTION OF VISCOUS ELECTRICALLY CONDUCTING FLUID IN LUBRICATING LAYER OF CYLINDRICAL BEARING A66-

OIL CUSHION RESILIENCE IN HYDRODYNAMIC BEARINGS, EXAMINING EFFECT ON DYNAMIC BEHAVIOR OF UNSYMMETRICAL SHAFT WITH ONE DISK

A66-24999

BOOK ON DESIGN AND UTILIZATION OF ANTIFRICTION A66-26281 BEAR INGS

M HD INCLINED SLIDER BEARING WITH AZIMUTHAL MAGNETIC FIELD, NOTING LOAD CAPACITY

A66-29407

LIQUID SOLID FILM LUBRICATION OF HYDRODYNAMIC BEARINGS, INCLUDING EFFECTS OF SOLID PARTICLES IN LIQUID BASE LUBRICANT A66-30412 ASLE PAPER 66AM 5DE

ROLLING FRICTION STUDIES OF INTERMETALLIC AND ZIRCONIUM OXIDE FOR CONTROL SURFACE BEARINGS FOR

SPACE REENTRY VEHICLE A66-30413 ASLE PAPER 66AM 5D4

S NAP-8 REACTOR OSCILLATING BEARINGS TO PROVIDE LOW FRICTION SELF-LUBRICATION AT 1150 DEGREES

STARTING FRICTION AND KINETIC FRICTION OF PTFE FABRIC-LINED SPHERICAL BEARINGS AND DEFLECTION AND PERMANENT SET UNDER STATIC LOADING

OPERATING LIFETIME OF POROUS BEARINGS, DISCUSSING DEPENDENCE ON QUALITY OF IMPREGNATING LUBRICANT

STEADY-STATE AND DYNAMIC CHARACTERISTICS OF FULL CIRCULAR BEARING AND CENTRALLY LOADED ARC BEARING PRESENTED IN DESIGN CHARTS FOR TURBULENT LUBRICATION ANALYSIS ASME PAPER 66-LUBS-4

EFFECT OF OIL ADDITIVES ON CORROSIONAL WEAR OF LEAD ALLOY BEARINGS N66-11117

LIQUID MERCURY AND ALKALI HALIDE METALS LOOP FOR LIQUID METAL LUBRICATED ROTOR BEARINGS . SNAP

MT1-64TR72. REV.-2

N66-11728

FLUID FILM SHAFT BEARINGS FOR LIQUID METAL PUMP -SNAP-50/SPUR POWERPLANT TIM-916 N66-11819 DIFFERENTIAL EQUATIONS FOR LOAD DEFLECTION CHARACTERISTICS OF THIN ELASTIC LAYERS FOR APPLICATION TO COMPLIANT BEARINGS N66-11959

GPERATING CONDITION AND GAP SIZE EFFECTS ON FRICTION COEFFICIENT FOR POLYMER PLASTIC BEARINGS — MATERIAL TESTING FTD-TT-65-737/18284 N66-12106

TIM-874

ROTOR DYNAMICS TESTS WITH OVERHUNG MASS USING HYDROSTATIC WATER BEARINGS N66-13147

BRAYTON CYCLE TURBOMACHINERY ROLLING ELEMENT BEARING SYSTEM NASA-CR-54785 N66-14061

HYDROSTATIC BORING BAR AND PRODUCTION-SIZE SPINDLE USE HYDROSTATIC AIR BEARINGS AND POROUS GRAPHITE BEARING PADS WITH APPLICATION AS LATHE COMPONENTS N66-15092 Y-DA-921

TURBULENT FLUID FLOW THEORY AND APPLICATION TO HYBRID BEARINGS LUBRICATION NIO-3363-2

AIRCRAFT LUBRICANT AND SELECTED SOLVENT TESTS FOR REMOVAL OF CARBONACEOUS DEPOSITS ON JET ENGINE BEARING N66-19564 AFAPI -TR-65-118

BRAYTON CYCLE TURBOCOMPRESSOR DESIGN WITH SELF-ACTING GAS BEARINGS N66-20430 NYD-3237-1

LIFETIME, LOAD-CARRYING ABILITY, AND FRICTION AND WEAR CHARACTERISTICS OF PLAIN SLEEVE BEARINGS FOR AIRCRAFT SUPPORT STRUCTURES N66-24725 AD-628937

EFFECT OF STEEL COMPONENT HARDNESS DIFFERENCES ON BEARING FATIGUE AND LOAD CAPACITY NASA-TM-X-52087

WEAR AND FRICTION OF LUBRICATED AND UNLUBRICATED STAINLESS STEEL BEARINGS IN SLIDING AND ROLLING CONTACT IN ULTRAHIGH VACUUM AND VARIOUS GAS ENVIRONMENTS N66-27232 NASA-CR-65374

VIBRATION EFFECT ON FRICTION TORQUE IN CYLINDRICAL GUIDE BEARINGS FOR BALANCE-WHEEL SPINDLE N66-27598 FSTC-HT-23-40-66

STRUCTUREBORNE AND AIRBORNE VIBRATION STUDIES OF ROLLING ELEMENT AND SLIDING SURFACE BEARINGS F-A2321

MEASURING PERFORMANCE CHARACTERISTICS OF LIQUID MEASURING PERFORMANCE CHARACTERISIONS OF THE STEADY STATE AND DYNAMIC LOAD CONDITIONS

N66-31686

BENDING

PROTECTIVE COATING EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS - BENDING-DUCTILITY EVALUATION NASA-CR-63784

BENDING THEORY

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR BENDING THEORY ASME PAPER 65-AV-3

GRAPHICAL METHOD FOR OPTIMIZING BEARING SPAN WITH RESPECT TO REDUCING SHAFT BENDING AND BEARING DEFLECTION TO MINIMUM A65-25644 A65-25644

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NOVILINEAR BENDING THEORY ASME PAPER 65-AV-3

BENZOIC ACID

ALUMINUM SALTS OF SUBSTITUTED BENZOIC ACIDS FOR USE AS HIGH TEMPERATURE GREASE THICKENERS --

BIBLIOGRAPHY WITH ABSTRACTS AFML-TR-64-324

N65-31634

BENZYL

SYNTHESIS, CHARACTERIZATION, AND ESTER-ESTER INTERCHANGE STUDY OF MIXED ESTER 2-ETHYLHEXYL BENZYL AZELATE FOR USE AS LOW TEMPERATURE INSTRUMENT OILS NRI - 6149

N65-22144

PHYSICAL METALLURGY, CORROSION, FABRICATION, POWDER PRODUCTION, AND STRUCTURAL APPLICATIONS OF BERYLLIUM AND BERYLLIUM ALLOYS

N65-14123

ORIENTATION EFFECT ON FRICTION CHARACTERISTICS OF SINGLE CRYSTAL BERYLLIUM IN VACUUM NASA-IN-D-3485 N66-2986 N66-29866

BERYLLIUM ALLOY

CORROSION RESISTANCE OF BERYLLIUM AND CORROSION PREVENTION VIA DIFFERENT COATINGS

A65-32402

PHYSICAL METALLURGY, CORROSION, FABRICATION, POWDER PRODUCTION, AND STRUCTURAL APPLICATIONS OF BERYLLIUM AND BERYLLIUM ALLOYS

N65-14123

URANIUM INTERMETALLIC FUEL SYSTEM AND ALUMINUM-BERYLLIUM ALLOY CORROSION PROPERTY STUDIES N66-28357

BERYLLIUM OXIDE

BRITTLE AND PLASTIC BEHAVIOR OF HOT-PRESSED POLYCRYSTALLINE BE O NOTING STRESS CORROSION, FRACTOGRAPHY AND X-RAY ROCKING CURVES

A66-14933

BETA RADIATION

METALLIC CORROSION MEASUREMENT BY RADIATION BACKSCATTERING AND RADIATION INDUCED X-RAYS

A66-13933

BIBLIDGRAPHY

BIBLIOGRAPHY OF THE SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION AT LEEDS, ENGLAND SEPTEMBER 1965 A65-33220

ANNOTATED BIBLIOGRAPHY OF ABSTRACTS ON LUBRICATION, CORROSION, AND WEAR

N65-29845

ALUMINUM SALTS OF SUBSTITUTED BENZOIC ACIDS FOR USE AS HIGH TEMPERATURE GREASE THICKENERS -BIBLIDGRAPHY WITH ABSTRACTS AFML-TR-64-324 N6 N65-31634

ANNOTATED BIBLIOGRAPHY ON SOLID LUBRICANTS - WITH INDEXES NASA-SP-5037

BINARY ALLOY

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF
AL-BASED FE, NI, TI, CU AND SB ALLOYS AND
INTERMETALLIC COMPOUNDS
A66-20 A66-20840

LIQUID ZIRCONIUM VISCOSITY, BINARY ALLOY OXIDATION, SYNTHESIS AND PROPERTIES OF ZIRCONIUM BORIDE ALLDYS WITH MOLYBDENUM DISTLICIDE, AND ZIRCONIUM CORROSION IN ALKALI METAL CHLORIDE JPRS-32341 N66-17779

MECHANICAL AND FRICTION PROPERTIES OF PLASTIC COATINGS, AND WATERPROOFED GLASS FIBER STRENGTH DEPENDENCE ON BINDERS FTD-TT-65-319/18284 N66-28

BIOLOGICAL EFFECT

CATHODIC DEPOLARIZATION THEORY OF BACTERIAL CORROSION, USING DESULFOVIBRIO DESULFURICANS WITH BENZYL VIOLOGEN AS ELECTRON ACCEPTOR

A66-22303

BOILING

POTASSIUM CORROSION TEST LOOP FOR EVALUATING REFRACTORY ALLOYS IN BOILING AND CONDENSING

PUTASSIUM ENVIRONMENTS SIMULATING SPACE ELECTRIC POWER SYSTEMS NASA-CR-54735

BOILING MATER REACTOR
CORROSION OF MATERIALS FOR FUEL CLADDING IN
SUPERHEAT REACTOR SYSTEMS

N65-31797

AMMONIA USED TO SUPPRESS OXYGEN PRODUCTION AND CORROSION IN BOILING WATER REACTOR

. STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION AND DELAYED FAILURES IN STAINLESS STEEL USED FOR BOLTS A66-33442

DRY FILM LUBRICATION MATERIALS AND BONDING INCLUDING GRAPHITE, SELENIDES, PTFE AND PARTICLE, RESIN OR SALT-BONDING

BORON NITRIDE

IMPROVEMENT OF RHEOLOGICAL PROPERTIES OF GREASE THICKENED BY BORON NITRIDE P-51A

CHEMICAL STABILITY OF SILVER GRAPHITE, MOLYBDENUM DISULFIDE, ZINC OXIDE, BORON NITRIDE, MUSCOVITE AND PHLOGOPITE MICA SOLID LUBRICANTS

A66-31675

BOUNDARY LAYER

FRICTION AND HEAT FLOW DETERMINATION FOR SELF-SIMULATING BOUNDARY LAYER PROBLEMS

N65-35856

BOUNDARY LAYER FLOW

MAGNETOHYDRODYNAMIC FLUID FLOW BOUNDARY LAYERS FOR LIQUID METAL BEARINGS

BOUNDARY LUBRICATION

IODINE-ANISOLE AND IODINE-ANISOLE-TURBINE OIL AS BOUNDARY LUBRICANTS FOR CHROME STEEL, NOTING FRICTION REDUCTION AND DECREASE IN WEAR

FILMS ON SLIDING SURFACES INVESTIGATING EFFECTS ON SEIZURE, PRESSURE WELDING, SINTERING, FRICTION AND BOUNDARY LAYER LUBRICATION A65-15683

BOOK CONCERNING MOLECULAR PHYSICS OF BOUNDARY FRICTION ON METAL SURFACES A65-A65-16663

CHEMICAL ADSORPTION AND P-32 IMPURITIES ASSOCIATED WITH TRICRESYL PHOSPHATE AS ANTIWEAR ADDITIVE FOR STUDY OF BEARING SURFACE ASLE PAPER 64-LC-2

HYDROCARBON BOUNDARY LUBRICATION OF HARD STEEL, RELATING FRICTION AND WEAR TO HYDROCARBON STRUCTURE AND DXYGEN CONCENTRATION ASLE PAPER 64-LC-4

LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR BELOW AND ABOVE FILM MELTING POINT ASLE PAPER 64-LC-6 A65-18054

CONCEPT THAT NONINTERCONNECTED LUBRICANT RESERVOIRS SURFACE HAS LESS BOUNDARY LAYER FRICTION THAN SMOOTHER SURFACE WITH APPARENT LAY, GIVING TORQUE TEST ON SURFACE FINISHES A65-20034

INVERSE PROBLEMS IN HYDRODYNAMIC LUBRICATION IN WHICH FILM PRESSURE DISTRIBUTION IS ASSUMED AND PROFILE TO BE DETERMINED IS ANALYZED IN CONJUNCTION WITH DESIGN DIRECTIVES

A65-23502

BOUNDARY LUBRICATION IN OIL SYSTEM DISCUSSED IN TERMS OF FILM STRENGTH COVERING ADSORBED, CHEMISORBED AND CHEMICAL REACTION FILM FORMATION A65-23505

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LOADS, SPEEDS AND LUBRICANTS

ASLE PREPRINT 65AM 6A2

A65-24258

HYDROMAGNETICALLY SQUEEZED FILMS BETWEEN TWO CONDUCTING SURFACES USED AS LUBRICATOR, DISCUSSING LOAD CAPACITY, PRESSURE AND TIME OF APPROACH ASME PAPER 65-LUBS-6

SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION SPONSORED BY INSTITUTION OF MECHANICAL ENGINEERS AT LEEDS, ENGLAND IN SEPTEMBER 1965 A65-32761

ELASTOHYDRODYNAMIC LUBRICATION AT POINT CONTACTS, DERIVING FILM THICKNESS FROM ELECTRICAL CAPACITY MEASUREMENTS AND NOTING SIDE-LEAKAGE CONCEPT A65-32762

M HD PARALLEL PLATE SLIDER BEARING UNDER NONUNIFORM MAGNETIC FIELD ASME PAPER 64-WA/LUB-2

PUBLICATIONS ON LUBRICATION COVERING FLUID FILM METAL WORKING, AUTOMOTIVE, GEAR, BEARING, FRICTION AND WEAR

ASME PAPER 64-WA/LUB-1 M HD SQUEEZE FILM BEARINGS IN PRESENCE OF

ELECTROMAGNETIC FIELD A65-33854 ASME PAPER 64-WA/LUB-3

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LOADS, SPEEDS AND LUBRICANTS ASLE PREPRINT 65 AM 6AZ A66-25367

NACE SALT STRESS CORROSION CRACKING OF RESIDUALLY STRESSED TITANIUM ALLOY BRAKE FORMED SHEET FOR SUPERSONIC TRANSPORT NASA-TM-X-1082 N65-20483

STRESS-CORROSION CRACKING, RATE OF WEIGHT LOSS AND SURFACE CONDITION OF 70-30 COPPER ZINC ALLOY IN CONCENTRATED AQUEOUS AMMONIA A66-18519

BRAYTON CYCLE CORROSION RESISTANCE OF IRON-BASE, NICKEL-BASE, AND COBALT-BASE SUPERALLOYS TO LITHIUM FLUORIDE AT CYCLIC ELEVATED TEMPERATURES NASA-CR-54781 N66-10428

BRAYTON CYCLE TURBOMACHINERY ROLLING ELEMENT BEARING SYSTEM NASA-CR-54785

BRAYTON CYCLE TURBOCOMPRESSOR DESIGN WITH SELF-ACTING GAS BEARINGS NY0-3237-1 N66-20430

BRITTLENESS

BRITTLENESS OF ANNEALED STEELS USING CORROSION TESTS UNDER TENSION IN PRESENCE OF HYDROGEN A65-28628

BUILDING MATERIAL

SELECTION, MANUFACTURE, CORROSION RESISTANCE, AND PECULIARITIES OF ALUMINUM ALLOYS USED AS STRUCTURAL BUILDING MATERIALS N66-1273

CORROSION RESISTANCE OF STRUCTURAL ALUMINUM ALLOY BUILDING MATERIALS N66-1273

CADMIUM

CORROSION RESISTANT AND EMBRITTLEMENT CHARACTERISTICS OF TITANIUM-CADMIUM PLATING N65-22093

CAUSE OF CORROSION OF CADMIUM PLATED STEEL IN ELECTRONIC VAN N66-12016 CCL-187

CADMIUM ALLOY

CADMIUM-TITANIUM CORROSION RESISTANT PLATING PROCESS FOR PROTECTING HIGH STRENGTH STEELS A65-18784 CALCIUM CALCIUM SOAPS OF SYNTHETIC FATTY ACID FRACTION AS METAL DRAWING LUBRICANT

FTD-TT-64-1197/1

CALCIUM FLUORIDE

CHEMICAL AND THERMAL STABILITY OF FLUORIDE SULID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE ENVIRONMENT

ASLE PREPRINT 65AM 5C5

CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE **ENVIRONMENT**

ASLE PREPRINT 65AM 5C5

A66-18284

CANTILEVER BEAM

STRESS CORROSION CRACKING TEST EMPLOYING PRECRACKED BAR STRESSED IN BENDING, NOTING APPARATUS AND RESULTS ON MARTENSITIC STEEL AND TITANIUM ALLOY

CAPILLARY

FUEL-WATER AND OXIDIZER-WATER CORROSION IN ALUMINUM CAPILLARIES OF FUEL AND OXIDIZER TANKS N65-35287 DSR-S-11047

CARBAMIDE

LOW-FREEZING-POINT OIL PREPARATION BY EXTRACTING PARAFFINS FROM PETROLEUM DISTILLATES WITH CARBAMIDE N66-28277 FTD-TT-65-1509/184

CARRIDE

INTERACTION OF CO WITH PUNDERED AND SULID NIOBIUM, EMPHASIZING OXYCARBIDE FORMATION, CHEMICAL STRENGTH, ACTIVATION ENERGIES AND DIFFUSION COEFFICIENTS A65-28341

UXIDE AND CARBIDE CORROSION PRUDUCIS IN MATRIX AND SURFACE OF STEEL PLATE BY ELECTRON DIFFRACTION N66-18080 M65-933

TESTING COMPONENTS AND MATERIALS OF MACHINES AND IESTING COMPUNENTS AND MATERIALS OF MACHINES AND INSTRUMENTS FOR WEAR - ANTIFRICTION PROPERTIES OF IMPREGNATED CARBON AND GRAPHITE MATERIALS WURKING IN DRY FRICTION CONDITIONS FTD-MT-64-247 N65-36 N65-36286

ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE MATERIALS IMPREGNATED WITH LIQUID METALS AND ALLOYS WORKING IN DRY FRICTION CONDITIONS

ANTIFRICTION PROPERTIES OF IMPREGNATED MATERIALS BASED ON GRAPHITE, WORKING IN DRY FRICTION CONDITIONS

EFFICIENCY EVALUATION OF CARBON REMOVERS FOR USE IN CLOGGED OIL PUMPS N66-28339 C66-155

CARBON MONOXIDE

INTERACTION OF CO WITH POWDERED AND SOLID NIOBIUM, EMPHASIZING OXYCARBIDE FORMATION, CHEMICAL STRENGTH, ACTIVATION ENERGIES AND A65-28341 DIFFUSION COEFFICIENTS

CARBON 14

DIFFUSION OF CARBON INTO TUNGSTEN AND MOLYBDENUM AT LOW CARBON CONCENTRATIONS AND HIGH TEMPERATURE A65-29870

CARBONIZATION

LIGHT UIL ANALYSIS FROM FLUIDIZED COAL CARBONIZATION USING GAS CHROMATUGRAPHY BM-RI-6709

N66-16581

CARBOXYLIC ACID

RELATION BETWEEN CHAIN LENGTH IN SATURATED ALIPHATIC ACIDS AND STRUCTURE OF PSEUDUGELS THICKENED WITH THEIR LI AND CA SUAPS STUDIED FUR LUBRICATING PURPOSES

HIGH ACTIVITY OF ALKALI METAL SALTS OF CARBUXYLIC ACIDS AND SUBSTITUTED PHENOLS AS SYNERGISTS FOR ARYLAMINE ANTIOXIDANTS IN ESTER-TYPE SYNTHETIC 466-23123 LUBRICATING DILS

ETHYLHEXYLAZELATE BASED LUBRICANTS FOR BALL **BEARINGS** NRL-6356 N66-21121

CASTING

COMPOSITE CASTING AS METALLURGICAL BONDING TECHNIQUE, NOTING APPLICATION TO WEIGHT REDUCTION AND INCREASE OF CORROSION RESISTANCE

CATALYST

ORGANIC METALLIC SALTS AS UXIDATION CATALYSTS IN LUBRICATING OILS — CORROSION RESISTANT ADDITIVES

ENDURANCE AND CORROSION RESISTANCE TESTS OF CATALYST FOR RECOMBINATION OF RADIOLYTIC OXYGEN AND HYDROGEN CEND-525 N66-20315

CATALYTIC ACTIVITY

MEMBRANE TYPE CATALYSTS AS LIQUID ELECTROLYTIC FUEL CELLS AND OTHER HETEROGENEOUS PROCESSES, CONSIDERING ACTIVE THREE PHASE BOUNDARY

A65-17229

CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-DXYGEN FUEL CELLS WITH AN ALKALINE ELECTROLYTE-CORROSION RESISTANCE AND ACTIVITY TESTING OF MATERIALS AND ELEMENTS NASA-CR-70930 N66-24550

CATHODIC PROTECTION SYSTEM FOR SHIP HULL -CORRUSION PREVENTION REPT .-64-2 N65-17412

CATHODE PROTECTION, METALLIC AND STRESS CORROSION RESEARCH, AND DEEP OCEAN TECHNOLOGY

NRL-1574 N65-27111 POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR

METALLIC INGUIS PREPARED AS ROTATING DISK ELECTRODES - CATHUDIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-DXYGEN FUEL CELLS NASA-CR-68891 N66-13991

IRON AND STEEL CURROSION PREVENTION BY PROTECTIVE COATINGS AND CATHODIC PROTECTION AD-625900 N66-18493

CAVITATION

INFLUENCE OF CAVITATION INTENSITY ON STABILITY OF MATERIALS, EFFECT OF HEAT TREATMENT ON LONG TIME STRENGTH OF STEEL, AND KINETIC AND DIFFUSION REGIONS OF GAS CORROSION OF STEEL JPRS-29139 N65-19592

HYDRUDYNAMIC BEARING LUBRICATION OF ROTATING CYLINDER WITH REFERENCE TO SUB-CAVITY PRESSURE AND CAVITATION REGIONS UDC-621.89.032 N65-35473

FILM RUPTURE AND CAVITATION IN JOURNAL BEARINGS WITH LOW KINEMATIC VISCOSITY LUBRICANTS N66-20254

CAVITATION FLOW

GEAR TOOTH PITTING DUE TO LUBRICANT FILM
CAVITATION, NOTING EFFECTS OF VIBRATION AND
INCREASED VISCUSITY OF FLUID
A6 A65-17527

PITTING CHARACTERISTICS OF EARLY PHASE CAVITATION DAMAGE TO TEST SPECIMENS IN VENTURI ASME PAPER 64-WA/FE-2

HYDRUDYNAMIC LUBRICATION OF TWO LIGHTLY LOADED ROTATING CIRCULAR CYLINDERS, WITH REFERENCE TO SUBCAVITY PRESSURE AND NUMBER OF STREAMERS IN CAVITATION REGIONS A65-27984

CENTAUR LAUNCH VEHICLE

METAL CORROSION PREVENTION METHODS FOR CENTAUR LAUNCH VEHICLE LIQUID PROPELLANT TANKS NASA-CR-72000 N66~29292

CENTRIFUGE

HASTELLOY F AND OTHER CORROSION RESISTANT STRUCTURAL MATERIALS FOR CENTRIFUGE IN REACTOR FULL RECOVERY PLANT URNL-3787

N65-20708

CERAMICS

NUCERITE, CERAMIC-METAL COMPUSITE WITH HIGH MECHANICAL STRENGTH AND ABRASION RESISTANCE NOTING CRYSTAL STRUCTURE, APPLICATION, PROPERTIES, ETC

CERIUM COMPOUND

STABILIZATION OF SILICONE LUBRICATING FLUIDS AT 300 TO 400 DEG C BY SULUBLE CERTUM CUMPLEXES NRL-6156 N65-22149

WEAR RESISTANCE TESTING ON PINS COATED WITH REFRACTORY METALS BY PLASMA-ARC PROCESS -CERMETS SA-TR18-1096

ELECTRIC WEAR RESISTANCE OF SILVER AND CERMET CUNTACTS N66-13269

CESTUM

MECHANISMS OF CORROSION ON SELECTED STRUCTURAL MATERIALS BY LIQUID CESIUM

CORRUSIVE ATTACK MECHANISMS OF LIQUID CESIUM ON CONTAINMENT METALS AND TEMPERATURE GRADIENT MASS TRANSFER COMPARISON MSAR-65-111 N66-13775

CHANNEL FLOW

FLUID FILM LUBRICATION THEORY DEVELOPED FROM ASSUMPTION OF LOCAL WEDGE FLOW RATHER THAN LOCAL PARALLEL CHANNEL FLOW

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK **ELECTRODES** A65-29311

COMPUTATION OF FLOW RATE IN PIPES AND DETERMINATION OF HEAD LUSSES IN PIPES OF LUBRICATION SYSTEMS WITH FLUID LUBRICANTS

A65-30155

DIFFUSIVE CORRUSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK ELECTRODES A66-31597

CIRCULAR CHANNEL PRESSURF DROP, FLOW QUALITY, AND CORRUSION FILM THICKNESS MEASUREMENTS EURAEC-1288 N66-18864

CHAPLYGIN EQUATION
NONHULUNOMIC COUPLING ACHIEVED BY MEANS OF
VISCOUS FRICTION FORCES, USING CHAPLYGIN SLEDGE THEOREM

CHEMICAL ANALYSIS

CUANTITATIVE CHEMICAL ANALYSIS, USING GAS CHROMATUGRAPHY, FUR ACYL CUMPONENTS OF NEOPENTYL POLYUL ESTER AIRCRAFT ENGINE LUBRICANT N66-22779

CHEMICAL COMPOSITION

HYDROCARDON BOUNDARY LUBRICATION OF HARD STEEL, RELATING FRICTION AND WEAR TO HYDROCARBON STRUCTURE AND DXYGEN CONCENTRATION ASLE PAPER 64-LC-4

LUBRICANT RADIATION RESISTANCE DEPENDENT ON LUBRICANT CHEMICAL CUMPUSITION AND INTENSITY AND TYPE UP IONIZING RADIATION FTD-11-65-325/18284 N65-32852

EFFECTS OF HIGH-POLYMER ADDITIVES AND CHEMICAL COMPOSITION OF DILS ON PETROLEUM VISCOSITY N66-30273

CHEMICAL COMPOUND

EFFECTIVENESS, SAFETY, AND ECONOMICS OF CHEMICAL COMPOUNDS IN DESCALING METAL AND NONMETALLIC SURFACES SD-22 N66-25289

CHEMICAL KINETICS

CHEMICAL KINETIC MECHANISMS IN OXIDATION RESISTANT

SUBJECT INDEX CHEMICAL MILLING

ADDITIVES TO LUBRICATING OILS

N66-11110

HOT CORROSION MECHANICS OF NICKEL AND COBALT IN HIGH TEMPERATURE SULFUR-DXYGEN ENVIRONMENT N66-28679 AD-629598

MILAL MILLING EFFECT ON SUSCEPTIBILITY OF HIGH STRENGTH STEELS TO HYDROGEN EMBRITTLEMENT AND STRESS CORROSION CRACKING N66-29945 NAEC-AML-2418

CHEMICAL STABILITY OF SILVER GRAPHITE, MOLYBDENUM DISULFIDE, ZINC OXIDE, BORON NITRIDE, MUSCOVITE AND PHLOGOPITE MICA SOLID LUBRICANTS

A66-31675

CHEMICAL REACTION

EMICAL REACTION

DETERGENT ACTION OF OIL ADDITIVES, INVESTIGATING
SORPTION OF CHARGED PARTICLES ON CARBONACEOUS
PRODUCTS OF FUEL COMBUSTION AND OIL OXIDATION
ASLE PAPER 64-LC-9

A65-180 A65-18057

BOUNDARY LUBRICATION IN OIL SYSTEM DISCUSSED IN TERMS OF FILM STRENGTH COVERING ADSORBED, CHEMISORBED AND CHEMICAL REACTION FILM FORMATION A65-23505

ANDDIC DISSOLUTION OF N-TYPE GE STUDIED.

CONSTRUCTING POTENTIAL VS CURRENT DIAGRAM IN BROAD
CURRENT DENSITY RANGE

A65-30552

DISSOLUTION OF ZINC IN ALKALI NASA-TT-F-252

N65-32968

CHEMICAL REACTION BETHEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR CORROSION MECHANISM ANALYSIS 466-12254 ASLE PREPRINT 65-LC-11

CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR CORROSION MECHANISM ANALYSIS
ASLE PREPRINT 65-LC-11
A66-466-24993

CHEMISORPTION

CHEMICAL ADSORPTION AND P-32 IMPURITIES
ASSOCIATED WITH TRICRESYL PHOSPHATE AS ANTIWEAR
ADDITIVE FOR STUDY OF BEARING SURFACE A65-18052 ASLE PAPER 64-LC-2

CHEMISTRY

CHEMISTRY AND TECHNOLOGY OF FUELS AND LUBRICANTS -U.S.S.R. N66-13716 FTD-TT-65-704/162

CHLORIDE

CHEMICAL COOLANTS FOR MACHINING URANIUM IN PRESENCE OF TRACE AMOUNTS OF CHLORIDE -CORROSION PREVENTION N65-18429 Y-1475

CHLORINE COMPOUND

ORGANO-PHOSPHORUS AND ORGANO-CHLORINE COMPOUNDS FOR USE AS OIL ADDITIVES TO REDUCE WEAR DUE TO N66-11084 FRICTION

HEXACHLOROCYCLOPENTADIENE USED AS ANTIWEAR ADDITIVE TO LUBRICATING DILS FID-TT-65-795/18284 N N66-19772

EFFECTS OF ORGANIC ADDITIVES CONTAINING SULFUR, CHLORINE, AND PHOSPHOROUS ON POLYSILOXANE LUBRICANTS N66-20010 FSTC-381-T65-553

THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS OF ANTIOXIDANT ADDITIVES IN LUBRICATING OILS -N66-13718 U.S.S.R.

CHROMIUM

CR AND MN EFFECTS ON AGING MECHANISM AND ANTICORROSION PROPERTIES OF AL- ZN- MG ALLOYS A66-12723

IDDINE-ANISOLE AND IDDINE-ANISOLE-TURBINE DIL AS

BOUNDARY LUBRICANTS FOR CHROME STEEL, NOTING FRICTION REDUCTION AND DECREASE IN WEAR

WEAR AND FRICTION BEHAVIOR OF MOLYBDENUM-TUNGSTEN-CHROMIUM ALLOYS IN HIGH TEMPERATURE SODIUM **ENVIRONMENTS**

ASLE PAPER 64-LC-25

A65-22789

STRESS CORROSION CRACKING EXPERIMENTS WITH IRON-NICKEL-CHROMIUM ALLOYS NA5-34319 COO-1319-24

STRESS CORROSION CRACKING IN CHROMIUM-NICKEL-IRON ALLOYS WITH FOURTH ELEMENT ADDED CUO-1319-27

STRESS CORROSION CRACKING MECHANISM IN IRON-NICKEL-CHROMIUM ALLOY SYSTEM N66-25978 COU-1319-32

RADIDACTIVE TRACERS TO DETERMINE WEAR RESISTANCE
OF CHROMIUM-NICKEL-IRON ALLOY GRINDING BALLS
USED IN FABRICATING CEMENT CNE 4-187

STRESS CURROSION CRACKING MICROTOPOLOGY STUDIES ON THIN FILMS OF IRON-NICKEL-CHROMIUM BASE ALLOYS EXPOSED TO BOILING MAGNESIUM CHLORIDE COO-1319-36

CHROMIUM COMPOUND

OPTIMUM COMPITIONS FOR SYNTHESIZING CHROMIUM PHOSPHATE FOR USE AS ANTICORROSION PIGMENT IN SEALERS N65-30048 FTD-TT-65-55/182

ADDITIVE FOR SULFUROUS FUELS WITH CHROMIUM COMPOUND FOR PISTON CYLINDER WEAR RESISTANCE FTO-TT-65-1126/164 N66-19560

CHROMIUM STEEL

POTENTIODYNAMIC CURVES INDICATE THAT CHROMIUM STAINLESS STEEL CORROSION RESISTANCE MINIMUM OCCURS AFTER TEMPERING NEAR 500 DEGREES C A65-26973

CORROSION RESISTANCE AND ANODIC BEHAVIOR OF KH18 N9 STEELS WITH VARIOUS NICKEL-MANGANESE-CARBON-TITANIUM CONTENTS A66-1 A66-10987

SUPER CHROMIUM STEEL SURVEY, INCLUDING APPLICATIONS IN GAS TURBINES AND AEROSPACE INDUSTRIES, PHYSICAL AND MECHANICAL PROPERTIES, THERMAL STABILITY, CORROSION RESISTANCE, ETC A66-19953

ALLOYING ELEMENTS EFFECT ON ANODIC CORROSION AND PASSIVATION OF STAINLESS STEELS

CHROMIUM STEEL STRENGTH AND CORROSION RESISTANCE IMPROVEMENT BY MOLYBDENUM AND TUNGSTEN ADDITION A66-22747

CORROSION RESISTANCE OF MOLYBDENUM-CHROMIUM STEEL IN MERCURY FORCED CONVECTION CORROSION LOOP FOR NUCLEAR AUXILIARY POWER SYSTEM COMPONENTS NASA-CR-54719 N66-19515

TEMPERATURE EFFECT ON CHROMIUM-NICKEL STAINLESS STEEL CORROSION IN PASSIVITY RANGES N66-27891 FTD-TT-65-1223/1626364

CHARACTERISTICS OF FLEXIBLE CIRCULAR PLATE,
CONSIDERING STRESS AND STRAIN IN FRICTION ZONE AT
CLAMPED SECTION A66-1118 A66-11181

CLADDING

CORROSION OF MATERIALS FOR FUEL CLADDING IN SUPERHEAT REACTOR SYSTEMS GEAP-4760

CORRUSION RESISTANCE, FATIGUE STRENGTH, AND ENGINEERING PROCESSES IN MANUFACTURING OF CLAD STAINLESS STEELS N65-33887 JPRS-32087

I-12

EXPLOSION CLADDING FOR BONDING SIMILAR AND DISSIMILAR METALS WITHOUT INTERMEDIATE METAL OR EXTERNALLY APPLIED HEAT A66-12317

DEFORMATION RESISTANCE OF HIGH STRENGTH AND ANTICORROSION STEEL ALLOY CLADS DURING HOT FORMING N66-24253

STRESS CORROSION FAILURE IN STAINLESS STEEL AND ZIRCALOY 4 FUEL ELEMENT CLADDING WCAP-3269-50 N66-304 N66-30579

EFFECT OF ULTRASONIC CLEANING ON CORROSION RESISTANCE OF PHOSPHATE-COATED STEEL PANELS SA-TR16-1122 N65-14411

CORROSION INHIBITORS AND CLEANING TECHNIQUES FOR CONTAINERS AND TANKS FSTC-381-T65-673 N66-22684

CLEAVAGE

LAMELLAR SOLID LUBRICATION - CLEAVAGE, STRESS RELAXATION, AND SHEAR STRENGTH OF GRAPHITE AFMI-TR-65-5 N65-: N65-26072

CLOSED LOOP SYSTEM

FORCED CIRCULATION, HAYNES ALLOY 25, MERCI LOOP TO STUDY CORROSION PRODUCT SEPARATION HAYNES ALLOY 25, MERCURY N65-27394

CLOSED LOOP SYSTEM FOR DYNAMIC CORROSION TESTS AT HIGH TEMPERATURE IN PRESSURIZED WATER REACTOR EUR-1744.F

FORCED FLOW CORROSION-LOOP EXPERIMENTS AND CORROSION-LOOP MATERIAL STUDIES IN SNAP-8 CORROSION PROGRAM NASA-CR-76382

N66-30971

EFFECT OF ULTRASONIC CLEANING ON CORROSION RESISTANCE OF PHOSPHATE-COATED STEEL PANELS SA-TR16-1122

LEAD METALLURGY - ARCHITECTURAL AND WROUGHT LEAD APPLICATIONS, CABLE SHEATHING, SOLDERS, JOINING, LEAD COATED STEEL, BATTERY APPLICATIONS, CORROSION CONTROL, AND FUNDAMENTAL RESEARCH N65-23264

THERMAL AFTERTREATMENT AND FLAME SPRAYING CHARACTERISTICS OF POLYAMIDE COATINGS FTD-TT-64-1324/162 N65-28276

WEAR RESISTANCE TESTING ON PINS COATED WITH REFRACTORY METALS BY PLASMA-ARC PROCESS -CERMETS SA-TR18-1096 N66-11528

WEAR CHARACTERISTICS OF ELECTROPLATED METAL COATING COMBINATIONS FOR USE IN ROTARY SWITCHES SC-DR-65-269 N66-22066

COBALT

HOT CORROSION MECHANICS OF NICKEL AND COBALT IN HIGH TEMPERATURE SULFUR-OXYGEN ENVIRONMENT N66-28679

COBALT CORROSION IN HIGH TEMPERATURE SULFUR-DXYGEN ENVIRONMENT N66-28682

EFFECTS OF SUBSTITUTING COBALT FOR NICKEL ON ACID CORROSION RESISTANCE OF STAINLESS STEEL BM-RI-6591 N65-16634

COMPATIBILITY OF NICKEL, IRON, AND COBALT BASE HIGH TEMPERATURE ALLOYS WITH BOILING POTASSIUM INVESTIGATION IN NATURAL CIRCULATION CORROSION TESTING LOOPS ORNL-3790 N65-25517

HOT CORROSION BEHAVIOR OF NICKEL AND COBALT ALLOYS EXPOSED TO SULFATE INDUCED OXIDATION

N66-28683

COLD TRAP

DIFFERENCES IN CORROSION AND MASS TRANSFER RATES

IN CORROSION LOOPS FOR SNAP-8 SYSTEM AND EFFECTIVENESS OF COLD TRAPPING IN REDUCING HYDROGEN CONCENTRATION NASA-CR-67272

N66-22205

CHARACTERISTICS OF SOVIET AND OTHER LUBRICATING OILS FOR USE IN WINTER WEATHER TO START AND MAINTAIN INTERNAL COMBUSTION MACHINES

N66-11077

COLD WORKING

AUSTENITIC STAINLESS STEEL COLD WORKING EFFECTS ON STRESS CORROSION CRACKING IN HIGH TEMPERATURE SODIUM AND MAGNESIUM CLORIDE SOLUTIONS

COLD WELDING OF METAL CONTACTING SURFACES OF SYSTEM FOR NUCLEAR AUXILIARY POWER-19 EJECTION MECHANISMS AND MINIMIZATION WITH LUBRICANT APPLICATION MND-3169-66

COMBUSTION PHYSICS

COMBUSTION AND DETONATION PHYSICS FOR MIXTURES OF FUBRICATING DILS AND DXYGEN FTD-TT-65-1106/18284

N66 18553

FACTORS AFFECTING PERFORMANCE AND RELIABILITY OF THIN FILM CAPACITORS NOTING CORROSION EFFECT AT POINTS OF INTERMETALLIC MOUNTINGS

RELIABILITY TESTING PROGRAM FOR ESTIMATING
CYCLICAL LIFE FOR EQUIPMENT EXPERIENCING ONLY
WEAROUT FAILURE
A65-A65-26059

EFFECT OF AGE AND WEAR ON RELIABILITY OF MEASURING DEVICE N65-24158

COMPOSITE MATERIAL

COMPOSITE CASTING AS METALLURGICAL BONDING TECHNIQUE, NOTING APPLICATION TO WEIGHT REDUCTION AND INCREASE OF CORROSION RESISTANCE

COMPRESSION TESTING

STRESS CORROSION TESTING BY AXIAL COMPRESSION OF SELF-STRESSED TITANIUM ALLOY SHEET SPECIMEN A65-14622

FRICTION COEFFICIENT AT ELEVATED TEMPERATURES DETERMINED BY PLANE-STRAIN COMPRESSION TEST OF SEVERAL LUBRICANTS A65-18794

SLIDING FRICTION AND COMPRESSION TESTING OF RIGID POLYURETHANE FOAMS

MOLYBDENUM DISULFIDE SOLID LUBRICANT PROPERTIES -COMPRESSION, TENSION, TORSION, COHESION, ADHESION, AND SLIDING FRICTION MEASUREMENTS N66-14469

COMPRESSOR

SLIDING FRICTION JOURNAL BEARING FOR TURBOCOMPRESSOR AND OTHER HIGH SPEED MACHINES FTD-TT-65-517/18284 N66-10873

BRAYTON CYCLE TURBOCOMPRESSOR DESIGN WITH SELF-ACTING GAS BEARINGS NY0-3237-1 N66-20430

COMPUTER NETHOD

COMPUTER METHOD FOR ISOTHERMAL PROBLEM OF RIGID AND ELASTIC CYLINDERS LUBRICATED BY CONSTANT AND VARIABLE PROPERTY FLUID. DISCUSSING FILM THICKNESS ASLE PAPER 64-LC-22

SERVICE LIFE OF ANTIFRICTION BEARINGS REPRESENTED BY WEIBULL DISTRIBUTION LAW, WITH COMPUTER METHOD FOR PARAMETERS AND DENSITY FUNCTION

COMPUTER PROGRAMMING

PULSTIC ORIFICE FOR FLOW CONTROL DEVICE IN GAS LUBRICATED BEARINGS - COMPUTER PROGRAMMING NASA-CR-64587 N65-31884 CONDENSATION

ALKYLPHENOL ADDITIVES OF FORMALDEHYDE CONDENSATION FOR USE IN LUBRICATING MOTOR OILS

NAA-11079

POTASSIUM CORROSION TEST LOOP FOR EVALUATING REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS SIMULATING SPACE ELECTRIC POWER SYSTEMS NASA-CR-54735

CONDUCTING MEDIUM

PRESSURE DISTRIBUTION OF VISCOUS ELECTRICALLY CONDUCTING FLUID IN LUBRICATING LAYER OF CYLINDRICAL BEARING

COMPERENCE

CONFERENCE ON LUBRICATION AND WEAR AT UNIVERSITY A65-23501 HOUSTON IN JUNE 1963

HIRD LUBRICATION AND WEAR CONVENTION OF INSTITUTION OF MECHANICAL ENGINEERS AT LONDON A65-26568 MAY 1965

SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION SPONSORED BY INSTITUTION OF MECHANICAL ENGINEERS AT LEEDS, ENGLAND IN SEPTEMBER 1965

STRESS CORROSION, DELAYED FAILURES, FATIGUE
CORROSION AND RELATION BETWEEN THESE PHENOMENA —
COMMISSARIAT ON ATOMIC ENERGY, METALLURGICAL
COLLOQUIUM, CADARACHE, RHONE, FRANCE, JUNE A66-33440

CONFERENCE ON LUBRICATION TECHNIQUES AND SEAL DESIGN FOR ORBITAL MANNED SPACE LABORATORY DOOR ACTUATOR NA6-17440 AD-623336

DETERMINATION OF FRICTION IN SLIDE GUIDES. UEIERMINATION OF FRICTION IN SLIDE GUIDES, ANTIFRICTION PROPERTIES OF MATERIALS USED FOR STRAP GUIDES, AND FRICTION COEFFICIENT DEPENDING ON DURATION OF CONTACT AND SLIDING SPEED FTD-TT-64-1179/162 N65-2850 N65-28504

CONTACT POTENTIAL

VOLTAGE AND DENSITY OF CONTACT-CORROSION CURRENT ARISING AT CONTACT SURFACE OF DIFFERENT METALS A65-36016

CONTACT RESISTANCE

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LOADS, SPEEDS AND LUBRICANTS
ASLE PREPRINT 65AM 6A2
A65-24256

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LOADS, SPEEDS AND LUBRICANTS ASLE PREPRINT 65 AM 6AZ A66-25367

GAS SPARGE CORROSION PROTECTION FOR HYDROFLUORIC SALT CONTAINER

CORROSION RESISTANT CONTAINER FOR RARE EARTH-RARE EARTH HALIDE SOLUTION ORNL-P-814

CORROSIVE ATTACK MECHANISMS OF LIQUID CESIUM ON CONTAINMENT METALS AND TEMPERATURE GRADIENT MASS TRANSFER COMPARISON N66-13775 MSAR-65-111

PLASTIC DRIFICE FOR FLOW CONTROL DEVICE IN GAS LUBRICATED BEARINGS - COMPUTER PROGRAMMING N65-31884 NASA-CR-64587

CONTROL SURFACE ROLLING FRICTION STUDIES OF INTERMETALLIC AND ZIRCONIUM OXIDE FOR CONTROL SURFACE BEARINGS FOR SPACE REENTRY VEHICLE A66-30413 ASLE PAPER 66AM 5D4

CONVECTIVE HEAT TRANSFER
SURFACE TEMPERATURES OF FRICTIONAL CONTACTS

CONSIDERING TWO ROLLING/SLIDING CONTACTS, HEAT SOURCE MOVING OVER SURFACE AT VARIOUS SPEEDS AND REPEATED CONTACT A65-254

COOLANT

CHEMICAL COOLANTS FOR MACHINING URANIUM IN PRESENCE OF TRACE AMOUNTS OF CHLORIDE - CORROSION PREVENTION Y-1475

N65-18429

S NAP-8 REACTOR MATERIALS DEVELOPMENT PROGRAM -LUBRICANT, COOLANT, CORROSION LOOP, AND STRUCTURAL MATERIALS EVALUATION NASA-CR-54718

COOLING SYSTEM

LUBRICATION OF BALL BEARINGS IN HIGH SPEED APPLICATION NOTING OIL TYPES, GREASE SHEAR AND OIL A65-33125

FIELD TEST OF TRANSPORT VEHICLE COOLING SYSTEM CORROSION INHIBITOR N66-19466 CCL-190

GRAPHITE CONTENT EFFECT ON ANTIFRICTION PROPERTIES UF GRAPHITIZED NICKEL-BASED COPPER AND IRON ALLOYS

CORRELATION FUNCTION

CORRELATION FOULTION ESTIMATING PITTING FATIGUE LIFE OF BEARINGS FROM MINIMAL ROLLING CONTACT RIG DATA A66-15624 ASME PAPER 65-WA/CF-5

CORROSION PREVENTION

CORROSION PROTECTION FOR REACTOR ROTATING ASSEMBLIES COVERING REQUIREMENTS, COATING TESTS A65-16168 AND MATERIALS

TEXTBOOK ON CHARACTERISTICS OF PRINCIPAL METALLIC AND NONMETALLIC MATERIALS USED IN AIRCRAFT A65-16908 STRUCTURES

CADMIUM-TITANIUM CORROSION RESISTANT PLATING PROCESS FOR PROTECTING HIGH STRENGTH STEELS A65-18784

RESIN BONDED SOLID FILM LUBRICANT EFFECTIVENESS AND CORROSION PROTECTION STUDY RESTRICTED TO STEEL

CORROSION PREVENTION COATING BY ELECTROCHEMICAL OXIDATION / ELOXAL/ METHOD FOR ALUMINUM AIRCRAFT A65-20692

COMPONENT DESIGN FOR CORROSION RESISTANCE CONSIDERING CONFIGURATION, LOCATION, PROCESSING A65-21666 FABRICATION AND ASSEMBLY

CORROSION MECHANISMS WITH EMPHASIS ON PREVENTION, DESTRUCTIVE CATASTROPHIC CORROSION AND INDUSTRIAL A45-22208 **PROBLEMS**

FACTORS AFFECTING PERFORMANCE AND RELIABILITY OF THIN FILM CAPACITORS NOTING CORROSION EFFECT AT POINTS OF INTERMETALLIC MOUNTINGS

ELIMINATION OF FUEL CONTAMINATION AND CORROSION OF FUEL TANKS IN AIRCRAFT USING JET TURBINE FUEL A65-25497

DESIGN AND MANUFACTURING TECHNIQUES TO PREVENT STRESS CORROSION RESULTING FROM MATERIAL SUSCEPTIBILITY, SUSTAINED TENSILE SURFACE STRESS AND MILD CORROSIVE ENVIRONMENT A65-28637 ASME PAPER 65-MD-45

THROAT EROSION RATES OF CARBON CHOKES IN ROCKET MOTOR NOZZLE PREDICTED, USING MATHEMATICAL APPROACH COMBINED WITH EXPERIMENTAL RESULT ALAA PAPER 65-351

AIRCRAFT CORROSION AND PROTECTIVE PAINTS, FINISHES AND ANTICORROSION PROCESSES A65-31372

CORROSION RESISTANCE OF BERYLLIUM AND CORROSION PREVENTION VIA DIFFERENT COATINGS

A65-32402

VOLTAGE AND DENSITY OF CONTACT-CORROSION CURRENT ARISING AT CONTACT SURFACE OF DIFFERENT METALS 465-3601

CORROSION COSTS, PREVENTION, TESTING METHODS, RESISTANT PLASTICS, AND PROTECTION OF REINFORCED CONCRETE AND STEEL FID-TI-64-730/1626364 N65-16293

IGNITION INHIBITORS, SCREENING METHODS OF CORROSION INHIBITOR SYSTEMS, AND FLASH AND FIRE POINTS OF WATER GLYCOL HYRAULIC FLUIDS MR-4 N65-16765

VOLATILE CORROSION INHIBITORS FOR FERROUS METAL SURFACES - NITRITE SALTS OF VARIOUS AMINES N65-17022

CATHODIC PROTECTION SYSTEM FOR SHIP HULL CORROSION PREVENTION
RFP1-64-2
N65-17412

POLYMERS IN ANTICORROSIVE TECHNOLOGY

FTD-MT-63-54 N65-18284
CHEMICAL COOLANTS FOR MACHINING URANIUM IN

CHEMICAL COOLANTS FOR MACHINING URANIUM IN
PRESENCE OF TRACE AMOUNTS OF CHLORIDE CORROSION PREVENTION
Y-1475
N65-18429

CORROSION INHIBITORS AND METALLIC SALTS EVALUATION FOR PREVENTION OR RETARDATION OF GALVANIC CORROSION OF MAGNESIUM STEEL ASSEMBLIES CCL-175 N65-18674

CORROSION PROTECTION OF HIGH STRENGTH STEELS
N65-19234

VOLATILE CORROSION INHIBITORS FOR IMPROVING PRESERVATIVE CHARACTERISTICS OF STANDARD OPERATING DILS RIA-64-3577 N65-21177

CORROSION CONTROL IN AIRCRAFT STRUCTURES, WEAPON
SYSTEMS, AND GROUND SUPPORT EQUIPMENT
P-3080
N65-22212

ANTIOXIDATION, ANTICORROSION, AND DETERGENT ADDITIVES FOR LUBRICATING OILS OBTAINED BY TREATING PRODUCTS OF OXIDATION OF PARAFFIN WITH PHOSPHORUS PENTASULFIDE FTD-TT-64-1087/1 N65-22440

CORROSION AND OXIDATION INHIBITING SYSTEM
STABILITY IN BRAKE FLUIDS AFTER EXTENDED STORAGE
CCL-176 N65-22484

LEAD METALLURGY - ARCHITECTURAL AND WROUGHT LEAD APPLICATIONS, CABLE SHEATHING, SOLDERS, JOINING, LEAD COATED STEEL, BATTERY APPLICATIONS, CORROSION CONTROL, AND FUNDAMENTAL RESEARCH N65-23264

ZINC USED AS PROTECTIVE COATING FOR STEEL ALLOY
IN STRESS CORROSION CONTROL
RIA-65-152
N65-24215

STATIC TESTING FOR CHEMICALS EFFECTIVE FOR INHIBITING ALUMINUM AND STEEL CORROSION N65-25472

MATERIALS FOR TIME MEASUREMENT INSTRUMENT PARTS
MANUFACTURE - GLASS, COATINGS, LUBRICATION, AND
CORROSION PROTECTION N65-26724

CORROSION INHIBITORS IMPROVEMENT IN METALS FROM ATTACK BY WATER BASED, FIRE RESISTANT, HYDRAULIC FLUID BMR-5 N65-27926

THERMAL AFTERTREATMENT AND FLAME SPRAYING
CHARACTERISTICS OF POLYAMIDE COATINGS
FTD-TT-64-1324/162 N65-28276

INFLUENCE OF THERMAL AFTERTREATMENT ON PROPERTIES
OF POLYAMIDE COATING IN CORROSION PREVENTION
N65-28277

OPTIMUM CONDITIONS FOR SYNTHESIZING CHROMIUM PHOSPHATE FOR USE AS ANTICORROSION PIGMENT IN SEALERS FTD-TT-65-55/182 N65-

HELICOPTER CORROSION PROBLEMS DISCUSSING CAUSES, EXPOSED SURFACES, PREVENTION AND TREATMENT

PREVENTION OF METALLIC EDGE CORROSION OF NAVAL AIRCRAFT, EVALUATING SURFACE TREATMENTS, PRIMERS, EPOXY ENAMELS, ETC A66-12318

EFFECT OF CORROSIVE ENVIRONMENTS ON VARIOUS METALS AND ANTICORROSION TECHNIQUES TO PROTECT METAL SURFACES A66+13374

CORRUSION OCCURRENCE AND CONTROL, NOTING PRONE AREAS, DETECTION AND REMOVAL A66-23014

WEAR LIFE AND CORROSION PROTECTION OF SOLID FILM LUBRICANTS IMPROVED THROUGH SUBSTITUTING OTHER LUBRICATIVE PIGMENTS FOR GRAPHITE ASLE PAPER 66AM 1C3 A66-3040

PREVENTION OF WATER VAPOR CORROSION OF URANIUM BY OXYGEN AND PROTECTIVE COATINGS AWRE-U-42/05 N66-13178

ION PLATING OF ALUMINUM THIN FILMS ON URANIUM FOR CORROSION PREVENTION - PROTECTIVE COATINGS SC-DR-65-519 N66-13189

TRANSPARENT PLASTIC PACKAGING FILMS FOR PREVENTION OF CORROSION FROM WATER VAPOR

LEAKAGE RIA-65-1588 N66-14309

CORROSION PROTECTION OF REACTOR PARTS BY ION PLATED COATING OF ALUMINUM SC-DR-65-530 N66-15

GAS SPARGE CORROSION PROTECTION FOR HYDROFLUORIC SALT CONTAINER BMI-X-329 N66-1823

IRON AND STEEL CORROSION PREVENTION BY PROTECTIVE COATINGS AND CATHODIC PROTECTION AD-625900 N66-18493

FIELD TEST OF TRANSPORT VEHICLE COOLING SYSTEM CORROSION INHIBITOR CLI-190 N66-19466

TEST METHOD FOR STORAGE DEGRADATION OF VOLATILE
CORROSION PREVENTING PAPER
RIA-65-3105 N66-21317

RINSE SOLUTION CONTAINING ORGANIC ACIDS FOR IMPROVED SALT SPRAY RESISTANCE OF PHOSPHATE COATINGS FOR METAL SURFACES RIA-66-67 N66-21419

CORROSION INHIBITORS AND CLEANING TECHNIQUES FOR CONTAINERS AND TANKS FSTC-381-T65-673 N66-22684

INFORMATION SERVICES RELATING TO PREVENTION OR LIMITATION OF ENVIRONMENT ASSOCIATED DEGRADATION OF MATERIAL AND EQUIPMENT NASA-CR-71680 N66-23825

RUST-REMOVING CORROSION PREVENTATIVE TO ABSORB
RUST FROM STORED STEEL AND IRON SURFACES AND
PREVENT DETERIORATION
ITTRI-C6032-17 N66-24781

EVALUATION OF FUNGUS-PROOF, TACK-FREE,
NONCORROSIVE, AND WEATHER-RESISTANT
PRESSURE-SENSITIVE PLASTIC OR PAPER TAPES
RIA-66-774
N66-27871

AMMONIA USED TO SUPPRESS OXYGEN PRODUCTION AND CORROSION IN BOILING WATER REACTOR AECL-2562 N66-28337

METAL CORROSION PREVENTION METHODS FOR CENTAUR LAUNCH VEHICLE LIQUID PROPELLANT TANKS NASA-CR-72000 N66-29292

RADIATION RESISTANCE OF AQUEOUS SODIUM NITRITE USED TO INHIBIT STEEL CORROSION UJV-1453/65 N66-31045

CORROSION RESISTANCE

AL- ZN- MG ALLDYS SENSITIVITY AND RESISTANCE TO WELDING AND STRESS CORROSION CRACKING

A65-16238

HIGH STRESS CORROSION RESISTANCE OF 7075- T73 ALUMINUM ALLOYS VERIFIED BY SOLUTION POTENTIAL AND ELECTRIC CONDUCTIVITY MEASUREMENTS

A65-22215

STRESS CORROSION THEORY USED IN MODEL FOR PREDICTING EFFECT OF CATION AND ANION IN SOLUTION ON SUSCEPTIBILITY TO STRESS CORROSION CRACKING

CARBON STEEL CORROSION RESISTANCE IN WATER INCREASED BY ZIRCONIUM ADDITION AFFECTING BOTH ANDDIC AND CATHODIC PROCESSES

MACHINING AND MACHINABILITY IMPROVEMENTS OF STAINLESS STEEL ALLOYS PRESENTING COST. AVAILABILITY, LUBRICATION AND CORROSION RESISTANCE A65-26951

POTENTIODYNAMIC CURVES INDICATE THAT CHROMIUM STAINLESS STEEL CORROSION RESISTANCE MINIMUM OCCURS AFTER TEMPERING NEAR 500 DEGREES C A65-26973

CHROMIUM AND ALUMINUM SURFACE DIFFUSION INTO LOW-CARBON UNALLOYED STEELS FOR IMPROVING CORROSION AND SCALE RESISTANCE A65-27

ALUMINUM ALLOYS WITH IMPROVED CORROSION AND ABRASION RESISTANCE BY NEW PRODUCTION AND FABRICATION TECHNIQUES A6 A65-30467

ELECTROCHEMICAL AND METALLOGRAPHIC FEATURES
ASSOCIATED WITH CORROSION RESISTANCE OF NICKELCHROMIUM PROTECTIVE COATINGS, NOTING CATHODE

EFFECT OF TITANIUM ADDITIONS ON RESISTANCE OF FERRITIC AUSTENITIC STEELS TO INTERCRYSTALLINE CORROSION AFTER QUENCHING

TITANIUM/CARBON RATIO AS DETERMINING FACTOR IN SUSCEPTIBILITY TO INTERCRYSTALLINE CORROSION IN STAINLESS STEELS

DESIGN AND MAINTENANCE OF AIR TRANSPORT LANDING GEAR NOTING WEIGHT FACTOR, JOINTS, BUSHINGS AND CORROSION RESISTANCE SAE PAPER 650842 A65-34839

PATTERN-CONFORMING CRACKING OF OXIDE FILM ON ALUMINUM DURING HIGH TEMPERATURE OXIDATION MAY BE CAUSE OF DECREASE IN CORROSION RESISTANCE A65-34857

HIGH ALLOY STEEL CASTINGS, DISCUSSING PHYSICAL AND MECHANICAL PROPERTIES OF CORROSION- AND HEAT-RESISTANT 8 PERCENT NICKEL AND/OR CHROMIUM

MECHANISM BY WHICH PALLADIUM ADDITIONS INCREASE TITANIUM CORROSION-RESISTANCE STUDIED, USING A65-34980

HIGH STRENGTH STRESS AND CORROSION RESISTANT STEEL DISCUSSING FAILURE MODE, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, MACHINING AND FORMING METHODS A65-35056

AIRCRAFT CORROSION FAILURES AND SOLUTIONS DISCUSSING HYDRAULIC LINES, ANGLE OF ATTACK INDICATOR, HOT AIR DUCTING, CONTROL CABLE AND BELLOWS A65-35750

ALUMINUM ADDITIONS EFFECT ON TITANIUM CORROSION RESISTANCE AND ELECTROCHEMICAL CHARACTERISTICS WHEN IMMERSED IN SULFURIC ACID SOLUTIONS A65-36014

BOOK ON METAL OXIDATION COVERING STRUCTURAL

DEFECTS, TRANSPORT PROCESS, PHASE BOUNDARIES,

LOW CORROSION RESISTANCE OF IRON-ALUMINUM ALLOYS IN FLUORINE ATMOSPHERE AT HIGH TEMPERATURE

EFFECT OF ULTRASONIC CLEANING ON CORROSION RESISTANCE OF PHOSPHATE-COATED STEEL PANELS SA-TR16-1122 N65-14411

EFFECTS OF SUBSTITUTING COBALT FOR NICKEL ON ACID CORROSION RESISTANCE OF STAINLESS STEEL PM-RI-6591

CORROSION RESISTANCE AND WELDABILITY OF AUSTENITIC HEAT-RESISTING STEELS FOR STEAM POWER GENERATORS N65-16736

CORROSION RESISTANCE AND PLASTICITY OF STAINLESS STEELS WITH ADDITIONS OF RARE EARTH METALS AND N65-18737

NIOBIUM BASE ALLOY FOR USE AS CLADDING OR STRUCTURAL MATERIAL RESISTANT TO CORROSION BY SUPERHEATED STEAM BMI-1700 N65-19464

HASTELLOY F AND OTHER CORROSION RESISTANT STRUCTURAL MATERIALS FOR CENTRIFUGE IN REACTOR FUEL RECOVERY PLANT ORNL-3787 N65-20708

HIGH TEMPERATURE TESTING FOR MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF NICKEL BASE AND CHROMIUM-NICKEL STEEL ALLOYS IN LIQUID SODIUM FTD-TT-64-704/1&2 N65-21108

CORROSION RESISTANT AND EMBRITTLEMENT CHARACTERISTICS OF TITANIUM-CADMIUM PLATING N65-22093

IMMERSION AND IMPINGEMENT ELECTROPOLISHING METHODS FOR INCREASING CORROSION RESISTANCE OF STAINLESS STEELS AND NICKEL ALLOYS USED IN PROPELLANT DUCTS NASA-CR-57864 N65-22641

CORROSION RESISTANCE OF CHROME-NICKEL STEEL AND NICKEL BASE ALLOYS IN LIQUID SODIUM FTD-TT-64-1210/1 N65-22886

II MISSILE GUIDANCE COMPONENTS - INERTIAL MEASUREMENT UNIT HEAT EXCHANGER, AND MISSILE GUIDANCE COMPUTER CORROSION RESISTANCE TESTING IN OPERATIONAL READINESS ENVIRONMENT N65-26112

CORROSION RESISTANCE METALS AND COATINGS FOR PROTECTING CHEMICAL EQUIPMENT N65-26208

CORROSION RESISTANCE OF BLACK OXIDE COATINGS ON MILD AND CORROSION RESISTANT STEELS RIA-64-3580 N65-30014

IMPEDANCE MEASUREMENT OF METAL OXIDATION FOR STUDY OF CORROSION RESISTANCE IN AQUEOUS SOLUTIONS EURAEC-1129, PT. 2 N65-32319

WEAR RESISTANCE OF SLEEVE BEARINGS MADE FROM POLYMERPOLYFORMALDEHYDE /PFA/ FTD-TT-65-329/16264 N65-33005

INCREASED URANIUM AND URANIUM ALLOY CORROSION RESISTANCE IN WATER AND STEAM

CURROSION RESISTANCE, FATIGUE STRENGTH, AND ENGINEERING PROCESSES IN MANUFACTURING OF CLAD STAINLESS STEELS JPRS-32087 N65-33887

CORROSION RESISTANCE OF NIOBIUM AND TANTALUM BASE ALLOYS TO REFLUXING POTASSIUM NASA-TM-X-52136 N65-34252

CORROSION RESISTANCE OF CONSOLIDATED ZIRCALOY 2 POWDER CONTAINING DXYGEN AND NITROGEN KAPL-3060 N65-36540 SYSTEM FOR NUCLEAR AUXILIARY POWER- 2 /SNAP-2/POWER CONVERSION SYSTEM - SELECTION OF MATERIALS WITH MINIMUM FORMATION OF CORROSION PRODUCTS TRW-ER-5643 N55-36569

ANDDIC PASSIVATION OF STAINLESS STEEL BY ELECTROCHEMICAL OXIDATION OF METAL SURFACE - CORROSION RESISTANCE

N65-36739

CORROSION RESISTANCE AND ANODIC BEHAVIOR OF KH18 N9 STEELS WITH VARIOUS NICKEL-MANGANESE~ CARBON-TITANIUM CONTENTS A66-10987

HEAT TREATMENT CYCLE EFFECT ON MECHANICAL PROPERTIES OF CORROSION RESISTANT PRECIPITATION HARDENED STEEL AM 355 IN TERMS OF METALLOGRAPHIC STRUCTURE A66-11304

NUCERITE, CERAMIC-METAL COMPOSITE WITH HIGH MECHANICAL STRENGTH AND ABRASION RESISTANCE NOTING CRYSTAL STRUCTURE, APPLICATION, PROPERTIES, ETC.

EXPLOSION CLADDING FOR BONDING SIMILAR AND DISSIMILAR METALS WITHOUT INTERMEDIATE METAL OR EXTERNALLY APPLIED HEAT AGG 12317

HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT TRANSFER RATE, LIFE TESTS, WORKING LIQUID SELECTION, ETC. A66-15544

MEASUREMENT OF SURFACE EMITTANCE OF SURFACE
COATINGS FOR SELECTED METALS, PROVIDING LONTHERMAL EMITTANCE CHARACTERISTICS IN IR SPECTRUM
FOR THERMAL AND CORRUSION CONTROL
AIAA PAPER 66-18
A66-15849

REFRACTORY ALLOY CORROSION, DISCUSSING COLUMBIUM AND TANTALUM BASE TUBING ALLOY RESISTANCE TO REFLUXING POTASSIUM BETWEEN 1800 AND 2400 DEGREES F A66-16071

CORROSION RESISTANCE OF TITANIUM AND ITS ALLOYS IN SOLUTIONS OF ACETIC AND NITRIC ACIDS AS AFFECTED BY ALUMINUM ADDITIONS A66-16608

ACCELERATED COOLING OF FERRITIC-MARTENSITIC STEEL AND FERRITIC STEEL AFTER SINTERING, COMBINED WITH ADDITIONAL HEAT TREATMENT, INCREASES STRENGTH AND CORROSION RESISTANCE

A66-16690

FRACTURE TOUGHNESS AND STRESS CORROSION RESISTANCE
OF SEVERAL HEATS OF MARAGING STEEL COMPARED WITH
RESULTS FOR LOW-ALLOY AND HOT-WORK DIE STEEL
A66-16801

AIRCRAFT FUEL TANK COATING CORROSION RESISTANCE, DISCUSSING POLYURETHANE AND EPOXY MATERIAL CHARACTERISTICS AND APPLICATION

A66-17491

SPARK IGNITER THAT SUCCESSFULLY OPERATES AT 50 TO 120 PSIG CHAMBER PRESSURE AND 2300 TO 3000 DEGREES K WITHOUT OBSERVABLE THERMAL SHOCK OR ELECTRODE EROSION A66-18838

SUPER CHROMIUM STEEL SURVEY, INCLUDING APPLICATIONS IN GAS TURBINES AND AEROSPACE INDUSTRIES, PHYSICAL AND MECHANICAL PROPERTIES, THERMAL STABILITY, CORROSION RESISTANCE, ETC A66-19953

DEVICE FOR TAKING LONG TIME CORROSION FATIGUE CURVES ON SMALL CROSS SECTION SPECIMENS AT HIGH TEMPERATURES AND PRESSURES A66-20433

ALLOYING ELEMENTS EFFECT ON ANODIC CORROSION AND PASSIVATION OF STAINLESS STEELS

A66-20837

CORROSION RESISTANCE AND ELECTROCHEMICAL PROPERTIES OF ALLOYS OF NIOBIUM-TITANIUM SYSTEM A66-20838

CORROSION RESISTANCE, ELECTROCHEMICAL AND
MECHANICAL PROPERTIES OF ALLOYS OF TITANIUMNIOBIUM SYSTEM A66-20839

CORROSION RESISTANCE OF YTTRIUM IS HIGHER AT HIGHER P H BECAUSE OF SLOWER ANODIC PROCESS

A66-21747

CORROSION OF RHENIUM IN VARIOUS ACIDS AND HYDROXIDES IS ELECTROCHEMICAL IN NATURE AND DETERMINED BY KINETICS OF ANODIC AND CATHODIC PROCESSES INVOLVED A66-21748

CHROMIUM STEEL STRENGTH AND CORROSION RESISTANCE IMPROVEMENT BY MOLYBDENUM AND TUNGSTEN ADDITION A66-22747

HEAT TREATMENT EFFECT ON STRUCTURE, HARDNESS, MIGROHARDNESS AND CORROSION RESISTANCE OF VTI TITANIUM AND OT4 TITANIUM MANGANESE-ALUMINUM ALLOY SHEETS A66-24900

SHOT PEENING FOR RESISTANCE TO STRESS CORROSION CRACKING OF HIGH STRENGTH STEEL AND ALUMINUM ALLOYS AND TO IMPROVE FATIGUE LIFE OF LANDING GEARS, WING SPARS, JET ENGINE COMPONENTS AND OTHER STRUCTURAL PARTS

A66-25771

COMPOSITE CASTING AS METALLURGICAL BONDING TECHNIQUE, NOTING APPLICATION TO MEIGHT REDUCTION AND INCREASE OF CORROSION RESISTANCE

A66-25779

CORROSION OF MAGNESIUM IN WATER

A66-29724

CORROSION RESISTANCE OF IRON-BASE, NICKEL-BASE, AND COBALT-BASE SUPERALLOYS TO LITHIUM FLUORIDE AT CYCLIC ELEVATED TEMPERATURES
NASA-CR-54781
N66-10428

CHLORIDEBENZYL QUINOLINE TO INCREASE CORROSION RESISTANCE OF IRON AND STEEL IN ACIDS FTD-TT-65-770/164 N66-10787

ORGANIC METALLIC SALTS AS OXIDATION CATALYSTS IN LUBRICATING DILS - CORROSION RESISTANT ADDITIVES N66-11108

EFFECT OF LUBRICATING MATERIALS AND ADDITIVES ON PITTING FORMATION N66-11116

TESTING LUBRICATING OILS WITH ANTICORROSIVE ADDITIVES ON DIESEL ENGINES N66-11122

EFFECT OF MOTOR OIL ADDITIVES ON PITTING OF HYDRAULIC LIFTERS N66-11126

TESTING AUTOMOBILE TRANSMISSION OIL WITH DIFFERENT ADDITIVES FOR ANTIWEAR, ANTIABRASSIVE, ANTICORROSIVE, STABILITY, AND FOAM PROPERTIES

DATA ON USE OF ANTICORROSIVE ADDITIVES IN RESIDUAL FUELS CONTAINING VANADIUM AND SULFUR
N66-11131

REACTOR MATERIALS AND COMPONENTS, FUEL
DEVELOPMENT, RADIOISOTOPE AND RADIATION
APPLICATIONS, COATED-PARTICLE FUEL MATERIALS,
CORROSION STUDIES, AND GAS COOLED REACTORS
BMI-1745
N66-11852

CORROSION RESISTANT STAINLESS STEEL WITH BETTER MECHANICAL PROPERTIES FOR TROPICAL CLIMATE FTD-TT-65-487/1 N66-12509

SELECTION, MANUFACTURE, CORROSION RESISTANCE, AND PECULIARITIES OF ALUMINUM ALLOYS USED AS STRUCTURAL BUILDING MATERIALS N66-12735

CORROSION RESISTANCE OF STRUCTURAL ALUMINUM ALLOY BUILDING MATERIALS N66-12739

CORROSION RESISTANCE TESTS ON HIGH SILICON ALUMINUM ALLOYS BNWL-125 N66-12932

ELECTRIC WEAR RESISTANCE OF SILVER AND CERMET CONTACTS N66-13269

INERTIA OF MOVING BODY UNDER WATER, ATMOSPHERIC CIRCULATION IN STRATOSPHERE, AND CORROSION

RESISTANCE OF ALLOYS - TRANSLATION FROM COMMUNIST CHINESE LITERATURE JPRS-33046

N66-13388

IMPROVEMENT OF CORROSION RESISTANCE OF ALLOYS N66-13391

CORROSIVE ATTACK MECHANISMS OF LIQUID CESIUM ON CONTAINMENT METALS AND TEMPERATURE GRADIENT MASS TRANSFER COMPARISON MSAR-65-111 N66-1377

POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR METALLIC INGOTS PREPARED AS ROTATING DISK ELECTRODES - CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS NASA-CR-68891 N66-13991

CORROSION PROPERTIES OF MOLYBDENUM, TUNGSTEN, VANADIUM, AND SOME VANADIUM ALLOYS
BM-RI-6715 N66-16451

INSULATION RESISTANCE OF SPACECRAFT WIRING AGAINST ABRASION, RADIATION EFFECTS, DXYGEN ENVIRONMENT, AND EXTRUSION LUBRICANTS
NASA-CR-65233

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS AD-625454 N66-18520

OLEIC ACID AND CRYSTALLINE IODINE MIXTURE AS ANTICORROSION LUBRICANT FOR TITANIUM PARTS FTD-TT-65-1193 N66-18656

ZIRCALOY-2 LOCALIZED CORROSION BY WEAR AND CREVICE EFFECTS
NAG-18889

CORROSION RESISTANCE OF MOLYBDENUM-CHROMIUM STEEL
IN MERCURY FORCED CONVECTION CORROSION LOOP FOR
NUCLEAR AUXILIARY POWER SYSTEM COMPONENTS
NASA-CR-54719 N66-19515

CORROSION RESISTANT ZINC PAINT EFFECTS ON MECHANICAL PROPERTIES OF STEEL WELD JOINTS AT-1959/69 N66-20026

ENDURANCE AND CORROSION RESISTANCE TESTS OF CATALYST FOR RECOMBINATION OF RADIOLYTIC OXYGEN AND HYDROGEN CFND-525

SODIUM CHLORIDE CORROSION RESISTANCE OF MAGNESIUM AND ALUMINUM ALLOYS WITH PROTECTIVE COATING OF TEFLON

NRL-6353 N66-21324

FACTORS INFLUENCING CORROSION PROTECTION PROVIDED BY SOLID FILM LUBRICANT COATINGS RIA-65-3380 N66-21473

CORROSION RESISTANT CONTAINER FOR RARE EARTH-RARE EARTH HALIDE SOLUTION ORNL-P-814 N66-23233

PHENOL RESIN AND POLYVINYL BUTYRAL PROTECTIVE PRIMER WITH HIGH CORROSION RESISTANCE FOR STEELS AND LIGHT ALLOYS
ONI-TRANS-2060 N66-23394

DEFORMATION RESISTANCE OF HIGH STRENGTH AND ANTICORROSION STEEL ALLOY CLADS DURING HOT FORMING N66-24253

PRODUCTION SPECIFICATIONS FOR HOT ROLLED THICK
TWO-LAYERED CORROSION RESISTANT STEEL SHEETS
N66-24265

CORROSION RESISTANCE AND ENVIRONMENT EFFECT ON STEEL ALLOY COMPONENTS OF SNAP-8
NASA-CR-54719 N66-24442

CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-DXYGEN FUEL CELLS WITH AN ALKALINE ELECTROLYTE-CORROSION RESISTANCE AND ACTIVITY TESTING OF MATERIALS AND ELEMENTS NASA-CR-70930 N66-24550 TITANIUM CORROSION IN AQUEOUS SOLUTIONS

N66-24565

CORROSION RESISTANCE OF NIOBIUM AND TANTALUM TUBING ALLOYS TO REFLUXING POTASSIUM NASA-TN-D-3429 N66-25004

ZIRCONIUM-BASE ALLOY DEVELOPMENT WITH IMPROVED CORROSION RESISTANCE IN HIGH TEMPERATURE STEAM WAPD-TM-546 N66-25094

CORROSION RESISTANT POLYMERIC MATERIALS FOR USE AS PROTECTIVE COATINGS ON IRON AND STAINLESS STEEL SURFACES
JPRS-35452
N66-25284

TESTING OF HOT-CORROSION-RESISTANT ALLOYS FOR MARINE GAS TURBINES MEI-131/66 N66-25

CORROSION RESISTANT SYNTHETIC PAINTS FOR SHIP HULLS
ONI-TRANS-2108 N66-258

METAL, ALLOY, AND METAL COMPOUND TESTING FOR CORROSION RESISTANCE AND ACTIVITY AS OXYGEN ELECTRODES FOR HYDROX FUEL CELL WITH ALKALINE ELECTRULYTE NASA-CR-75199 N66-26759

CORROSION RESISTANCE OF HIGH TEMPERATURE ALLOYS FOR NUCLEAR APPLICATIONS BNWL-155 N66-27101

CORROSION PROTECTION BY COLD PHOSPHATIZATION METHOD OF COATING IRON AND STEEL FSTC-HI-23-24-66 N66-27803

ADDITIVE FOR SUPPRESSING VANADIUM CORROSION OF FUELS
FTD-TT-65-505/1&4 N66-298

HIGH TEMPERATURE CORROSION RESISTANCE OF HASTELLOY X SHEET AND TUBING MATERIALS IN AIR AGN-IM-414 N66-30409

PROTECTIVE CONVERSION COATING DEVELOPED TO INCREASE CORROSION RESISTANCE IN WHITE PRIMER, AND TO WITHSTAND TESTING IN SALT SPRAY ATMOSPHERE NASA-CR-76638 N66-32137

CORROSION TEST

ALUMINUM ALLOY POWDER EXTRUSIONS EVALUATED FOR CORRUSION RESISTANCE TO HIGH TEMPERATURE WATER FLOW, CONSIDERING RODS AND TUBINGS

BRITTLENESS OF ANNEALED STEELS USING CORROSION TESTS UNDER TENSION IN PRESENCE OF HYDROGEN A65-28628

SOVIET TEXTBOOK ON BASIC METHODS FOR METAL CORROSION STUDIES A65-28653

CORROSION CHARACTERISTICS OF AL- ZN- MG ALLOYS A65-30744

COMPATIBILITY TEST OF NITROGEN TETROXIDE AND TITANIUM ALLOY, STUDYING CORROSIVE ATTACK AND IMPACT SENSITIVITY A65-32404

DESIGN AND TESTING OF POTASSIUM CORROSION TEST LOOP FACILITY NASA-CR-54269 N65-16745

HYDROFLUORINATOR CORROSION RATE DETERMINATION DURING FUEL PROCESSING RUNS WITH ZIRCONIUM-URANIUM ALLOY ORNL-3623 N65-18428

CORROSION-EROSION TESTING OF STAINLESS STEEL
DXYGENATED SATURATED STEAM
ACNP-64001
N65-18457

EFFECT OF 60-CYCLE ALTERNATING CURRENT ON CORROSION OF STEELS AND OTHER METALS BURIED IN SOIL N65-19465

PROTYPE CORROSION TEST LOOP FOR EVALUATION OF REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS - SIMULATION OF PROJECTED SPACE ELECTRIC POWER SYSTEMS

N65-21626

CORROSION TESTING OF THORIUM ALLOYS IN DISTILLED WATER AT HIGH TEMPERATURES - INVESTIGATION OF THORIUM-URANIUM ALLOYS AS POSSIBLE REACTOR FUEL ANL-7006 N65-23103

NICKEL CORROSION TESTS FOR FLUORIDE VOLATILITY PROGRAM - SMALL SCALE LABORATORY TESTS IN TUBE FURNACES AND IN-PLANT EXPOSURE TESTS ANL-6979

COMPATIBILITY OF NICKEL, IRON, AND COBALT BASE HIGH TEMPERATURE ALLOYS WITH BOILING POTASSIUM INVESTIGATION IN NATURAL CIRCULATION CORROSION TESTING LOOPS
ORNL-3790

N65-25517

PHASE RELATIONS OF GADOLINIUM ALLOYS STUDIED FOR MECHANICAL AND CORROSION PROPERTIES

MAS-26040

CORROSION TEST ON BURIED METAL WITH DIRECT CURRENT INTRODUCED INTO GROUND CHE-34 N65-26345

FORCED CIRCULATION, HAYNES ALLOY 25, MERCURY LOOP TO STUDY CORROSION PRODUCT SEPARATION NASA-CR-241 N65-27394

POUR POINT DEPRESSANT, POLYMER THICKENER, CORROSION TEST, AND COMPONENT COMPOUNDING FOR FIRE-RESISTANT HYDRAULIC FLUID BMR-5

CORROSION OF MATERIALS FOR FUEL CLADDING IN SUPERHEAT REACTOR SYSTEMS GEAP-4760 NG5-21797

CLOSED LOOP SYSTEM FOR DYNAMIC CORROSION TESTS AT HIGH TEMPERATURE IN PRESSURIZED WATER REACTOR EUR-1744.F

CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR CORROSION MECHANISM ANALYSIS ASLE PREPRINT 65-LC-11 A66-12.

CORRUSION CONTROL ON AIRCRAFT SKIN, COUNTERSINKS AND FASTENERS DESCRIBING TESTS, SEALANT COATINGS, CHEMICAL TREATMENTS, MECHANICAL BARRIERS, PLATINGS ON FASTENERS AND ORGANIC COATINGS

A66-12298

CR AND MN EFFECTS ON AGING MECHANISM AND ANTICORROSION PROPERTIES OF AL- ZN- MG ALLOYS A66-12723

TRAPEZOIDAL STRESS WAVEFORMS EFFECT ON LOW CYCLE CORROSION FATIGUE STRENGTH, CLARIFYING MECHANISM OF CORROSION FATIGUE

A66-23849

CHEMICAL REACTION BETWEEN IRON AND EXTREME
PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR
CORROSION MECHANISM ANALYSIS
ASLE PREPRINT 65-LC-11
A66-24993

FRICTION CORROSION CAUSED BY ALTERNATE PIVOTING OF STEEL BALL ON PLANE OF LIGHT ALLOY

A66-27934

STRESS CORROSION TESTING TO EVALUATE MATERIALS FOR SPECIFIC APPLICATION A66-29723

CORROSION BEHAVIOR OF ALUMINUM ALLOY MATERIALS FOR PERMANENT OR SEMIPERMANENT INSTALLATION IN HIGH FLUX ISOTOPE REACTOR / HFIR/ ORNL-TM-1029 N66-10698

STRESS-CORROSION TEST TO DETERMINE CRITICAL FLAW SIZE FOR REDUCTION OF EFFECTIVE FRACTURE TOUGHNESS

S-23304 N66-11265

POTASSIUM CORROSION TEST LOOP DEVELOPMENT -

HELIUM ANALYSIS SYSTEM TO MEASURE IMPURITIES IN VACUUM PURGED, INERT GAS WELDING CHAMBER NASA-CR-54168 N66-13019

CORROSION TEST LOOP FOR EVALUATION OF REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS WHICH SIMULATE PROJECTED SPACE ELECTRIC POWER SYSTEMS
NASA-CR-54843
N66-14785

STATIC CORROSION TESTING OF STAINLESS STEELS IN WATER AND STEAM AT HIGH TEMPERATURE EURAEC-1308 N66-20408

CORROSION TESTING OF NUCLEAR MATERIALS CONDUCTED IN-PILE AND AFTER PILE IRRADIATION N66-2194

DIFFERENCES IN CORROSION AND MASS TRANSFER RATES IN CORROSION LOOPS FOR SNAP-8 SYSTEM AND EFFECTIVENESS OF COLD TRAPPING IN REDUCING HYDROGEN CONCENTRATION NASA-CR-67272 N66-22205

PERFORMANCE CHARACTERISTICS OF POTASSIÚM CORROSION TEST LOOP NASA-CR-54912 N66-24697

DYNAMIC CORROSION TESTS OF CARBON STAINLESS STEEL IN PRESSURIZED WATER EUR-2688.F N66-2605

CORROSION TESTS ON IRRADIATED AND UNIRRADIATED TYPE 304 STAINLESS STEEL GEAP-4968 N66-2648:

CORROSION STUDIES OF REFRACTORY METAL ALLOYS IN BOILING POTASSIUM AND LIQUID NA K
CNLM-6246 N66-28939

FABRICATION AND EVALUATION OF THORIUM IRRADIATION SAMPLES HAVING BORON, URANIUM 233, OR GOLD CORES BMI-1761

STATIC AND ISOTHERMAL CORROSION TESTS OF HASTELLOY N, INCONEL 600, AND HYMU-80 IN URANIUM CHLORIDE-POTASSIUM CHLORIDE EUTECTIC LA-3476-MS N66-30773

CORROSION OF UNALLOYED AND ALLOYED PLUTONIUM IN MONOBROMOBENZENE AND FREON 113 FLUOROCARBON RFP-744 N66-31065

LEAD AND LEAD-SALT CORROSION IN THERMAL CONVECTION LOOPS

ORNL-TM-1437 N66-31070

CORRUGATED PLATE

CHARACTERISTICS OF PARTIALLY CLAMPED CORRUGATED
MEMBRANE, INVESTIGATING EFFECT OF FORCES OF
CLAMPING FRICTION
A66-11182

COUPL ING

ELASTIC SLIPPING AND FRICTION COUPLINGS BETWEEN ROLLERS OF VARIOUS MATERIALS N65-24640

DETERMINATION OF WEAR RESISTANCE OF FRICTION
COUPLINGS BY MEASUREMENT OF CONSUMPTION OF
WORKING MEDIUM
FTO-TT-65-69/162 N65-31718

CRACK

STRESS CORROSION CRACKING IN CHROMIUM-NICKEL-IRON
ALLOYS WITH FOURTH ELEMENT ADDED
COO-1319-27
N66-17533

CRACK FORMATION

STRESS CORROSION CRACKING FAILURE OF STAINLESS
STEEL AT HIGH TEMPERATURE A65-33134

STRESS CORROSION CRACKING OF STEEL IN VARIOUS MEDIA FTD-TT-64-643/182 N65-171

STRESS CORROSION CRACKING AND CORROSION FATIGUE
OF HIGH STRENGTH STEELS N65-19235

MICROSTRUCTURE AND DISLOCATION SUBSTRUCTURE RELATION TO STRESS CORROSION CRACKING

SUBJECT INDEX CRACK PROPAGATION

SUSCEPTIBILITY IN AUSTENITIC STAINLESS STEEL N65-20710

HOT SALT STRESS CORROSION CRACKING IN TITANIUM ALLOYS — CHLORIDE CORROSION ROLE DETERMINATION USING CHLORINE ISOTOPES AND RELATION BETWEEN CRACK MORPHOLOGY AND ALLOY STRUCTURE NASA-CR-60194

RELATIVE RESISTANCE OF ALUMINUM ALLOYS, AND EFFECT OF GRAIN STRUCTURE ON SUSCEPTIBILITY TO STRESS CORROSION CRACKING DMIC-MEMO-202

STRESS CORROSION CRACKING EXPERIMENTS WITH IRON-NICKEL-CHROMIUM ALLOYS N65-34319 COD-1319-24

POLARIZATION CURVES OF STRESS CORROSION CRACKING IN MARTENSITIC HIGH STRENGTH STEELS N65-34370 PEPT -- 132-07

MECHANISMS OF STRESS-CORROSION CRACKING IN METAL -REVIEW OF VARIOUS THEORIES AROD-5023-1

STRESS CORROSION CRACKING IN TITANIUM ALLOYS IN PRESENCE OF SALT, HIGH TEMPERATURE AND SUSTAINED A66-13059 AIAA PAPER 65-764

STRESS CORROSION CRACKING TEST EMPLOYING PRECRACKED BAR STRESSED IN BENDING, NOTING APPARATUS AND RESULTS ON MARTENSITIC STEEL AND A66-23647 TITANIUM ALLOY

ELECTRON MICROSCOPE INVESTIGATION OF DISLOCATION EFFECT ON STRESS CORROSION CRACKING IN ALUMINUM A66-29418

STRESS CORROSION TESTING TO EVALUATE MATERIALS FOR A66-29723 SPECIFIC APPLICATION

STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION AND DELAYED FAILURES IN STAINLESS STEEL USED FOR A66-33442

SYNERGISTIC ACTION OF DYNAMIC STRESSES AND FATIGUE A66-33443 CORROSION IN METALS

DISLOCATION DISTRIBUTION AND CRACK PROPAGATION DUE TO STRESS CORROSION A66-33444

SEPARATION OF GASEOUS, LIQUID, AND SOLID REACTION PRODUCTS OF HOT SALT STRESS CORROSION CRACKING OF TITANIUM N66-16194

ELECTROCHEMICAL ASPECTS OF HOT SOLID SALT STRESS CORROSION CRACK FORMATION IN TITANIUM ALLOYS N66-16195

MICROSTRUCTURE AND SUBSTRUCTURE DISLOCATION IN STRESS CORROSION CRACKING OF AUSTENITIC STAINLESS STEEL N66-18773

STRESS CORROSION CRACKING OF HIGH STRENGTH ALUMINUM ALLOYS NASA-CR-74443 N66-23655

STRESS CORROSION CRACKING MECHANISM IN FACE-CENTERED CUBIC METALS N66-24732 AF0SR-65-2702

STRESS CORROSION CRACKING MECHANISM IN IRON-

NICKEL-CHRONIUM ALLDY SYSTEM CDD-1319-32 N66-25978

CORRELATIONS BETWEEN SENSITIZATION AND STRESS CORROSION CRACKING OF 300 SERIES STAINLESS STEELS CEND-3256-250 N66-27561

STRESS CORROSION CRACKING MICROTOPOLOGY STUDIES ON THIN FILMS OF IRON-NICKEL-CHROMIUM BASE ALLOYS EXPOSED TO BOILING MAGNESIUM CHLORIDE COO-1319-36 N66-31092

CRACK PROPAGATION

STRESS CORROSION CRACKING CAUSED BY ELECTROCHEMICAL DISSOLUTION, ALLOYING AND HYDROGEN EMBRITTLEMENT OF STEELS IN SOLUTIONS AND LIQUID A65-15126 METALS.

LUBRICANTS EFFECT ON STEEL AND OTHER METAL FATIGUE LIVES IN ROTATING CANTILEVER FATIGUE TESTS A65-26570

DISLOCATION INFLUENCE ON NUCLEATION AND PROPAGATION OF STRESS CORROSION CRACKS

A65-31684

STRESS-CORROSION FAILURE IN METAL ALLOYS DISCUSSING SURFACE AND ELASTIC ENERGY, ADSORPTION, CRACK PROPAGATION, PITS AND TUNNELING

STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION AND DELAYED FAILURES IN STAINLESS STEEL USED FOR

ELECTRON MICROSCOPY APPLICATIONS TO FRACTURE MECHANICS FOR DETERMINING CRACK PROPAGATION DIRECTION, AND CHARACTERISTIC DIFFERENCES BETWEEN STRESS CORROSION AND HYDROGEN EMBRITTLEMENT N66-22627 SM-49150

CREEP RESISTANCE

EVALUATION OF AGEABLE BETA TITANIUM ALLOYS BY TENSILE STRENGTH, CREEP STABILITY, OXIDATION, AND STRESS CORROSION TESTS WAL-TR-405/2-9

CRITICAL POINT FAILURE POINT OF NONREACTIVE MINERAL OIL PREDICTED BLOK CRITICAL TEMPERATURE HYPOTHESIS IN ROLLING AND SLIDING CONTACT ASLE PAPER 64-LC-13 A65-31719

CROLOY

BMPR-4

FORCED CIRCULATION, CROLOY 9 M MERCURY LOOP DESIGNED TO INVESTIGATE CORROSION PRODUCT SEPARATION TECHNIQUES N65-21161 NASA-CR-217

CRYOGENIC EQUIPMENT CORROSION RESISTANCE METALS AND COATINGS FOR PROTECTING CHEMICAL EQUIPMENT N65 N65-26208

CRYOGENIC TEMPERATURE STRESS CORROSION ON GLASS FIBER STRENGTH AT CRYOGENIC TEMPERATURE N65-19022

CRYSTAL DISLOCATION DISLOCATION INFLUENCE ON NUCLEATION AND PROPAGATION OF STRESS CORROSION CRACKS

TRANSMISSION ELECTRON MICROSCOPY STRUCTURAL ANALYSIS OF DISLOCATIONS IN STRESS-CORROSION CRACKING OF 7075 ALUMINUM ALLOY

A66-18761

STRESS-CORROSION FAILURE IN METAL ALLOYS, DISCUSSING SURFACE AND ELASTIC ENERGY, ADSORPTION, CRACK PROPAGATION, PITS AND TUNNELING A66-19601

MECHANISM OF PLASTIC DEFORMATION IN CRYSTALLINE BODIES, DISCUSSING STATIC AND DYNAMIC FRICTIONAL FORCES IN RELATION TO DISLOCATION STRUCTURE OF BODIES IN CONTACT

A66-258

ELECTRON MICROSCOPE INVESTIGATION OF DISLOCATION EFFECT ON STRESS CORROSION CRACKING IN ALUMINUM ALLOY

DISLOCATION DISTRIBUTION AND CRACK PROPAGATION DUE A66-33444 TO STRESS CORROSION

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS
AS RELATED TO CRYSTAL STRUCTURE AND LATTICE
PARAMETERS IN VACUUM
ASLE PREPRINT 65-LC-18
A66-122 A66-12252

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS AS RELATED TO CRYSTAL STRUCTURE AND LATTICE PARAMETERS IN VACUUM ASLE PREPRINT 65-LC-18 A66-30568

CRYSTAL STRUCTURE

SINTERING METHOD TO PROVIDE DESIRED PRECIPITATION HARDENABLE HIGH TEMPERATURE BEARING MATERIAL WITH PREFERRED LATTICE STRUCTURE SAE PAPER 650796

CRYSTAL STRUCTURE INFLUENCE ON FRICTION AND WEAR OF TITANIUM AND TITANIUM ALLOYS IN VACUUM NASA-TN-D-2671

NUCERITE, CERAMIC-METAL COMPOSITE WITH HIGH MECHANICAL STRENGTH AND ABRASION RESISTANCE NOTING CRYSTAL STRUCTURE, APPLICATION, PROPERTIES, ETC

EFFECT OF CRYSTALLINE STATE AND STRUCTURAL ORIENTATION OF POLYMER ON ENDURANCE OF COUPLINGS WITH POLYTETRAFLUDROETHYLENE COMPONENTS, ANALYZING DRY FRICTION AND WEAR ON INTERFACES

A66-25912

CRYSTAL STRUCTURE DEFECT

BOOK ON METAL OXIDATION COVERING STRUCTURAL DEFECTS, TRANSPORT PROCESS, PHASE BOUNDARIES, DIFFUSION, ETC A65-36334

CRYSTALLIZATION

SLIDING FRICTION MEASUREMENTS OF SOME LAYER LATTICE COMPOUNDS IN ULTRAHIGH VACUUM ASLE PREPRINT 65-LC-19 A66-12251

SLIDING FRICTION MEASUREMENTS OF SOME LAYER LATTICE COMPOUNDS IN ULTRAHIGH VACUUM ASLE PREPRINT 65-LC-19 A66-30569

CURRENT DENSITY

ANODIC DISSOLUTION OF N-TYPE GE STUDIED, CONSTRUCTING POTENTIAL VS CURRENT DIAGRAM IN BROAD CURRENT DENSITY RANGE A65-30552

SOLID MOLYBDENUM DISULFIDE LUBRICANT APPLIED TO CUTTING PORTION OF TOOLS AND FRICTIONAL PARTS OF MACHINES

FTD-TT-64-1148/1

EFFECTS OF LUBRICANTS ON MACHINE CUTTING TOOL LIFE N66-11372

CYCLIC HYDROCARBON

HEXACHLOROCYCLOPENTADIENE USED AS ANTIWEAR ADDITIVE TO LUBRICATING GILS FTD-11-65-795/16264

CONTACT FRICTION EFFECTS ON FATIGUE PHYSICAL LIMIT AND CYCLIC STRENGTH OF STEEL A65-14788

CYCLOPENTADIENE

HEXACHLOROCYCLOPENTADIENE USED AS ANTIWEAR ADDITIVE TO LUBRICATING OILS FTD-TT-65-795/1&2&4 N66-19772

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION FILM WITH THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2 A65-24256

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION WITH FILM THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2 A66-1829 A66-18291

HEAT TRANSFER FROM CYLINDRICAL SURFACE WITH DENSE RIB NETWORK TO COOLING DIL

CYLINDRICAL SHELL

CYLINDRICAL BODY ROLLING FRICTION MEASUREMENTS INCLUDING ROLLING RATE, LOAD AND SPECIFIC PRESSURE, LUBRICATION, MATERIAL AND RADII OF CURVATURE EFFECTS A65-22965 D

DAMAGE

EFFECT OF GREASE CHARACTERISTICS ON FRETTING DAMAGE RIA-64-3575

N65-17908

DECONTAMINATION

EFFECTIVENESS, SAFETY, AND ECONOMICS OF CHEMICAL COMPOUNDS IN DESCALING METAL AND NONMETALLIC SD-22

DEFLECTION

STARTING FRICTION AND KINETIC FRICTION OF PTFE FABRIC-LINED SPHERICAL BEARINGS AND DEFLECTION AND PERMANENT SET UNDER STATIC LOADING

DEFORMATION

DEFORMATION AND ANNEALING EFFECTS ON CORROSION RESISTANCE OF PURE AND PALLADIUM-ALLOYED TITANIUM IN SULPHURIC AND HYDROCHLORIC ACIDS

INTERFACE FRICTION BETWEEN TOOL AND WORKPIECE DURING HOT METAL DEFORMATION IITRI-86027-2 N65-13989

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED, HEAVILY LOADED ROLLING CONTACTS - MEASUREMENT OF DEFORMATION BY X-RAY TECHNIQUE ASD-TDR-61-643, PT. V N65-305

FRICTION COEFFICIENTS AND LUBRICATION FOR EXTREME PRESSURE METAL WORKING MT 1-65TR59

DEFORMATION THEORY APPLICATIONS, LUBRICATION, EXTRUSION LIMITATIONS, AND THIN SHEET ROLLING PROBLEMS IN METAL WORKING MAB-206-M/3/

FRICTIONAL BEHAVIOR AND LUBRICATION OF METALS IN HOT METAL DEFORMATION MTI-66TR18 N66-258

DEGRADATION

DEGRADATION OF POLYMER COMPOSITIONS IN VACUUM IN EVAPORATION AND SLIDING FRICTION EXPERIMENTS NASA-TM-X-54549

INFORMATION SERVICES RELATING TO PREVENTION OR LIMITATION OF ENVIRONMENT ASSOCIATED DEGRADATION OF MATERIAL AND EQUIPMENT NASA-CR-71680

DEPOSIT

OXIDATIVE AND DEPOSIT FORMING PROPERTIES OF HIGH TEMPERATURE LUBRICANTS ASD-TDR-62-222, PT. III

OXIDATION RESISTANCE AND DEPOSIT FORMATION OF HIGH TEMPERATURE LUBRICATING OIL AFAPL-TR-65-85

AIRCRAFT LUBRICANT AND SELECTED SOLVENT TESTS FOR REMOVAL OF CARBONACEOUS DEPOSITS ON JET ENGINE BEARING AFAPL-TR-65-118 N66-19564

DEPOSITION

ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO PREVENT ASH DEPOSITS AND VANADIUM CORROSION N66-11130

EFFECT OF AIRCRAFT GAS TURBINE ENGINE LUBRICANTS AND SOLVENTS ON REMOVAL OF CARBONACEOUS DEPOSITS AFAPL-TR-65-118 N66-31108

DEPRESSANT

POUR POINT DEPRESSANT, POLYMER THICKENER, CORRUSION TEST, AND COMPONENT COMPOUNDING FOR FIRE-RESISTANT HYDRAULIC FLUID BMR-5 N65-27911

DETERGENT

ANTIOXIDATION, ANTICORROSION, AND DETERGENT

ADDITIVES FOR LUBRICATING OILS OBTAINED BY TREATING PRODUCTS OF OXIDATION OF PARAFFIN WITH PHOSPHORUS PENTASULFIDE FTD-TT-64-1087/1 N65-22440

DETERGENT AND ANTIWEAR ADDITIVES FOR IMPROVING OPERATIONAL PROPERTIES OF DIESEL FUELS AND LUBRICATING OILS N66-11124

DETONATION

COMBUSTION AND DETONATION PHYSICS FOR MIXTURES
OF LUBRICATING OILS AND OXYGEN
FTD-TT-65-1106/1&2&4
N66-18553

DEUTERIUM OXIDE

EQUIPMENT CORROSION IN HEAVY WATER COMPONENTS TEST REACTOR DP-964 N65-29234

DICARBOXYLIC ACID

QUANTITATIVE CHEMICAL ANALYSIS, USING GAS CHROMATOGRAPHY, FOR ACYL COMPONENTS OF NEOPENTYL POLYOL ESTER AIRCRAFT ENGINE LUBRICANT NRL-6338 N66-22779

DIESEL ENGINE

CLASSIFICATION OF SULFUR-CONTAINING LUBRICATING OILS, WITH AND WITHOUT ADDITIVES, FOR USE WITH VARIOUS TYPES OF DIESEL ENGINES

N66-11078

CALCULATING NECESSARY CONCENTRATION OF NEUTRALIZING ADDITIVES IN MOTOR OILS WHEN USING FUELS WITH LARGE SULFUR CONTENTS

N66-11119

DETERMINING REQUIREMENTS FOR QUALITY OF LUBRICATING OILS FOR TRACTOR DIESEL ENGINES N66-11120

TESTING MOTOR OILS FROM SULFUROUS CRUDES WITH DIFFERENT ADDITIVES N66-11121

TESTING LUBRICATING DILS WITH ANTICORROSIVE ADDITIVES ON DIESEL ENGINES N66-11122

DETERGENT AND ANTIWEAR ADDITIVES FOR IMPROVING OPERATIONAL PROPERTIES OF DIESEL FUELS AND LUBRICATING OILS N66-11124

USE OF LUBRICATING OIL ADDITIVES FROM SULFUR BEARING CRUDE OILS IN DIESEL LOCOMOTIVE ENGINES N66-11125

EFFECTIVENESS OF ANTIWEAR ADDITIVE DURING PROLONGED OPERATION OF HIGH SPEED AND FORCED SHIP DIESEL ENGINES ON SULFUR BEARING FUELS AND DILS N66-11128

LIQUID METAL LUBRICANT ANTI-WEAR PROPERTIES STUDY, AND CARBAMIDE DEWAXING EFFECTS DETERMINATION FOR DIESEL ENGINE FUELS

FUEL OIL ADDITIVE WITH BARIUM NAPHTHENATE FOR WEAR AND SCALE REDUCTION IN HIGH SPEED DIESEL ENGINE FTD-TT-65-1125/1&4

OILS, LUBRICANTS, AND COOLANTS FOR DIESEL ENGINE, AIRCRAFT ENGINE, AND ROCKET ENGINE FTD-HT-64-382 N66-19816

SURFACE TEMPERATURE AND CORROSION IN AIR AND WATER COOLED TURBOCHARGERS OF MARINE DIESEL ENGINE TDCK-44575 N66-25815

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATIONS FOR LOAD DEFLECTION CHARACTERISTICS OF THIN ELASTIC LAYERS FOR APPLICATION TO COMPLIANT BEARINGS REPT.-3 N66-11959

GYROSCOPE IN GIMBAL SUSPENSION - DIFFERENTIAL EQUATIONS OF MOTION, AXIS STABILITY, AND EFFECT OF FRICTION AT GIMBAL-RING AXES FTD-TT-65-416/162 N66-12595

DIFFUSION

DIFFUSED ALUMINUM COATING FOR HIGH TEMPERATURE

APPLICATION

A66-12371

DIFFUSION COEFFICIENT

DIFFUSION OF CARBON INTO TUNGSTEN AND MOLYBDENUM AT LOW CARBON CONCENTRATIONS AND HIGH TEMPERATURE A65-29870

BOOK ON METAL OXIDATION COVERING STRUCTURAL DEFECTS, TRANSPORT PROCESS, PHASE BOUNDARIES, DIFFUSION, ETC A65-36334

DIRECT CURRENT /DC/

CORRUSION TEST ON BURIED METAL WITH DIRECT CURRENT INTRODUCED INTO GROUND
CHE-34 N65-26345

WEAR OF ELECTRIC CONTACTS DURING SWITCHING OF LOW VOLTAGE DIRECT AND ALTERNATING CURRENTS

N66-13268

DIRECTIONAL STABILITY

MOTION EQUATION FOR GYROSCOPIC TURN INDICATOR
SUBJECT TO DRY FRICTION A65-20040

DISPERSION

ELECTROKINETIC PROCESSES AND MECHANISM OF CISPERSION ACTION IN MOTOR OIL ADDITIVES DETERMINED BY RADIOACTIVE TRACERS

N66-11113

DOOR

CONFERENCE ON LUBRICATION TECHNIQUES AND SEAL
DESIGN FOR ORBITAL MANNED SPACE LABORATORY DOOR
ACTUATOR
AD-623336
N66-17440

FLUID LUBRICATION OF MANNED ORBITAL SPACE STATION
DOOR MECHANISM N66-17441

SOLID LUBRICATION OF MANNED ORBITAL SPACE STATION DOOR ACTIVATOR N66-17443

DRY FRICTION

MOTION EQUATION FOR GYROSCOPIC TURN INDICATOR
SUBJECT TO DRY FRICTION A65-20040

GOLD PLATING COATED WITH DRY THIN TEFLON LUBRICANT FILM SYSTEM FOR LONG LIFE SLIDING ELECTRIC CONTACT ON MICROWAVE DEVICE

A65-24115

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NUTING SNAP REACTOR DATA

ASLE PREPRINT 65AM 6A1 A65-24242

REDUCTION OF MECHANICAL LOSSES DUE TO FRICTION IN SHAFT BEARINGS OF INSTRUMENTS BY FORCED MOTION OF OUTER RACES OF BALL BEARING A65-25545

GRAPH-ANALYTICAL METHOD FOR DETERMINING EFFECT OF FORCES OF DRY FRICTION IN BEARINGS ON OPERATION OF GYROSCOPE SUSPENSION A65-30288

STABILITY OF MOTION OF GYROSCOPE ON HORIZONTAL PLANE UNDER DRY SLIDING FRICTION ACTIVITY

N65-28052

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR DATA

ASLE PREPRINT 65AM 6A1

A66-22040

HIGH TEMPERATURE TENSILE TESTS, ALLOY POWDER TREATMENT, DRY LUBRICANT FRICTION, AND WEIGHT LOSS MEASUREMENTS IN ULTRAHIGH VACUUM SYSTEM APS64G N66-12956

DUCT

IMMERSION AND IMPINGEMENT ELECTROPOLISHING METHODS
FOR INCREASING CORROSION RESISTANCE OF STAINLESS
STEELS AND NICKEL ALLOYS USED IN PROPELLANT

NASA-CR-57864

N65-22641

. DUCTILITY

PROTECTIVE COATING EFFECT ON STRESS CORROSION
PROPERTIES OF SUPERSONIC TRANSPORT SKIN
MATERIALS - BENDING-DUCTILITY EVALUATION
NASA-CR-63784
N65-28201

DYNAMIC LOAD

TRACK CURVE MADE BY PIVOT CENTER POINT OF
DYNAMICALLY LOADED CYLINDRICAL SLIDING BEARING OF
ARBITRARY CROSS SECTION
A65-21245

CHARACTERISTICS OF PARTIALLY CLAMPED CORRUGATED MEMBRANE, INVESTIGATING EFFECT OF FORCES OF CLAMPING FRICTION A66-11182

STEADY-STATE AND DYNAMIC CHARACTERISTICS OF FULL CIRCULAR BEARING AND CENTRALLY LOADED ARC BEARING PRESENTED IN DESIGN CHARTS FOR TURBULENT LUBRICATION ANALYSIS ASME PAPER 66-LUBS-4 A66-33178

MEASURING PERFORMANCE CHARACTERISTICS OF LIQUID METAL LUBRICATED TURBOMACHINE BEARING UNDER STEADY STATE AND DYNAMIC LOAD CONDITIONS

N66-31686

DYNAMIC RESPONSE

DYNAMIC RESPONSE OF OIL SEAL LIP TO SHAFT
ECCENTRICITY, NOTING FOLLOWABLE LIMITS
INDEPENDENCY TO SHAFT SPEED

A65-14894

DYNAMICS

ROTOR DYNAMICS TESTS WITH OVERHUNG MASS USING HYDROSTATIC WATER BEARINGS TIM-874 N66-13147

E

E GLASS

STRESS CORROSION ON E GLASS FIBERS EXPOSED TO WATER VAPOR A66-23120

EJECTION

CULD WELDING OF METAL CONTACTING SURFACES OF SYSTEM FOR NUCLEAR AUXILIARY POWER-19 EJECTION MECHANISMS AND MINIMIZATION WITH LUBRICANT APPLICATION MND-3169-66 N65-25522

ELASTIC CYLINDER

COMPUTER METHOD FOR ISOTHERMAL PROBLEM OF RIGID AND ELASTIC CYLINDERS LUBRICATED BY CONSTANT AND VARIABLE PROPERTY FLUID, DISCUSSING FILM THICKNESS ASLE PAPER 64-LC-22 A65-31716

ELASTIC DAMPING

GYROSCOPIC ROTOR VIBRATIONS EXCITED BY EFFECT OF LUBRICATION LAYER IN SLIDING BEARINGS AND STABILIZED WITH INTERVENING ELASTODAMPING SUPPORTS, TAKING INTO ACCOUNT MOMENT OF INERTIA OF ROTOR

A66-32605

ELASTIC DEFORMATION

PRESSURE AND ELASTIC DISTORTION EFFECT ON THIN
FILM LUBRICATION OIL THICKNESS A65-23504

GEOMETRICAL AND MECHANICAL FACTORS AFFECTING RATE OF WEAR BY ELASTIC AND PLASTIC DEFORMATION AND MICROCUTTING

ASME PAPER 64-WA/LUB-5

A65-338

ELASTICITY

APPLICABILITY OF ELASTICITY THEORY EQUATIONS FOR CYLINDERS IN DRY CONTACT TO PRESSURE DISTRIBUTION AT ROLLER AND BALL BEARING CONTACT POINTS IN PRESENCE OF LUBRICATING FILM A65-26533

DIFFERENTIAL EQUATIONS FOR LOAD DEFLECTION CHARACTERISTICS OF THIN ELASTIC LAYERS FOR APPLICATION TO COMPLIANT BEARINGS REPT.-3

ELASTICITY OF SATURATED VAPORS FROM LUBRICATING OILS AND GREASES FTD-TT-65-1063/16264 N66-18654

ELASTOHYDRODYNAMICS

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL OILS AND ESTERS ASLE PREPRINT 65AM 4A4 A65-24250

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION FILM WITH THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2 A65-24256

COMPUTER METHOD FOR ISOTHERMAL PROBLEM OF RIGID AND ELASTIC CYLINDERS LUBRICATED BY CONSTANT AND VARIABLE PROPERTY FLUID, DISCUSSING FILM THICKNESS ASLE PAPER 64-LC-22

A65-31716

SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION SPONSORED BY INSTITUTION OF MECHANICAL ENGINEERS AT LEEDS, ENGLAND IN SEPTEMBER 1965

ELASTOHYDRODYNAMIC LUBRICATION AT POINT CONTACTS, DERIVING FILM THICKNESS FROM ELECTRICAL CAPACITY MEASUREMENTS AND NOTING SIDE-LEAKAGE CONCEPT A65-32762

ELASTOHYDRODYNAMIC LUBRICATION THEORY, COMPARING OIL-FILM THICKNESS PREDICTED BY DOWSON AND HIGGINSON WITH MEASUREMENTS FROM DISK MACHINE LUBRICATED BY VARIOUS FLUIDS A65-32764

PRESSURE, TEMPERATURE AND FILM THICKNESS BETWEEN TWO CIRCULAR DISKS CORRELATED WITH THEORETICAL SOLUTIONS OF THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF INFINITELY LONG ROLLERS

A65-32767

GEAR TOOTH ELASTOHYDRODYNAMIC LUBRICATION SURVEY
DATA, EXAMINING CASE HISTORIES A65-32770

ELASTOHYDRODYNAMIC LUBRICATION, REVIEWING WORK ON FILM THICKNESS AND SHAPE, PRESSURE AND STRESS DISTRIBUTION, SIDE LEAKAGE, ETC

A65-33218

FILM THICKNESS MEASURING APPARATUS IN ELASTOHYDRODYNAMIC LUBRICATION EXAMINING FRICTION COEFFICIENT, VISCOSITY AND SLIDING SPEED DATA A65-33219

BIBLIOGRAPHY OF IME SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION AT LEEDS, ENGLAND IN SEPTEMBER 1965 A65-33220

ELASTOHYDRODYNAMIC LUBRICANT FILM EFFECTS IN ROLLING BALL TWO-BALL CONTACTS
AL64T067 N65~15986

FRICTIONAL TORQUE MEASUREMENTS IN ELASTOHYDRODYNAMIC LUBRICATION MII-64TR63

N65-21445

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED, HEAVILY LOADED ROLLING CONTACTS - MEASUREMENT OF DEFORMATION BY X-RAY TECHNIQUE ASD-TDR-61-643, PT. V N65-3050

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION WITH FILM THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2

A66-18291

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL OILS AND ESTERS

A66-18292

LASTOMER

WEAR DURABILITY AND ABRASION RESISTANCE OF POLYTETRAFLUOROETHYLENE COATINGS ON ELASTOMERIC VULCANIZATES
NRL-6298
N65-36319

ELECTRIC CONDUCTIVITY

CONSTANT OIL MONITORING SYSTEM USING ELECTRIC CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS TURBINE ENGINES
SAE PAPER 650814

A65-34699

CONSTANT OIL MONITORING SYSTEM USING ELECTRIC CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS TURBINE ENGINES

SAE PAPER 650814

A66-23844

ELECTRIC CONTACT
WEAR RESISTANCE OF BRUSHES OF AIRBORNE ELECTRIC
GENERATORS A65-15517

GOLD PLATING COATED WITH DRY THIN TEFLON LUBRICANT FILM SYSTEM FOR LONG LIFE SLIDING ELECTRIC CONTACT ON MICROWAVE DEVICE

A65-24115

THIN FILM LUBRICANT DEVELOPED FOR GOLD-PLATED ELECTRIC CONTACTS DISCUSSING CHARACTERISTICS, PERFORMANCE AND TESTING A65-30815

ELECTRICAL SLIDING CONTACT LUBRICATION BY NIOBIUM DISELENIDE COMPARED WITH MOLYBDENUM DISULFIDE FOR SPACE APPLICATION A65-31094

WEAR OF ELECTRIC CONTACTS DURING SWITCHING OF LOW VOLTAGE DIRECT AND ALTERNATING CURRENTS

N66-13268

ELECTRIC WEAR RESISTANCE OF SILVER AND CERMET CONTACTS N66-13269

ELECTRIC CURRENT

VOLTAGE AND DENSITY OF CONTACT-CORROSION CURRENT ARISING AT CONTACT SURFACE OF DIFFERENT METALS

ELECTRIC DISCHARGE
ELECTRICAL CORROSION OF METALS BY REPEATED
DISCHARGES N66-26152

ELECTRIC FIELD

BOOK ON METAL OXIDATION COVERING STRUCTURAL
DEFECTS, TRANSPORT PROCESS, PHASE BOUNDARIES,
DIFFUSION, ETC A65-36334

ELECTRIC INSULATION
INSULATION RESISTANCE OF SPACECRAFT WIRING AGAINST
ABRASION, RADIATION EFFECTS, DXYGEN ENVIRONMENT,
AND EXTRUSION LUBRICANTS
NASA-CR-65233
N66-18181

ELECTRIC WELDING
ORGANIC AND INORGANIC MEDIA COMPOSITION EFFECTS
ON METAL EROSION N66-26154

EI ECTBOCATA! VCT

POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR METALLIC INGOTS PREPARED AS ROTATING DISK ELECTRODES - CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS NASA-CR-68891 N66-13991

CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS WITH AN ALKALINE ELECTROLYTE-CORROSION RESISTANCE AND ACTIVITY TESTING OF MATERIALS AND ELEMENTS
NASA-CR-70930 N66-24550

ELECTROCHEMICAL CORROSION

MEMBRANE TYPE CATALYSTS AS LIQUID ELECTROLYTIC FUEL CELLS AND OTHER HETEROGENEOUS PROCESSES, CONSIDERING ACTIVE THREE PHASE BOUNDARY

A65-17229

POLARIZATION DURING ELECTROCHEMICAL PHASE ANALYSIS OF POWDERED MATERIALS CONTAINING TUNGSTEN AND TITANIUM CARBIDE A65-17805

FUEL CELL PERFORMANCE USING NITRIC ACID-OXYGEN REDOX CATHODES IN SULFURIC ACID AND CARBON OR NOBLE METAL ANODES A65-22363

GALVANOSTATIC MEASUREMENTS OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES A65-22368

COULOMETRIC-POTENTIOSTATIC MEASUREMENTS OF ANODIC OXIDATION OF DERMYATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES

A65-22369

OXIDATION OF LOW MOLECULAR WEIGHT PARAFFINS AND OLEFINS AT PLATINIZED POROUS CARBON ANODES IN LOW TEMPERATURE ACID ELECTROLYTE FUEL CELLS

ANODIC DISSOLUTION OF N-TYPE GE STUDIED,
CONSTRUCTING POTENTIAL VS CURRENT DIAGRAM IN BROAD
CHREENT DENSITY RANGE A65-30552

ELECTROCHEMICAL AND METALLOGRAPHIC FEATURES
ASSOCIATED WITH CORROSION RESISTANCE OF NICKELCHROMIUM PROTECTIVE COATINGS, NOTING CATHODE
POLARIZATION A65-32167

DEFORMATION AND ANNEALING EFFECTS ON CORROSION RESISTANCE OF PURE AND PALLADIUM-ALLOYED TITANIUM IN SULPHURIC AND HYDROCHLORIC ACIDS

A65-34977

A65-22370

ALUMINUM ADDITIONS EFFECT ON TITANIUM CORROSION RESISTANCE AND ELECTROCHEMICAL CHARACTERISTICS WHEN IMMERSED IN SULFURIC ACID SOLUTIONS

A65-36014

ELECTROCHEMICAL CORROSION UF CAST IRON IN SODIUM AND POTASSIUM SOLUTIONS PROW.-3549 N65-31073

CORROSION OF CAST IRON PIPES AS ELECTROBIOCHEMICAL PROCESS IN ANAEROBIC SOIL FD3-395/7/T-166-/ N65-32693

CORROSION RATE OF BT-1 TITANIUM AND 9 KH18 N12 M2 T STAINLESS STEEL IN MANGANESE-AMMONIUM SULFATE SOLUTIONS A66-10990

EFFECT OF CORROSIVE ENVIRONMENTS ON VARIOUS METALS AND ANTICORROSION TECHNIQUES TO PROTECT METAL SURFACES A66-13374

GALVANIC CORROSION IN PANEL-TYPE COUPLES OF DISSIMILAR METALS WITH MAGNESIUM EVALUATED FROM TENSILE STRENGTH LOSS A66-19714

CORROSION RESISTANCE AND ELECTROCHEMICAL PROPERTIES OF ALLOYS OF NIOBIUM-TITANIUM SYSTEM A66-20838

CORROSION RESISTANCE, ELECTROCHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM-NIOBIUM SYSTEM A66-20839

SURFACE HYDRIDE CORROSION FILM EFFECT ON ELECTROLYTIC CORROSION AND OXIDATION OF TITANIUM A66-20841

CORROSION RESISTANCE OF YTTRIUM IS HIGHER AT HIGHER P H BECAUSE OF SLOWER ANODIC PROCESS

A66-21747

CORROSION OF RHENIUM IN VARIOUS ACIDS AND HYDROXIDES IS ELECTROCHEMICAL IN NATURE AND DETERMINED BY KINETICS OF ANODIC AND CATHODIC PROCESSES INVOLVED 466-21748

CORROSION OCCURRENCE AND CONTROL, NOTING PRONE AREAS, DETECTION AND REMOVAL A66-23014

CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC
MG- ZN ALLOYS IN HALIDE SOLUTION
A66-26026

ELECTROCHEMICAL ASPECTS OF CORROSION OF ALUMINUM ALLOYS IN SODIUM CHLORIDE AT ELEVATED TEMPERATURES IN TITANIUM DYNAMIC LOOP FACILITY ORNL-P-1430 N66-11492

LIGUID ZIRCONIUM VISCOSITY, BINARY ALLOY
OXIDATION, SYNTHESIS AND PROPERTIES OF ZIRCONIUM
BORIDE ALLOYS WITH MOLYBDENUM DISILICIDE, AND
ZIRCONIUM CORROSION IN ALKALI METAL CHLORIDE
JPRS-32341 N66-17779

ZIRCONIUM CORROSION IN MOLTEN EQUIMOLAR MIXTURE OF POTASSIUM AND SODIUM CHLORIDES N66-17783

CATHODIC POLARIZATION OF SPENT ZINC PAINT COATINGS FOR INCREASED PROTECTION AGAINST SEA WATER CORROSION 1-424-R N66-19189 · ELECTROCHEMICAL OXIDATION

CORROSION PREVENTION COATING BY ELECTROCHEMICAL OXIDATION / ELOXAL/ METHOD FOR ALUMINUM AIRCRAFT SURFACES A65-20692

ANODIC PASSIVATION OF STAINLESS STEEL BY ELECTROCHEMICAL OXIDATION OF METAL SURFACE -CORROSION RESISTANCE RIA-65-1190

N65-36739

ELECTROCHEMISTRY

MECHANISMS OF CORROSION PROCESSES ON ALUMINUM -CORRUSION WEIGHT LOSSES, OXIDE FILM THICKNESS
DETERMINATION AND ELECTROCHEMICAL MEASUREMENTS

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF AL-BASED FE, NI, TI, CU AND SB ALLOYS AND INTERMETALLIC COMPOUNDS A66-20

DIFFUSION OF ELECTROLYTIC HYDROGEN THROUGH MEMBRANES OF IRON CRYSTALS AS FUNCTION OF STRESS, TEMPERATURE AND DISSOLVED HYDROGEN CONCENTRATION

ELECTROCHEMICAL ASPECTS OF HOT SOLID SALT STRESS CORROSION CRACK FORMATION IN TITANIUM ALLOYS N66-16195

METAL, ALLOY, AND METAL COMPOUND TESTING FOR CORROSION RESISTANCE AND ACTIVITY AS OXYGEN ELECTRODES FOR HYDROX FUEL CELL WITH ALKALINE ELECTROLYTE NASA-CR-75199

N66-26759

ELECTROKINETICS

ELECTROKINETIC PROCESSES AND MECHANISM OF DISPERSION ACTION IN MOTOR OIL ADDITIVES DETERMINED BY RADIOACTIVE TRACERS

N66-11113

ELECTROLYTE

HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELL DEVELOPMENT AND TESTS - MATERIAL CORROSION STUDIES, CYCLE CONTROLLER ASSEMBLY, AND PARTS FABRICATION NASA-CR-57665 N65-20807

ELECTROLYTIC POLARIZATION

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF TITANIUM IN SULFURIC ACID AND HYDROCHLORIC ACID SOLUTIONS DURING SQUARE WAVE AC POLARIZATION

CATHODIC POLARIZATION OF SPENT ZINC PAINT COATINGS FOR INCREASED PROTECTION AGAINST SEA WATER CORROSION T-424-R

ELECTROMAGNETIC FIELD

ELECTRIC STRAIN GAUGE FOR HIGH TEMPERATURE OR CORROSIVE ENVIRONMENTS AND ELECTROMAGNETIC FIELDS - TENSOMETER FTD-TT-64-872/162

N65-19200

ELECTROMAGNETIC PUMP

ELECTROMAGNETIC PUMP DEVELOPMENT FOR CIRCULATION OF VERY CORROSIVE /FLUORINATED COMPOUND/ GASES N66-18872

ELECTROMECHANICAL DEVICE

NONSTRUCTURAL MATERIALS FOR SPACE UTILIZATION INCLUDING LUBRICANTS, SLIDING ELECTRICAL CONTACTS AND DIELECTRICS

ELECTROMOTIVE FORCE
REVISED ELECTROMOTIVE SERIES INCLUDING METALS AND ALLOYS RELATED TO CORROSION RIA-66-469

ELECTRON CAPTURE

CATHODIC DEPOLARIZATION THEORY OF BACTERIAL CORROSION, USING DESULFOVIBRIO DESULFURICANS WITH BENZYL VIOLOGEN AS ELECTRON ACCEPTOR

A66-22303

ELECTRON DIFFRACTION OXIDE AND CARBIDE CORROSION PRODUCTS IN MATRIX AND SURFACE OF STEEL PLATE BY ELECTRON DIFFRACTION N66-18080

ELECTRON MICROSCOPE

ELECTRON MICROSCOPE STUDY OF SURFACE TOPOGRAPHY CHANGES IN RUNNING TRACK IN ROLLING CONTACT FATIGUE TESTER ASLE PAPER 64-LC-29

CORROSION FILM ON INCONEL AND AISI 304 STAINLESS STEEL INVESTIGATION WITH SCANNING ELECTRON
MICROSCOPE AND SPINNING SOURCE MASS SPECTROGRAPH MICROPROBE WERL-1114-1

ELECTRON MICROSCOPY

TRANSMISSION ELECTRON MICROSCOPY STRUCTURAL ANALYSIS OF DISLOCATIONS IN STRESS-CORROSION CRACKING OF 7075 ALUMINUM ALLOY

ELECTRON MICROSCOPY APPLICATIONS TO FRACTURE MECHANICS FOR DETERMINING CRACK PROPAGATION DIRECTION, AND CHARACTERISTIC DIFFERENCES
BETWEEN STRESS CORROSION AND HYDROGEN EMBRITTLEMENT SM-49150

N66-22627

COMPOSITION EFFECT ON PLUTONIUM METAL CORROSION STUDIED BY SPECTROGRAPHIC ANALYSIS, METALLOGRAPHY, AND ELECTRON MICROSCOPIC EXAMINATIONS RFP-511 N66-27404

ELECTRON PROBE

ELECTRON PROBE ANALYZER FOR INVESTIGATING ZIRCONIUM ALLOY CORROSION

ELECTRONIC EQUIPMENT TESTING
RELIABILITY TESTING PROGRAM FOR ESTIMATING
CYCLICAL LIFE FOR EQUIPMENT EXPERIENCING ONLY WEAROUT FAILURE A65~26059

ELECTROPLATING

WEAR CHARACTERISTICS OF ELECTROPLATED METAL COATING COMBINATIONS FOR USE IN ROTARY SWITCHES SC-DR-65-269 N66-22066

HYDROGEN EMBRITTLEMENT RESULTING FROM CORROSION, CATHODIC PROTECTION, AND ELECTROPLATING

N66-31544

ELECTROSTATIC FIELD

DIAMAGNETIC, SUPERCONDUCTING, ELECTROSTATIC AND FREELY AND PARTIALLY SUSPENDED MAGNETIC BEARINGS

EMBRITTLEMENT

STRESS CORROSION CRACKING CAUSED BY
ELECTROCHEMICAL DISSOLUTION, ALLOYING AND HYDROGEN
EMBRITTLEMENT OF STEELS IN SOLUTIONS AND LIQUID

THERMODYNAMICS OF TWO-PHASE FLOW, CORROSION AND OXIDATION, EMBRITTLEMENT IN STEELS FOR NUCLEAR REACTOR VESSELS, AND URANIUM OXIDE RESEARCH EUR-1840.F N65-14696

HIGH STRENGTH STEEL PROTECTION AGAINST CORROSION AND HYDROGEN EMBRITTLEMENT N65-19236

CORROSION RESISTANT AND EMBRITTLEMENT CHARACTERISTICS OF TITANIUM-CADMIUM PLATING A600 N65-22093

LIQUID METAL EMBRITTLEMENT NOTING STRESS AND INTERGRANULAR CORROSION, HYDROGEN EMBRITTLEMENT AND BEHAVIOR OF SILVER CHLORIDE CRYSTAL

A66-11698

EMBRITTLEMENT OF TANTALUM BY ROOM TEMPERATURE DEFORMATION IN PRESENCE OF HYDROGEN

ELECTRON MICROSCOPY APPLICATIONS TO FRACTURE MECHANICS FOR DETERMINING CRACK PROPAGATION DIRECTION, AND CHARACTERISTIC DIFFERENCES
BETWEEN STRESS CORROSION AND HYDROGEN

SUBJECT INDEX **ENERGY LOSS**

EMBRITTLEMENT

N66-22627

CHEMICAL MILLING EFFECT ON SUSCEPTIBILITY OF HIGH STRENGTH STEELS TO HYDROGEN EMBRITTLEMENT AND STRESS CORROSION CRACKING NAFC-AMI-2418

HYDRUGEN EMBRITTLEMENT RESULTING FROM CORROSION, CATHODIC PROTECTION, AND ELECTROPLATING OR-3

VANISHING OF SLIDING IN MECHANICAL SYSTEMS WITH DRY FRICTION

ENGINE COOLANT

CORROSION LOOP PROGRAM TO INVESTIGATE STRUCTURAL MATERIALS AND NA K COOLANT IN SNAP-8 PRIMARY COOLANT CIRCUIT NASA-CR-69822 N66-16305

ENGINE MONITORING SYSTEM
STATISTICAL STUDY OF SPECTROMETRIC OIL ANALYSIS
METHOD FOR AIRCRAFT ENGINE MONITORING SYSTEM N65-22936

ENGINE TESTING

LABORATORY, COMPONENT AND ENGINE TESTS FOR LUBRICANT PROPERTIES OF J-79 JET ENGINE INCLUDING ELASTOMER VOLUME SWELL, OXIDATION-CORROSION, LUBRICITY, ETC SAE PAPER 650816 466-10821

DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET LUBRICANT

466-12253 ASLE PREPRINT 65-LC-16

HIGH TEMPERATURE BEARING LUBRICANT REQUIREMENTS FOR JET ENGINE LUBRICATION SYSTEMS SAE PAPER 660072 A66-20157

DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET LUBRICANT ASLE PREPRINT 65-LC-16 A66-30574

DRY COMPOSITE LUBRICATED BEARINGS FOR AEROSPACE ENVIRONMENTAL CHAMBER AEDC-TR-65-35

DRY COMPOSITE LUBRICATED GEARS FOR AEROSPACE ENVIRONMENTAL CHAMBER AEDC-TR-65-45 N65-22375

ENVIRONMENTAL TESTING

CORROSION OF ALUMINUM AND MAGNESIUM ALLOYS IN TROPICAL ENVIRONMENTS NRI-6105 N65-19255

STRESS CORROSION PROPERTIES OF 12 PERCENT NICKEL MARAGING STEEL WELDMENTS IN MARINE ENVIRONMENTS 5-23309

LUBRICANT SELECTION FOR LUNAR MISSIONS AND MANNED SPACECRAFT BASED ON COMPATIBILITY WITH OXYGEN-RICH ENVIRONMENT, PROPELLANT, ANDDIC COATINGS AND SLIDING FRICTION BEHAVIOR IN VACUUM ASLE PAPER 66AM 7A2

SALT STRESS CORROSION OF TI-8 AL-1 MO ALLOY SHEET AT ELEVATED TEMPERATURES - SURFACE TREATMENT **EFFECT**

NASA-TM-X-56881

EVALUATION OF PERFORMANCE OF VARIOUS LUBRICANTS ON BALL BEARINGS OPERATING IN SIMULATED SPACE ENVIRONMENT NAA-32538

AIRCRAFT FUEL TANK COATING CORROSION RESISTANCE, DISCUSSING POLYURETHANE AND EPOXY MATERIAL CHARACTERISTICS AND APPLICATION

A66-17491

N65-19527

EROSION

CORROSION-EROSION TESTING OF STAINLESS STEEL

OXYGENATED SATURATED STEAM ACNP-64001

N65-18457

SYNTHETIC LUBRICANTS COMPOUNDED FROM ORGANIC A65-25505 ESTERS

BEST LUBRICANT CHARACTERISTICS OF ESTERS,
SILICONES AND FLUORINATED HYDROCARBONS COMBINED IN
NEW SYNTHETIC LUBRICANT A65-33627

SYNTHESIS, CHARACTERIZATION, AND ESTER-ESTER INTERCHANGE STUDY OF MIXED ESTER 2-ETHYLHEXYL BENZYL AZELATE FOR USE AS LOW TEMPERATURE INSTRUMENT DILS N65-22144 NRI -6149

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPIC ANALYSIS OF MIXED PENTAERYTHRITOL, DIPENTAERYTHRITOL, AND TRIMETHYLOLPROPANE ESTERS NRI -6307

ETHYL

SYNTHESIS, CHARACTERIZATION, AND ESTER-ESTER INTERCHANGE STUDY OF MIXED ESTER 2-ETHYLHEXYL BENZYL AZELATE FOR USE AS LOW TEMPERATURE INSTRUMENT OILS NRL-6149

ETHYL ALCOHOL

ETHYLHEXYLAZELATE BASED LUBRICANTS FOR BALL REARINGS NRI -6356

ETHYLENE

HIGH HEAT CAPABILITY AND FRICTIONAL PROPERTIES MAKE TEFLON-LUBRICATED PHENOLIC RESIN COMPOUNDS DESIRABLE FOR BEARINGS A65-25642

ETHYLENE COMPOUND

SYNTHESIS OF SULFUROUS ANTIWEAR OIL ADDITIVES ON ETHYLENE SULFIDE AND FATTY ACID BASES

N66-11083

ETHYLENE OXIDE

CORROSION OF MATERIALS BY ETHYLENE GLYCOL-WATER N65-29914 CMIC-216

FRICTION REDUCTION EFFECTS ON TURBULENT FLOWS IN CISTILLED WATER BY DILUTE ADDITIVE OF HIGH MOLECULAR WEIGHT POLYETHYLENE OXIDE TR-1

CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC MG- ZN ALLOYS IN HALIDE SOLUTION

A66-26026

EVAPORATION

DEGRADATION OF POLYMER COMPOSITIONS IN VACUUM IN EVAPORATION AND SLIDING FRICTION EXPERIMENTS N65-35203

EVAPORATION RATE

EVAPORATION RATES, FRICTION, AND WEAR OF LUBRICATING MATERIALS UNDER VACUUM CONDITIONS NASA-TM-X-52009

VACUUM EFFECTS ON LUBRICANTS AND BEARING MATERIALS DUE TO REDUCED AMBIENT PRESSURE AND LOW CONCENTRATION OF OXIDIZING GASES

A66-24383

EXPLOSIVE FORMING

EXPLOSION CLADDING FOR BONDING SIMILAR AND DISSIMILAR METALS WITHOUT INTERMEDIATE METAL OR EXTERNALLY APPLIED HEAT A66-12: A66-12317

EYPOSIBE

EXTENDED EXPOSURE TO HEATED LITHIUM HYDRIDE EFFECT ON TENSILE PROPERTIES OF STAINLESS STEELS NAA-SR-MEMO-10885

EXTRUSION

DEFORMATION THEORY APPLICATIONS, LUBRICATION, EXTRUSION LIMITATIONS, AND THIN SHEET ROLLING PROBLEMS IN METAL WORKING N66-21312 MAB-206-M/3/

F

FACILITY

ULTRAHIGH TEMPERATURE REACTOR EXPERIMENT ~ FACILITY CONSTRUCTION, COMPONENT DEVELOPMENT, HELIUM COOLING SYSTEM, SYSTEMS ANALYSES, NEUTRONIC CALCULATIONS, AND GRAPHITE CORROSION N65-36466

METALLURGICAL INVESTIGATION OF HYDROGEN PREHEATER TUBE FAILURE - STRESS CORROSION, ZINC CONTAMINATION, CRACK DETECTION, OVERHEATING EFFECTS, AND FAILURE SIMULATION RN-TM-0312

FAILURE MODE

DESIGN CRITERIA FOR AVOIDANCE OF FATIGUE BREAKAGE AND EXCESSIVE WEAR BASED ON THEORIES OF FAILURE FOR DUCTILE AND BRITTLE MATERIALS

RELIABILITY TESTING PROGRAM FOR ESTIMATING CYCLICAL LIFE FOR EQUIPMENT EXPERIENCING ONLY WEAROUT FAILURE A65-26059

HIGH STRENGTH STRESS AND CORROSION RESISTANT STEEL DISCUSSING FAILURE MODE, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, MACHINING AND FORMING METHODS A65-35056

STRESS CORROSION TESTS ON ALUMINUM ALLOYS WITH RESPECT TO STATISTICAL NATURE OF DISTRIBUTION OF FAILURE TIMES NASA-TM-X-53355

FAILURE MODE AND OPERATION LIFE OF BALL BEARINGS USING FLUID LUBRICANTS AT HIGH TEMPERATURES IN RECIRCULATING SYSTEM NASA-CR-74097

N66-23670

FAST REACTOR

FUEL TANK MATERIAL COMPATIBILITY WITH FAST BREEDER REACTOR FUEL LA-DC-7315

N66-18290

FATIGUE

MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND TITANIUM ALLOY STRESS CORROSION, CATHODIC PROTECTION, CORROSION FATIGUE, AND ANTIFOULING PAINT FOR ALUMINUM ALLOYS NRL-MEMO-1634 N66-14232

FATIGUE DIAGRAM

CURVES AS QUANTITATIVE CRITERIA OF CORROSION FATIGUE OF METALS A65-36015

FATIGUE LIFE

DESIGN CRITERIA FOR AVOIDANCE OF FATIGUE BREAKAGE AND EXCESSIVE WEAR BASED ON THEORIES OF FAILURE FOR DUCTILE AND BRITTLE MATERIALS

465-14459

HIGH STRENGTH STRESS AND CORROSION RESISTANT STEEL DISCUSSING FAILURE MODE, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, MACHINING AND FORMING METHODS A65-35056

FATIGUE LIFE AND CONTACT WEAR IN TOOL STEEL EFFECTED BY DIESTER AND MINERAL OIL LUBRICANTS N65-16825

LUBRICANT EFFECT ON FATIGUE LIFE OF STATIONARY BALL ON FLAT CONTACT SUBJECTED TO OSCILLATORY NORMAL LOAD ASME PAPER 65-WA/CF-3

CORRELATION EQUATION ESTIMATING PITTING FATIGUE LIFE OF BEARINGS FROM MINIMAL ROLLING CONTACT RIG ASME PAPER 65-WA/CF-5

SERVICE LIFE OF ANTIFRICTION BEARINGS REPRESENTED BY WEIBULL DISTRIBUTION LAW, WITH COMPUTER METHOD FOR PARAMETERS AND DENSITY FUNCTION

A66-16486

FATIGUE TEST

LUBRICANTS EFFECT ON STEEL AND OTHER METAL FATIGUE LIVES IN ROTATING CANTILEVER FATIGUE TESTS

STRESS CORROSION, DELAYED FAILURES, FATIGUE
CORROSION AND RELATION BETWEEN THESE PHENOMENA —
COMMISSARIAT ON ATOMIC ENERGY, METALLURGICAL
COLLOQUIUM, CADARACHE, RHONE, FRANCE, JUNE
A66-33440

FATIGUE TESTING MACHINE

ELECTRON MICROSCOPE STUDY OF SURFACE TOPOGRAPHY CHANGES IN RUNNING TRACK IN ROLLING CONTACT FAITGUE TESTER ASLE PAPER 64-LC-29

DEVICE FOR TAKING LONG TIME CORROSION FATIGUE CURVES ON SMALL CROSS SECTION SPECIMENS AT HIGH TEMPERATURES AND PRESSURES A66-20 A66-20433

TRAPEZOIDAL STRESS WAVEFORMS EFFECT ON LOW CYCLE CORROSION FATIGUE STRENGTH, CLARIFYING MECHANISM OF CORROSION FATIGUE 466-23849

FATTY ACID

RELATION BETWEEN CHAIN LENGTH IN SATURATED ALIPHATIC ACIDS AND STRUCTURE OF PSEUDOGELS THICKENED WITH THEIR LI AND CA SOAPS STUDIED FOR LUBRICATING PURPOSES

CALCIUM SDAPS OF SYNTHETIC FATTY ACID FRACTION AS METAL DRAWING LUBRICANT FTD-TT-64-1197/1 N65-3347 N65-33475

SYNTHESIS OF SULFUROUS ANTIWEAR OIL ADDITIVES ON ETHYLENE SULFIDE AND FATTY ACID BASES

N66-11083

EFFECT OF FINELY DIVIDED MATERIALS ON POLYDIMETHYL SILICONE DIL - FILLER REINFORCEMENT IN SILICONE LIQUID POLYMERS RAE-TR-66061

WEAR AND FRICTION OF HIGH TEMPERATURE SOLID FILM LUBRICANT IN HIGH VACUUM AND IN AIR

VAPOR-DEPOSITED THIN GOLD FILMS AS LUBRICANT IN VACUUM NASA-TN-D-3040

FLUID FILM SHAFT BEARINGS FOR LIQUID METAL PUMP -SNAP-50/SPUR POWERPLANT TIM-916

DRY FILM LUBRICANT DEVELOPMENT AND PERFORMANCE COMPARISON WITH LIQUID LUBRICANTS

N66-17717

FILM THICKNESS

HYDRODYNAMIC LUBRICATION EMPHASIZING THICKNESS OF LUBRICANT FILMS AND FORCES ON FILMS

INVERSE PROBLEMS IN HYDRODYNAMIC LUBRICATION IN WHICH FILM PRESSURE DISTRIBUTION IS ASSUMED AND PROFILE TO BE DETERMINED IS ANALYZED IN CONJUNCTION WITH DESIGN DIRECTIVES

A65-23502

PRESSURE AND ELASTIC DISTORTION EFFECT ON THIN FILM LUBRICATION OIL THICKNESS A65-2:

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL DILS AND ESTERS ASLE PREPRINT 65AM 4A4

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION FILM WITH THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2

COMPUTER METHOD FOR ISOTHERMAL PROBLEM OF RIGID AND ELASTIC CYLINDERS LUBRICATED BY CONSTANT AND VARIABLE PROPERTY FLUID, DISCUSSING FILM THICKNESS

ASLE PAPER 64-LC-22 A65-31716

CONDUCTING LUBRICANT IN EXTERNALLY PRESSURIZED BEARING WITH VARIABLE FILM THICKNESS IN PRESENCE OF MAGNETIC FIELD DETERMINING FLOW, LOAD AND ELECTRICAL CHARACTERISTICS A65-32310

ELASTOHYDRODYNAMIC LUBRICATION THEORY, COMPARING OIL-FILM THICKNESS PREDICTED BY DOMSON AND HIGGINSON WITH MEASUREMENTS FROM DISK MACHINE LUBRICATED BY VARIOUS FLUIDS A65-3276

PRESSURE, TEMPERATURE AND FILM THICKNESS BETWEEN TWO CIRCULAR DISKS CORRELATED WITH THEORETICAL SOLUTIONS OF THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF INFINITELY LONG ROLLERS

GEAR TOOTH ELASTOHYDRODYNAMIC LUBRICATION SURVEY DATA, EXAMINING CASE HISTORIES A65-3277

ELASTOHYDRODYNAMIC LUBRICATION, REVIEWING WORK ON FILM THICKNESS AND SHAPE, PRESSURE AND STRESS DISTRIBUTION, SIDE LEAKAGE, ETC

A65-33218

FILM THICKNESS MEASURING APPARATUS IN ELASTOHYDRODYNAMIC LUBRICATION EXAMINING FRICTION COEFFICIENT, VISCOSITY AND SLIDING SPEED DATA A55-33219

BIBLIOGRAPHY OF IME SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION AT LEEDS, ENGLAND IN SEPTEMBER 1965

M HD SQUEEZE FILM BEARINGS IN PRESENCE OF ELECTROMAGNETIC FIELD ASME PAPER 64-WA/LUB-3 A65-33854

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION WITH FILM THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT (SAM 4A2 A66-18291

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL DILS AND ESTERS

OIL FILM THICKNESS CAUSING HYDRODYNAMIC LUBRICATION BETWEEN MOVING SURFACES OF MACHINE COMPONENTS COA-AERO-184 N66-19008

FILTRATION
FRICTION REDUCTION IN PISTON TYPE HYDRAULIC SERVO
VALVES - FINE FILTRATION OF OIL AND PISTON
SEALING LAND TAPERING
RAE-TN-GM-312
N65-29643

FIRE PREVENTION

CORROSION INHIBITORS IMPROVEMENT IN METALS FROM
ATTACK BY WATER BASED, FIRE RESISTANT, HYDRAULIC

FLUID

MR-5

N65-27926

FIRE RESISTANT LUBRICANT FOR TURBINES USING PHOSPHOROUS COMPOUNDS AS BASE FTO-TT-64-1291/1 N65-28723

FLAME SPRAYING
THERMAL AFTERTREATMENT AND FLAME SPRAYING
CHARACTERISTICS OF POLYAMIDE COATINGS
FTD-TI-64-1324/1822
N65-28276

STRESS-CORROSION TEST TO DETERMINE CRITICAL FLAW
SIZE FOR REDUCTION OF EFFECTIVE FRACTURE
TOUGHNESS
5-23304
N66-11265

FLAW DETECTION
TEXTBOOK ON CHARACTERISTICS OF PRINCIPAL METALLIC
AND NORMETALLIC MATERIALS USED IN AIRCRAFT
STRUCTURES A65-16908

FLEXIBLE BODY

CHARACTERISTICS OF FLEXIBLE CIRCULAR PLATE,

CONSIDERING STRESS AND STRAIN IN FRICTION ZONE AT

CLAMPED SECTION

FLIGHT TEST

CORROSION PROTECTION FOR REACTOR ROTATING
ASSEMBLIES COVERING REQUIREMENTS, COATING TESTS
AND MATERIALS

A65-1616

466-11181

FLOW EQUATION
VISCOELASTIC NON- NEWTONIAN LUBRICANT FLOW
EQUATIONS WITH SQUEEZE FILM SOLUTIONS
ASLE PAPER 64-LC-10
A65-22795

INERTIA, TURBULENT AND VISCOUS TERMS COMPUTED FOR SLIDER BEARING LUBRICATION, USING MATRIX ALGEBRA METHODS
ASLE PAPER 64-LC-16
A65-31720

FLOW SEPARATION
LUBRICANT FILM-VAPOR INTERFACE ANALYSIS AFTER
FLOW SEPARATION AND RUPTURE
MTI-65TR58
N66-227

FLOW THEORY
TURBULENT FLUID FLOW THEORY AND APPLICATION TO
HYBRID BEARINGS LUBRICATION
NIG-3363-2
N66-18846

FLOW OF NONLINEAR VISCOPLASTIC MEDIUM BETWEEN TWO PLATES

FLUID MECHANICS

FLUID MECHANICS, LUBRICATION, CORROSION, MASERS,
BIOLOGICAL STRESS, PROTECTIVE COATINGS, NEUTRON
ACTIVATION, FRACTOGRAPHY, METABOLISM, GUIDED
MISSILE LAUNCHING, AND CATAPULTS
AD-623630

N66-14468

FLUID LUBRICATION OF MANNED ORBITAL SPACE STATION
DOOR MECHANISM N66-17441

FLUID DYNAMICS, HEAT TRANSFER, MATERIAL DEVELOPMENT, CORROSION, INSTRUMENTATION, CHEMISTRY, AND COMPONENT DEVELOPMENT STUDIES IN HIGH TEMPERATURE LIQUID METAL TECHNOLOGY REVIEW N66-23371

NONLINEAR SOLUTION FOR FLOW INTERACTION BETWEEN
SELF-ACTING FOIL BEARING LUBRICANT AND EXTERNAL
PRESSURE
RR-65-12
N66-3111

FLUORIDE
NICKEL CORROSION TESTS FOR FLUORIDE VOLATILITY
PROGRAM - SMALL SCALE LABORATORY TESTS IN TUBE
FURNACES AND IN-PLANT EXPOSURE TESTS
ANI -6979
N65-24709

FLUORIDE SOLID LUBRICANTS FOR EXTREME TEMPERATURE AND CORROSIVE ENVIRONMENTS NASA-TM-X-52077 N66-15243

FLUORINE
LIQUID FLUORINE CORROSION OF METALS IN IMPURITYFREE DRY SYSTEM AND RESULTANT PRODUCTS, NOTING
EFFECT OF SURFACE CONTAMINANTS
A65-19259

LOW CORROSION RESISTANCE OF IRON-ALUMINUM ALLOYS IN FLUORINE ATMOSPHERE AT HIGH TEMPERATURE N65-13415

FLUORINE COMPOUND

EFFECT OF TEMPERATURE ON FRICTION AND WEAR OF

FILLED FLUORINATED PLASTIC MATERIALS

FTD-TT-64-1176/182

N65-29121

ELECTROMAGNETIC PUMP DEVELOPMENT FOR CIRCULATION OF VERY CORROSIVE /FLUORINATED COMPOUND/ GASES CEA-R-2744 N66-18872

FLUORO COMPOUND

BEST LUBRICANT CHARACTERISTICS OF ESTERS,
SILICONES AND FLUORINATED HYDROCARBONS COMBINED IN
NEW SYNTHETIC LUBRICANT

A65-33627

REDUCTION OF POLYMERIC FRICTION BY MINOR CONCENTRATIONS OF PARTIALLY FLUORINATED COMPOUNDS N65-26290

1-28

FLUOROCARBON

CORROSION OF UNALLOYED AND ALLOYED PLUTONIUM IN MONOBROMOBENZENE AND FREON 113 FLUOROCARBON RFP-744 N66-31065

FOIL BEARING

EQUATIONS FOR SELF-ACTING FOIL BEARINGS - EFFECTS
OF BENDING STIFFNESS OF TAPE AND COMPRESSIBILITY
OF LUBRICANT
RR-65-1

INTERACTION BETWEEN SELF-ACTING AND EXTERNALLY PRESSURIZED LUBRICANT FLOW IN FOIL BEARING RR-65-12 N66-18519

SELF-ACTING FOIL BEARING INFINITE WIDTH RR-65-14 N66-21481

NONLINEAR SOLUTION FOR FLOW INTERACTION BETWEEN SELF-ACTING FOIL BEARING LUBRICANT AND EXTERNAL PRESSURE

RR-65-12

N66-3111

FORCED CONVECTION

CORROSION RESISTANCE OF MOLYBDENUM-CHROMIUM STEEL
IN MERCURY FORCED CONVECTION CORROSION LOOP FOR
NUCLEAR AUXILIARY POWER SYSTEM COMPONENTS
NASA-CR-54719
N66-19515

FORMALDEHYDE

WEAR RESISTANCE OF SLEEVE BEARINGS MADE FROM POLYMERPOLYFORMALDEHYDE /PFA/FTD-TT-65-329/16264 N65-33005

ALKYLPHENOL ADDITIVES OF FORMALDEHYDE CONDENSATION FOR USE IN LUBRICATING MOTOR OILS

N66-11079

FRACTOGRAPHY

FLUID MECHANICS, LUBRICATION, CORROSION, MASERS, BIOLOGICAL STRESS, PROTECTIVE COATINGS, NEUTRON ACTIVATION, FRACTOGRAPHY, METABOLISM; GUIDED MISSILE LAUNCHING, AND CATAPULTS AD-623630

FRACTURE MECHANICS

ALUMINUM ALLOY CORROSION AND FRACTURE UNDER TENSION SHOWING RELATION TO INTERGRANULAR CORROSION A65-19790

STRESS CORROSION RUPTURING OF TITANIUM ALLOY - FRACTURE MECHANICS NASA-CR-67710 N66-10876

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS AD-625454

ELECTRON MICROSCOPY APPLICATIONS TO FRACTURE MECHANICS FOR DETERMINING CRACK PROPAGATION DIRECTION, AND CHARACTERISTIC DIFFERENCES BETWEEN STRESS CORROSION AND HYDROGEN

EMBRITTLEMENT SM-49150

N66-22627

FRACTURE TOUGHNESS

HIGH STRENGTH STRESS AND CORROSION RESISTANT STEEL DISCUSSING FAILURE MODE, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, MACHINING AND FORMING METHODS

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS AD-453733 N65-14327

FRACTURE TOUGHNESS AND STRESS CORROSION RESISTANCE
OF SEVERAL HEATS OF MARAGING STEEL COMPARED WITH
RESULTS FOR LOW-ALLOY AND HOT-WORK DIE STEEL
A66-16801

STRESS-CORROSION SUSCEPTIBILITY OF HIGH-STRENGTH STEEL AT VARIOUS LEVELS OF TENSILE YIELD STRENGTH AND FRACTURE TOUGHNESS ASME PAPER 66-MET-5 A66-26973

STRESS-CORROSION TEST TO DETERMINE CRITICAL FLAW SIZE FOR REDUCTION OF EFFECTIVE FRACTURE

TOUGHNESS S-23304

N66-11265

STRESS-CORROSION SUSCEPTIBILITY OF ULTRAHIGH STRENGTH STEEL EVALUATED IN TERMS OF FRACTURE TOUGHNESS R-1782

N66-19382

FREEZING POINT

LOM-FREEZING-POINT OIL PREPARATION BY EXTRACTING PARAFFINS FROM PETROLEUM DISTILLATES WITH CARBAMIDE PTD-TI-65-1509/184

FREOM

CORROSION OF UNALLOYED AND ALLOYED PLUTONIUM IN MONOBROMOBENZENE AND FREON 113 FLUOROCARBON RFP-744

FRETTING

HARDNESS EFFECTS OF STEEL BRIDGES ON ADHESION TO COLD DRAWN MILD STEEL AS INITIAL STAGE OF FRETTING PROCESS IN INITIATION OF FATIGUE CRACKS

465-18627

FAILURE OF W C- CO COATED ROD-GLAND BEARING CAUSED BY FRETTING AND PROTECTION MEASURES, EXAMINING HYDRAULIC ACTUATORS AS PRECISION POSITING DEVICES

A65-18628

WEAR AND GREASE LUBRICATION EFFECTS IN MATCHED AIRCRAFT SPLINE SPECIMENS SUBJECTED TO OSCILLATORY MOTION A66-30572

FRETTING CORROSION

EFFECT OF GREASE CHARACTERISTICS ON FRETTING
DAMAGE
RIA-64-3575
N65-17908

FRICTION

BEARINGS AND LUBRICANTS REVIEW AND DIGEST OF LITERATURE FROM 1962 TO 1963 A65-14065

CONTACT FRICTION EFFECTS ON FATIGUE PHYSICAL LIMIT AND CYCLIC STRENGTH OF STEEL A65-14788

LUBRICATION MECHANISMS AND EFFECTS OF CRYSTAL-LATTICE STRUCTURE, HARDNESS AND SURFACE CHARACTERISTICS UPON WEAR AND FRICTION PHENOMENA A65-26490

STRUCTURAL CHANGES DURING FRICTION OF GRAPHITIZED MATERIAL, COMPARING CRYSTAL SIZES AND INTEGRAL LINE INTENSITY OF INITIAL AND WEAR PRODUCT

INTERFACE FRICTION BETWEEN TOOL AND WORKPIECE DURING HOT METAL DEFORMATION INTRI-86027-2 N65-13989

FRICTION AT TOOL-WORK INTERFACE IN HOT METAL
DEFORMATION PROCESSING
IITRI-86027-3
N65-14222

CRYSTAL STRUCTURE INFLUENCE ON FRICTION AND WEAR OF TITANIUM AND TITANIUM ALLOYS IN VACUUM NASA-TN-D-2671 N65-17459

ULTRASONIC INSPECTION OF ANTIFRICTION BEARINGS AD-454013 N65-19727

SOLID MOLYBDENUM DISULFIDE LUBRICANT APPLIED TO CUTTING PORTION OF TOOLS AND FRICTIONAL PARTS OF MACHINES
FTD-TT-64-1148/1

VARIOUS TECHNIQUES USED TO PROTECT MECHANISMS OPERATING IN SPACE FROM MALFUNCTIONS DUE TO FRICTION
MASA-CR-62282

MEASURING APPARATUS FOR STUDYING BALL BEARING SPINNING FRICTION NASA-TN-D-2796 NASA-TN-D-2796

ELASTIC SLIPPING AND FRICTION COUPLINGS BETWEEN ROLLERS OF VARIOUS MATERIALS N65-24640

REDUCTION OF POLYMERIC FRICTION BY MINOR

CONCENTRATIONS OF PARTIALLY FLUORINATED COMPOUNDS

N65-26290

REDUCTION OF FRICTION WITH FORCED ROTATION OF OUTER RACES OF BALL BEARINGS IN SUPPORTS OF N65-28269 INSTRUMENT SHAFTS

EFFECT OF TEMPERATURE ON FRICTION AND WEAR OF FILLED FLUORINATED PLASTIC MATERIALS N65-29121 FTD-TT-64-1176/1&2

WEAR AND FRICTION OF HIGH TEMPERATURE SOLID FILM LUBRICANT IN HIGH VACUUM AND IN AIR N65-29941

ADSORPTION AND FRICTION OF MINERALS UNDER HIGH VACUUM AND EXTREME TEMPERATURE CONDITIONS -ENGINEERING BEHAVIOR OF PARTICULATE SYSTEM WITH CLEAN, DRY SURFACES N65-30626 R64-42

EFFECT OF FRICTION ON DYNAMICS OF SERVO SYSTEMS WITH RANDOM SELECTION OF MECHANICAL N65-31656 RESISTANCE MAGNITUDE

EVAPORATION RATES, FRICTION, AND WEAR OF LUBRICATING MATERIALS UNDER VACUUM CONDITIONS N65-35475 NASA-TH-X-52009

FRICTION AND HEAT FLOW DETERMINATION FOR SELF-SIMULATING BOUNDARY LAYER PROBLEMS

N65-35856

BOOK ON FRICTION AND WEAR COVERING NATURE OF INTERACTION BETHEEN SOLID SURFACES, GENERAL CONCEPTS AND ENGINEERING AND DESIGN CALCULATIONS A66-13834

FRICTION CORROSION CAUSED BY ALTERNATE PIVOTING OF STEEL BALL ON PLANE OF LIGHT ALLOY 466-27934

STARTING FRICTION AND KINETIC FRICTION OF PTFE FABRIC-LINED SPHERICAL BEARINGS AND DEFLECTION AND PERMANENT SET UNDER STATIC LOADING

GYROSCOPE IN GIMBAL SUSPENSION - DIFFERENTIAL EQUATIONS OF MOTION, AXIS STABILITY, AND EFFECT OF FRICTION AT GIMBAL-RING AXES

LUBRICITY PROPERTIES OF HIGH TEMPERATURE JET FUELS OPR-1

FRICTION, WEAR, AND ADHESION CHARACTERISTICS OF TITANIUM-ALUMINUM ALLOYS IN VACUUM N66-15491 NASA-TN-D-3235

GRAIN ORIENTATION INFLUENCE ON FRICTION PROPERTIES OF TUNGSTEN N66-15492 NASA-TN-D-3238

FRICTION AND WEAR CHARACTERISTICS OF POLYMIDE AND FILLED POLYMIDE COMPOSITIONS IN VACUUM NASA-TN-D-3261

FRICTIONAL BEHAVIOR AND LUBRICATION OF METALS IN HOT METAL DEFORMATION N66-25854

MOTION OF INTEGRATING GYROSCOPE WITH DRY FRICTION N66-26104

ULTRAHIGH-VACUUM FRICTION STUDIES OF SNAP REACTOR MATERIALS

WEAR AND FRICTION OF LUBRICATED AND UNLUBRICATED STAINLESS STEEL BEARINGS IN SLIDING AND ROLLING CONTACT IN ULTRAHIGH VACUUM AND VARIOUS GAS **ENVIRONMENTS** N66-27232 NASA-CR-65374

VIBRATION EFFECT ON FRICTION TORQUE IN CYLINDRICAL GUIDE BEARINGS FOR BALANCE-WHEEL SPINDLE N66-27598 FSTC-HT-23-40-66

FRICTION DUE TO BALL MOTION IN ANGULAR CONTACT BALL BEARING N66-28018 NASA-TM-X-52207

SUBSURFACE TRANSPORTATION TESTS FOR TRAFFICABILITY OF WHEELED VEHICLES IN DEEP SNOW N66-29932 TR-160

FRICTION COEFFICIENT

ODDINE-ANISOLE AND IODINE-ANISOLE-TURBINE OIL AS BOUNDARY LUBRICANTS FOR CHROME STEEL, NOTING FRICTION REDUCTION AND DECREASE IN WEAR

EVALUATION OF INORGANIC SOLID FILM LUBRICANTS BEING DEVELOPED FOR SPACE ENVIRONMENTS A65-17481

LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR BELOW AND ABOVE FILM MELTING POINT ASLE PAPER 64-LC-6

FRICTION COEFFICIENT AT ELEVATED TEMPERATURES DETERMINED BY PLANE-STRAIN COMPRESSION TEST OF A65-18794 SEVERAL LUBRICANTS

WEAR AND FRICTION BEHAVIOR OF MOLYBDENUM-TUNGSTEN-CHROMIUM ALLOYS IN HIGH TEMPERATURE SODIUM ENVIRONMENTS ASLE PAPER 64-LC-25

LOAD EFFECTS ON KINETIC FRICTION COEFFICIENT OF MOLYBDENUM DISULFIDE POWDERS ASLE PAPER 64-LC-21

HIGH TEMPERATURE LUBRICATION, SUPPLYING GRAPHS OF A65-23513 FRICTION COEFFICIENT

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON; HELIUM AND NITROGEN MEDIA A65-23565

PHYSICAL AND CHEMICAL PROPERTIES OF DICHALCOGENIDES OF GROUP VB AND VIB METALS FOR USE AS AEROSPACE SOLID LUBRICANTS, PRIMARILY FRICTION AND ANTIWEAR CHARACTERISTICS A65-24245 ASLE PREPRINT 65AM 5C3

GRAPH-ANALYTICAL METHOD FOR DETERMINING EFFECT OF FORCES OF DRY FRICTION IN BEARINGS ON OPERATION OF GYROSCOPE SUSPENSION A65-30288

FRICTION AND ADMESSION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA

SINTERING METHOD TO PROVIDE DESIRED PRECIPITATION HARDENABLE HIGH TEMPERATURE BEARING MATERIAL WITH PREFERRED LATTICE STRUCTURE A65-34836 SAE PAPER 650796

MOLYBDENUM DISULPHIDE-GRAPHITE ALLOY AS SOLID LUBRICANT DEMONSTRATING VERY LOW COEFFICIENT OF A65-36165

FRICTION COEFFICIENTS OF INORGANIC SOLID FILM LUBRICANTS FOR USE IN SPACE ENVIRONMENTS N65-17276 NASA-CR-60783

DETERMINATION OF FRICTION IN SLIDE GUIDES, ANTIFRICTION PROPERTIES OF MATERIALS USED FOR STRAP GUIDES, AND FRICTION COEFFICIENT DEPENDING ON DURATION OF CONTACT AND SLIDING SPEED N65-28504 FTD-TT-64-1179/162

FRICTION INDUCED VIBRATION TO DETERMINE EXISTENCE OF CRITICAL VELOCITY OF DRIVEN SURFACE ASME PAPER 65-LUB-5

FRICTIONAL AND VISCOELASTIC PROPERTIES OF PLASTICS AND RUBBER SHOW RELATIONSHIP TO SLIDING SPEED AND **TEMPERATURE** AAA-14247 ASME PAPER 65-LU8-15

SOLID AND DRY-FILM LUBRICANTS, TABULATING KINETIC COEFFICIENTS OF FRICTION, NOTING PARTICLE SIZE, VISCOSITY, COSTS, MEAR LIFE, APPLICATION, ETC A66-24099 SUBJECT INDEX FRICTION MEASUREMENT

EFFECT OF CRYSTALLINE STATE AND STRUCTURAL ORIENTATION OF POLYMER ON ENDURANCE OF COUPLINGS WITH POLYTETAFLUOROETHYLENE COMPONENTS, ANALYZING DRY FRICTION AND WEAR ON INTERFACES

A66-25912

FRICTION AND LUBRICATION OF POLYMERS

A66-26304

METAL FLOW, FRICTION AND LUBRICANT PERFORMANCE DURING STAMPING OF THIN TITANIUM ALLOY BLANKS A66-28202

GRAPHITE LUBRICANT PHYSICAL AND CHEMICAL COMBINATIONS WITH OTHER MATERIALS FOR IMPROVED HIGH TEMPERATURE FRICTION AND WEAR, DISCUSSING NUCLEAR IRRADIATION FOR GRAPHITE LATTICE MODIFICATION A66-31933

HIGH LOAD, LOW SPEED SLIDING FRICTION TESTS ON FLUID LUBRICANTS AND DRY LUBRICANTS FOR DETERMINING COEFFICIENT OF FRICTION NASA-TM-X-53331 N66-10669

THERMAL DECOMPOSITION OF ORGANIC PHOSPHORUS COMPOUND ADDITIVES FOR REDUCTION OF FRICTION COEFFICIENT N66-11104

OPERATING CONDITION AND GAP SIZE EFFECTS ON FRICTION COEFFICIENT FOR POLYMER PLASTIC BEARINGS - MATERIAL TESTING FTD-TT-65-737/18284 N66-12106

HEAT AND WEAR RESISTANT PLASTIC MATERIALS WITH HIGH FRICTION COEFFICIENTS FTD-MT-64-483 N66-16816

FRICTION CUEFFICIENTS AND WEAR CHARACTERISTICS FOR X-15 AIRCRAFT SKID LANDING GEAR NASA-TN-D-3331 N66-18172

FRICTION COEFFICIENTS AND LUBRICATION FOR EXTREME PRESSURE METAL WORKING
MII-65TR59
N66-19192

MOLYBDENUM DISULFIDE-BASE SOLID LUBRICANTS WITH LOW FRICTION COEFFICIENTS BETWEEN COUPLED ELEMENTS ATD-66-52 N66-31864

FRICTION MEASUREMENT

BOOK CONCERNING MOLECULAR PHYSICS OF BOUNDARY FRICTION ON METAL SURFACES A65-16663

CONCEPT THAT NONINTERCONNECTED LUBRICANT
RESERVOIRS SURFACE HAS LESS BOUNDARY LAYER
FRICTION THAN SMOOTHER SURFACE WITH APPARENT LAY,
GIVING TORQUE TEST ON SURFACE FINISHES

A65-20034

FRICTION MEASUREMENT AND GASES EVOLVED DURING CLEAVAGE OF LAMELLAR SOLIDS IN ULTRAHIGH VACUUM ASLE PAPER 64-LC-18 A65-22791

CYLINDRICAL BODY ROLLING FRICTION MEASUREMENTS
INCLUDING ROLLING RATE, LOAD AND SPECIFIC
PRESSURE, LUBRICATION, MATERIAL AND RADII OF
CURVATURE EFFECTS A65-22965

FRICTION, LUBRICATION AND WEAR INCLUDING ROLLING, SLIDING AND ADHESION IN METALS AND NONMETALS AND SURFACE TOPOGRAPHY STRUCTURE, USING ELECTRON MICROSCOPY A65-23509

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS

ASLE PREPRINT 65AM 3A1 A65-2425

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION FILM WITH THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2 A65-24256

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LOADS, SPEEDS AND LUBRICANTS ASLE PREPRINT 65AM 6A2 A65-24258

SURFACE TEMPERATURES OF FRICTIONAL CONTACTS
CONSIDERING TWO ROLLING/SLIDING CONTACTS, HEAT
SOURCE MOVING OVER SURFACE AT VARIOUS SPEEDS AND
REPEATED CONTACT
A65-25442

HEAT EXCHANGE, FRICTION AND MASS EXCHANGE IN LAMINAR MULTICOMPONENT BOUNDARY LAYER DURING INJECTION OF EXTRANEOUS GASES A65-29304

FRICTIONAL TORQUE MEASUREMENTS IN ELASTOHYDRODYNAMIC LUBRICATION MTI-64TR63

ASLE PREPRINT 65-LC-23

N65-21445

A66-12249

DETERMINATION OF WEAR RESISTANCE OF FRICTION COUPLINGS BY MEASUREMENT OF CONSUMPTION OF WORKING MEDIUM FID-TI-65-69/182 N65

CHARACTERISTICS OF FLEXIBLE CIRCULAR PLATE, CONSIDERING STRESS AND STRAIN IN FRICTION ZONE AT

CLAMPED SECTION A66-1118

CHARACTERISTICS OF PARTIALLY CLAMPED CORRUGATED MEMBRANE, INVESTIGATING EFFECT OF FORCES OF CLAMPING FRICTION A66-1118

SLIDING FRICTION TESTS AT UITRAHIGH LOAD OF EIGHT GREASES AND 18 DRY LUBRICANTS AND VARIOUS BASE MATERIALS

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS AS RELATED TO CRYSTAL STRUCTURE AND LATTICE PARAMETERS IN VACUUM ASLE PREPRINT 65-LC-18 A66-1225

MEASUREMENT OF FRICTION OF MATERIALS SLIDING IN
JP-4 FLUID TO PREDICT PERFORMANCE OF HYDRAULIC
PUMP
A66-16136

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS ASLE PREPRINT 65AM 3A1 A66-182

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION WITH FILM THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2 A66-18291

OPERATION, MAINTENANCE AND INSTALLATION OF FRICTION AND NONFRICTION BEARINGS, NOTING CHARACTERISTICS, PROBLEMS, ETC A66-22951

TEST RIG FOR GAS-LUBRICATED JOURNAL BEARINGS
MEASURING FRICTIONAL TORQUE, GAS FILM PRESSURE
DISTRIBUTION, STATIC AND DYNAMIC ECCENTRICITY
CHANGES, ETC A66-2492

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LODADS, SPEEDS AND LUBRICANTS
ASLE PREPRINT 65 AM 6AZ
A66-2536

MECHANISM OF PLASTIC DEFORMATION IN CRYSTALLINE BODIES, DISCUSSING STATIC AND DYNAMIC FRICTIONAL FORCES IN RELATION TO DISLOCATION STRUCTURE OF BODIES IN CONTACT

A66-25887

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS AS RELATED TO CRYSTAL STRUCTURE AND LATTICE PARAMETERS IN VACUUM ASLE PREPRINT 65-LC-18 A66-3056

SLIDING FRICTION TESTS AT ULTRAHIGH LOAD OF EIGHT GREASES AND 18 DRY LUBRICANTS AND VARIOUS BASE MATERIALS ASLE PREPRINT 65-LC-23
A66-30571

NEW METHOD OF EVALUATING EFFECTIVENESS OF ANTIABRASIVE PROPERTIES OF FUEL AND OIL ADDITIVES N66-11115

TEST RIG FOR MEASURING WEAR AND FRICTION FOR MATERIALS TESTED IN WATER UNDER PRESSURE WAPD-288 N66-18857

FRICTION AND WEAR CHARACTERISTICS OF MATERIALS FOR GAS LUBRICATED BEARINGS UNDER STAT-STOP AND

WHIRL INDUCED RUBBING CONDITIONS

N66-20592

PLASTIC RESEARCH - SILICONE FLUIDS TO DECREASE ADHESION OF PLASTIC TO SOLID SURFACES, AND LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES OF

FTD-TT-65-909/18284

N66-22759

LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES OF CERTAIN POLYAMIDES

FRICTION MACHINE USED FOR EVALUATING EFFECTIVENESS OF ACTION OF ANTI-SCORING ADMIXTURES TO OILS AND FUEL S

FTD-TT-65-1491/16264

FRICTION REDUCTION

OIL, GAS AND SPIRAL BEARINGS, COMPARING PROPERTIES AND APPLICATIONS A65-16273

FRICTION AND WEAR STUDY OF LUBRICATION MECHANISM OF TRICRESYL PHOSPHATE ON STEEL ASLE PAPER 64-1C-1 A65-18051

ROTORACE GYROS WHICH REDUCE GIMBAL FRICTION BY USE OF SPECIAL BALL BEARINGS IME PAPER 13 A65-19706

MOTION EQUATION FOR GYROSCOPIC TURN INDICATOR SUBJECT TO DRY FRICTION A65-20040

REDUCTION OF MECHANICAL LOSSES DUE TO FRICTION IN SHAFT BEARINGS OF INSTRUMENTS BY FORCED MOTION OF OUTER RACES OF BALL BEARING A65-2554 A65-25545

COMPUTATION OF FLOW RATE IN PIPES AND DETERMINATION OF HEAD LOSSES IN PIPES OF LUBRICATION SYSTEMS WITH FLUID LUBRICANTS

A65-30155

PURITY AND GRAIN SIZE OF VARIOUS NATURAL AND SYNTHETIC MOLYBDENUM DISULFIDE INFLUENCING FRICTION AND WEAR OF METAL SURFACES WHEN USED AS LUBRICANT A65-30156

LUBRICATION OF BALL BEARINGS IN HIGH SPEED APPLICATION NOTING OIL TYPES, GREASE SHEAR AND OIL A65-33125

TURBULENT FLOW FRICTION REDUCTIONS IN DILUTE POLYMER SOLUTIONS NAVWEPS-8636 N65-22385

SURVEY OF LUBRICATION DEVICES FOR REDUCING FRICTION IN MECHANISMS OPERATING IN SPACE NASA-CR-62281 N65-22556

FRICTION REDUCTION IN PISTON TYPE HYDRAULIC SERVO VALVES - FINE FILTRATION OF OIL AND PISTON SEALING LAND TAPERING RAE-TN-GW-312

TESTING COMPONENTS AND MATERIALS OF MACHINES AND INSTRUMENTS FOR WEAR - ANTIFRICTION PROPERTIES OF IMPREGNATE CARBON AND GRAPHITE MATERIALS WORKING IN DRY FRICTION CONDITIONS FTD-MT-64-247 N65-36286

ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE MATERIALS IMPREGNATED WITH LIQUID METALS AND ALLOYS WORKING IN DRY FRICTION CONDITIONS

ANTIFRICTION PROPERTIES OF IMPREGNATED MATERIALS BASED ON GRAPHITE, WORKING IN DRY FRICTION N65-36289

OPERATION, MAINTENANCE AND INSTALLATION OF FRICTION AND NONFRICTION BEARINGS, NOTING CHARACTERISTICS, PROBLEMS, ETC

STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER BOUNDARY FRICTION CONDITIONS IN PRESENCE OF SURFACE ACTIVE LUBRICANT ADDITIVES

S NAP-8 REACTOR OSCILLATING BEARINGS TO PROVIDE LOW FRICTION SELF-LUBRICATION AT 1150 DEGREES F

FRICTION REDUCTION EFFECTS ON TURBULENT FLOWS IN DISTILLED WATER BY DILUTE ADDITIVE OF HIGH MOLECULAR WEIGHT POLYETHYLENE OXIDE

N66-10777

THERMAL DECOMPOSITION OF ORGANIC PHOSPHORUS COMPOUND ADDITIVES FOR REDUCTION OF FRICTION

VACUUM FRICTION MACHINE INVESTIGATIONS FOR FRICTION REDUCTION BY LUBRICATING OILS WITH OXYGEN AND OTHER GAS ADDITIVES N6

RADIOACTIVE TRACER INVESTIGATION OF REACTION MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH COPPER FILMS IN HYDROCARBON LUBRICATING OIL MEDIUM - FRICTION REDUCING ADDITIVES

N66-11106

A66-30414

REACTION MECHANISM OF ANTISCORING ADDITIVES IN LUBRICATING DILS FOR FRICTION REDUCTION

REACTION MECHANISM AND EFFECTIVENESS OF ADDITIVES IN LUBRICATING OILS FOR FRICTION REDUCTION

ALUMINUM POWDER, TALCUM, GRAPHITE, AND MOLYBDENUM DISULFIDE ADDITIONS TO POLYCAPROLACTUM COATINGS FOR IMPROVED ADHESION AND FRICTION PROPERTIES OF METAL JOINTS FTD-TT-65-986/18284

FRICTION REDUCING AND CHEMICALLY STABLE PLASTICS BASED ON POLYTETRAFLUDROETHYLENE FTD-TT-65-857/18284 N66-19245

MECHANICAL AND FRICTION PROPERTIES OF PLASTIC COATINGS, AND MATERPROOFED GLASS FIBER STRENGTH DEPENDENCE ON BINDERS N66-28854 FTD-TT-65-319/18284

FRICTION REDUCTION AND MECHANICAL STRENGTH DEPENDENCE ON METHOD OF APPLYING POLYAMIDE AND POLYETHYLENE COATINGS TO MACHINE PARTS

N66-28856

FUFL

HYDROFLUORINATOR CORROSION RATE DETERMINATION DURING FUEL PROCESSING RUNS WITH ZIRCONIUM-URANIUM ALLOY N65-18428 ORNL-3623

HIGHLY SULFUROUS ENGINE FUEL ADDITIVES -ANTICORROSION LUBRICANT ADDITIVES FTD-TT-64-778/1

N65-28108

CHEMISTRY AND TECHNOLOGY OF FUELS AND LUBRICANTS -U.S.S.R. FTD-TT-65-704/1&2

ADDITIVE FOR SULFUROUS FUELS WITH CHROMIUM COMPOUND FOR PISTON CYLINDER WEAR RESISTANCE FTD-TT-65-1126/164 N66-19560

FUEL CELL

MEMBRANE TYPE CATALYSTS AS LIQUID ELECTROLYTIC FUEL CELLS AND OTHER HETEROGENEOUS PROCESSES, CONSIDERING ACTIVE THREE PHASE BOUNDARY

FUEL CELL PERFORMANCE USING NITRIC ACID-DXYGEN REDDX CATHODES IN SULFURIC ACID AND CARBON OR NOBLE METAL ANODES A65-2: A65-22363

GALVANOSTATIC MEASUREMENTS OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES

COULOMETRIC-POTENTIOSTATIC MEASUREMENTS OF ANODIC OXIDATION OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES

OXIDATION OF LOW MOLECULAR WEIGHT PARAFFINS AND OLEFINS AT PLATINIZED POROUS CARBON ANODES IN LOW TEMPERATURE ACID ELECTROLYTE FUEL CELLS

A65-22370

POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR METALLIC INGOTS PREPARED AS ROTATING DISK ELECTRODES - CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS NASA-CR-68891 N66-13991

FUEL COMBUSTION

DETERGENT ACTION OF OIL ADDITIVES, INVESTIGATING SORPTION OF CHARGED PARTICLES ON CARBONACEOUS PRODUCTS OF FUEL COMBUSTION AND OIL OXIDATION ASLE PAPER 64-LC-9 465-18057

HIGH PERFORMANCE ROCKET AND RAMJET COMBUSTORS,
INTENSIFICATION OF COMBUSTION PROCESSES, AND
DEVELOPMENT OF FUEL ADDITIVES N65-23434

FUEL CONTAMINATION

ELIMINATION OF FUEL CONTAMINATION AND CORROSION OF FUEL TANKS IN AIRCRAFT USING JET TURBINE FUEL 465-2549

CONTAMINATION OF JET FUEL SYSTEMS WITH MICROBIAL ENTITIES AND IMPLICATION OF MICROBIAL GROWTH IN CORROSION AND EQUIPMENT MALFUNCTION AMPL-TR-65-30 N65-30860

FUEL CORROSION

AIRCRAFT PROTECTION FROM CORROSION COVERING STRESS AND INTEGRAL FUEL TANK CORROSION AND COATING METHODS A65-21650

THROAT EROSION RATES OF CARBON CHOKES IN ROCKET MOTOR NOZZLE PREDICTED, USING MATHEMATICAL APPROACH COMBINED WITH EXPERIMENTAL RESULT AIAA PAPER 65-351 465-30199

FUEL-WATER AND OXIDIZER-WATER CORROSION IN
ALUMINUM CAPILLARIES OF FUEL AND OXIDIZER TANKS
DSR-S-11047 N65-35287

OIL ADDITIVE TO SUPPRESS VANADIUM FUEL CORROSION -TETRAETHOXYSILANE FTD-TI-65-505/164

LUBRICITY PROPERTIES OF HIGH TEMPERATURE JET FUELS
QPR-1 N66-13426

ADDITIVE FOR SUPPRESSING VANADIUM CORROSION OF FUELS
N66-29818

FUEL ELEMENT

ZIRCALOY CORROSION IN SIMULATED PLUTONIUM RECYCLE TEST REACTOR FUEL ELEMENT SURFACE CREVICES

BNWL-83 N65-31877 REACTOR MATERIALS AND COMPONENTS, FUEL

REACTOR MATERIALS AND COMPONENTS, FUEL
DEVELOPMENT, RADIOISOTOPE AND RADIATION
APPLICATIONS, COATED-PARTICLE FUEL MATERIALS,
CORROSION STUDIES, AND GAS COOLED REACTORS
BMI-1745
N66-11852

STRESS CORROSION FAILURE IN STAINLESS STEEL AND ZIRCALDY 4 FUEL ELEMENT CLADDING WCAP-3269-50 N66-30579

FUEL OIL

ADDITIVES FOR FUEL OILS AND LUBRICANTS LITERATURE REVIEW
FTD-TT-65-62/1
N65-30004

SYNTHESIS, PRODUCTION, AND EFFECTIVENESS OF ANTIOXIDANT AND MULTIFUNCTIONAL ADDITIVES TO NATURAL AND SYNTHETIC FUEL OILS - COLLECTION OF ARTICLES
FTO-MT-64-213 N66-11

TEST METHODS AND MEASURING APPARATUS FOR RAPID APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL OILS, LUBRICATING OILS, AND ADDITIVES - SCALE MODELS AND MICROANALYSIS N66-11112

LIQUID METAL LUBRICANT ANTI-WEAR PROPERTIES STUDY, AND CARBAMIDE DEMAXING EFFECTS DETERMINATION FOR DIESEL ENGINE FUELS AID-U-64-37 N66-17611 FUEL OIL ADDITIVE WITH BARIUM NAPHTHENATE FOR WEAR AND SCALE REDUCTION IN HIGH SPEED DIESEL ENGINE FTD-TT-65-1125/164 N66-19561

GAS CELL

FUEL SYSTEM

URANTUM INTERMETALLIC FUEL SYSTEM AND ALUMINUM-BERYLLIUM ALLOY CORROSION PROPERTY STUDIES IDD-17154 N66-28357

FUEL TANK

FUEL TANK MATERIAL COMPATIBILITY WITH FAST BREEDER REACTOR FUEL LA-DC-7315 N66-18290

CORROSION INHIBITORS AND CLEANING TECHNIQUES FOR CONTAINERS AND TANKS FSTC-381-T65-673 N66-22684

FUEL TESTING

MINIATURE SINGLE TUBE HEAT EXCHANGER FOR MEASURING FUEL THERMAL STABILITY SAE PAPER 987A A65-17005

FUNGUS

EVALUATION OF FUNGUS-PROOF, TACK-FREE,
NONCORROSIVE, AND WEATHER-RESISTANT
PRESSURE-SENSITIVE PLASTIC OR PAPER TAPES
RIA-66-774
N66-27871

FURNACE

NICKEL CORROSION TESTS FOR FLUORIDE VOLATILITY
PROGRAM - SMALL SCALE LABORATORY TESTS IN TUBE
FURNACES AND IN-PLANT EXPOSURE TESTS
ANL-6979 N65-2470

G

GADOLINIUM

PHASE RELATIONS OF GADOLINIUM ALLOYS STUDIED FOR MECHANICAL AND CORROSION PROPERTIES BM-RI-6636 N65-26040

GALVANIC CELL

REVISED ELECTROMOTIVE SERIES INCLUDING METALS AND ALLOYS RELATED TO CORROSION RIA-66-469 N66-2915

GAS

INFLUENCE OF CAVITATION INTENSITY ON STABILITY OF MATERIALS, EFFECT OF HEAT TREATMENT ON LONG TIME STRENGTH OF STEEL, AND KINETIC AND DIFFUSION REGIONS OF GAS CORROSION OF STEEL JPRS-29139 N65-19592

GAS BEARING

OIL, GAS AND SPIRAL BEARINGS, COMPARING PROPERTIES AND APPLICATIONS A65-16273

GAS-LUBRICATED BEARING EQUATIONS DERIVED THAT ARE VALID FOR WIDE RANGE OF TEMPERATURE AND MACH NUMBERS A66-14156

TEST RIG FOR GAS-LUBRICATED JOURNAL BEARINGS
MEASURING FRICTIONAL TORQUE, GAS FILM PRESSURE
DISTRIBUTION, STATIC AND DYNAMIC ECCENTRICITY
CHANGES, ETC A66-24929

SURFACE ROUGHNESS EFFECTS IN HYDROMAGNETICALLY LUBRICATED EXTERNALLY PRESSURIZED BEARINGS AND HYDROMAGNETIC SQUEEZE FILM BETWEEN TWO CIRCULAR PLATES ASME PAPER 66-LUBS-9

TURBULENT HYDRODYNAMIC LUBRICATION THEORIES AND SOLUTION OF CONSTANTINESCU EQUATION FOR FINITE-LENGTH JOURNAL BEARING ASME PAPER 66-LUBS-11 A66-3318

PERFORMANCE OF HYDRODYNAMIC, HYDROSTATIC OR HYBRID BEARINGS DETERMINED BY NUMERICAL SOLUTION OF REYNOLDS LUBRICATION EQUATION FOR INCOMPRESSIBLE FLUID FILMS

ASME PAPER 66-LUBS-4

A66-33186

SELF-ACTING FOIL BEARING INFINITE WIDTH
RR-65-14 N66-21481

GAS CELL

AS CELL
MEMBRANE TYPE CATALYSTS AS LIQUID ELECTROLYTIC

SUBJECT INDEX GAS CHROMATOGRAPHY

FUEL CELLS AND OTHER HETEROGENEOUS PROCESSES, CONSIDERING ACTIVE THREE PHASE BOUNDARY

A65-17229

GAS CHROMATOGRAPHY

CHROMATOGRAPHY FOR CORROSIVE GAS ANALYSIS N65-32849 KY-485

LIGHT DIL ANALYSIS FROM FLUIDIZED COAL CARBONIZATION USING GAS CHROMATOGRAPHY BM-RI-6709

N66-16581

QUANTITATIVE CHEMICAL ANALYSIS, USING GAS CHROMATOGRAPHY, FOR ACYL COMPONENTS OF NEOPENTYL POLYOL ESTER AIRCRAFT ENGINE LUBRICANT N66-22779 NRL-6338

GAS COOLED REACTOR /GCR/
REACTOR MATERIALS AND COMPONENTS, FUEL
DEVELOPMENT, RADIOISOTOPE AND RADIATION
APPLICATIONS, COATED-PARTICLE FUEL MATERIALS,
CORROSION STUDIES, AND GAS COOLED REACTORS N66-11852 BMI-1745

GAS DENSITY

VACUUM EFFECTS ON LUBRICANTS AND BEARING MATERIALS DUE TO REDUCED AMBIENT PRESSURE AND LOW CONCENTRATION OF OXIDIZING GASES

A66-24383

GAS FLOW

ELECTROMAGNETIC PUMP DEVELOPMENT FOR CIRCULATION OF VERY CORROSIVE /FLUORINATED COMPOUND/ GASES N66-18872 CEA-R-2744

GAS GENERATOR

BRAYTON CYCLE TURBOCOMPRESSOR DESIGN WITH SELF-ACTING GAS BEARINGS NY0-3237-1 N66-20430

GAS INJECTION

HEAT EXCHANGE, FRICTION AND MASS EXCHANGE IN LAMINAR MULTICOMPONENT BOUNDARY LAYER DURING INJECTION OF EXTRANEOUS GASES 465-29304

HIGH TEMPERATURE LUBRICATION, SUPPLYING GRAPHS OF FRICTION COEFFICIENT 465-23513

PLASTIC ORIFICE FOR FLOW CONTROL DEVICE IN GAS LUBRICATED BEARINGS — COMPUTER PROGRAMMING NASA-CR-64587 N65-31884

GAS-LUBRICATED BEARING EQUATIONS DERIVED THAT ARE VALID FOR WIDE RANGE OF TEMPERATURE AND MACH 466-14156

GAS LUBRICATED BEARING

FRICTION AND WEAR CHARACTERISTICS OF MATERIALS FOR GAS LUBRICATED BEARINGS UNDER STAT-STOP AND WHIRL INDUCED RUBBING CONDITIONS N66-20592 F-B2232

GAS-METAL INTERACTION

LUBRICANT PROPERTIES OF REACTION PRODUCTS FROM INTERACTION OF VOLATILE COMPOUND GENERATED VAPORS FOR HIGH SPEED BALL BEARING NAEC-AML-2107 N65-22046

HEAT RESISTANCE IN AIR OF FOUR INDUSTRIAL AUSTENITIC-FERRITE STEELS WITH LOW NICKEL CONTENT AT 750-1050 DEGREES C, NOTING OXIDE SCALE FORMATION A66-10988

GAS-SOLID INTERFACE

FRICTION MEASUREMENT AND GASES EVOLVED DURING CLEAVAGE OF LAMELLAR SOLIDS IN ULTRAHIGH VACUUM ASLE PAPER 64-LC-18 A65-22791

GAS SPARGE CORROSION PROTECTION FOR HYDROFLUORIC SALT CONTAINER BMI-X-329 N66-18224

GAS TURBINE

RATING SYSTEM ASSESSING PERFORMANCE OF AIRCRAFT GAS TURBINE SYNTHETIC LUBRICANTS BASED ON DEMERIT DEPOSITS A65-29501 CONSTANT OIL MONITORING SYSTEM USING ELECTRIC CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS TURBINE ENGINES SAE PAPER 650814

TECHNIQUES FOR TESTING HIGH TEMPERATURE PERFORMANCE OF GAS TURBINE SEAL LUBRICANTS AFAPL-TR-65-3

AIRCRAFT TURBINE ENGINE OIL DRAIN PRACTICES: DISCUSSING ENGINE DESIGN AND MATERIALS AND MINIMUM AND MAXIMUM DRAIN TIME SAE PAPER 660073

CONSTANT OIL MONITORING SYSTEM USING ELECTRIC CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS TURBINE ENGINES SAE PAPER 650814

SPLIT-INNER-RACE BALL BEARINGS DESIGN FOR USE AS THRUST BEARINGS ON AIRCRAFT GAS TURBINES ASME PAPER 66-LUBS-10

ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO PREVENT ASH DEPOSITS AND VANADIUM CORROSION

PERFORMANCE OF AIRCRAFT GAS TURBINE MAINSHAFT BALL BEARINGS, SEALS, AND LUBRICANTS UNDER SIMULATED SUPERSONIC TRANSPORT ENGINE CONDITIONS NASA-CR-54312

HOT CORROSION IN MARINE GAS TURBINE ENGINES N66-15557

TESTING OF HOT-CORROSION-RESISTANT ALLOYS FOR MARINE GAS TURBINES N66-25844 MEL-131/66

EFFECT OF AIRCRAFT GAS TURBINE ENGINE LUBRICANTS AND SOLVENTS ON REMOVAL OF CARBONACEOUS DEPOSITS AFAPL-TR-65-118

GAS WELDING

POTASSIUM CORROSION TEST LOOP DEVELOPMENT -HELIUM ANALYSIS SYSTEM TO MEASURE IMPURITIES IN VACUUM PURGED, INERT GAS WELDING CHAMBER NASA-CR-54168 N66-13015

GASOLINE

BISPHENOL SYNTHESIS FOR ANTIOXIDANT ADDITIVE TO OILS AND GASOLINES N66-30: N66-30274

DRY THIN-FILM LUBRICANTS AND SOFT-METAL LUBRICANTS APPLIED TO BEARINGS AND GEARS FOR USE UNDER HEAVY LOADS AND SLOW SPEEDS IN SPACE **ENVIRONMENTS** N65-17429 AFDC-TR-65-1

LOW TEMPERATURE CHARACTERISTICS OF MULTIPURPOSE LUBRICATING OIL FOR VEHICLE GEARS

N65-20571

DRY COMPOSITE LUBRICATED GEARS FOR AEROSPACE ENVIRONMENTAL CHAMBER AEDC-TR-65-45

POWDER LUBRICANT ADAPTATION TO SPACE POWER UNIT REACTOR / SPUR/ GEAR OPERATION UNDER HIGH SPEED AND HIGH TEMPERATURE ENVIRONMENTAL CONDITIONS AFAPL-TR-65-24 N65-26564

LOAD-CARRYING CAPACITY OF GEAR LUBRICANTS FROM TESTS WITH HIGH TEMPERATURE GEAR MACHINE AND INDUCTION HEATED GEARS AFAPL-TR-65-23 N65-36192

DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET LUBRICANT ASLE PREPRINT 65-1C-16

DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET LUBRICANT ASLE PREPRINT 65-LC-16 A66-30574

HELICOPTER GEAR LUBRICATION AND PROTECTIVE

COATINGS

N66-12537

GEAR TOOTH

GEAR TOOTH PITTING DUE TO LUBRICANT FILM
CAVITATION, NOTING EFFECTS OF VIBRATION AND
INCREASED VISCOSITY OF FLUID
A65-17527

GEAR TOOTH ELASTOHYDRODYNAMIC LUBRICATION SURVEY
DATA, EXAMINING CASE HISTORIES A65-32770

HELICOPTER GEAR LUBRICATION - GEAR SURFACE PRECOATING EFFECT ON GEAR PERFORMANCE AND GEAR PERFORMANCE OF SYNTHETIC TETRAESTER FIVE CENTISTOKE BASE OIL

N65-33907

GENERATOR

WEAR RESISTANCE OF BRUSHES OF AIRBORNE ELECTRIC GENERATORS A65-15517

GERMANIUM

ANODIC DISSOLUTION OF N-TYPE GE STUDIED,
CONSTRUCTING POTENTIAL VS CURRENT DIAGRAM IN BROAD
CURRENT DENSITY RANGE
A65-30552

GIMBAL

ROTORACE GYROS WHICH REDUCE GIMBAL FRICTION BY USE OF SPECIAL BALL BEARINGS IME PAPER 13 A65-19706

GYROSCOPE IN GIMBAL SUSPENSION - DIFFERENTIAL EQUATIONS OF MOTION, AXIS STABILITY, AND EFFECT OF FRICTION AT GIMBAL-RING AXES FTD-TT-65-416/182 N66-12595

PHENOL RESIN BONDED, WOVEN GLASS AND TEFLON FIBER LUBRICANT FOR J-2 ROCKET ENGINE GIMBAL SYSTEM NASA-TM-X-53379 N66-16158

GLASS FIRER

STRESS CORROSION INFLUENCE ON GLASS FIBER STRENGTH BMPR-3 N65-14228

STRESS CORROSION ON GLASS FIBER STRENGTH AT CRYOGENIC TEMPERATURE BMPR-4

PHENOL RESIN BONDED, WOVEN GLASS AND TEFLON FIBER LUBRICANT FOR J-2 ROCKET ENGINE GIMBAL SYSTEM NASA-TM-X-53379 N66-16158

GLYCOL

IGNITION INHIBITORS, SCREENING METHODS OF CORROSION INHIBITOR SYSTEMS, AND FLASH AND FIRE POINTS OF WATER GLYCOL HYRAULIC FLUIDS BMR-4 N65-16765

CORROSION OF MATERIALS BY ETHYLENE GLYCOL-WATER
DMIC-216 N65-29914

GOLD

VAPOR-DEPOSITED THIN GOLD FILMS AS LUBRICANT IN VACUUM
NASA-TN-D-3040
N65-34221

VACUUM DEPOSITION OF GOLD THIN FILMS ON NICKEL, NICKEL-CHROMIUM, AND NICKEL-RHENIUM SUBSTRATES FOR USE AS LUBRICANTS NASA-TM-X-52125 N65-3677

NASA-TM-X-52125 N65-36775

VAPOR DEPOSITED GOLD THIN FILMS TO OBTAIN ADHESION AND DURABILITY BETWEEN FILM AND SUBSTRATE

ESSENTIAL AS LUBRICANTS IN HIGH VACUUM

A66-31979

GOLD PLATE

THIN FILM LUBRICANT DEVELOPED FOR GOLD-PLATED ELECTRIC CONTACTS DISCUSSING CHARACTERISTICS, PERFORMANCE AND TESTING A65-30815

GRAIN

GRAIN ORIENTATION INFLUENCE ON FRICTION PROPERTIES
OF TUNGSTEN
NASA-TN-D-3238
N66-15492

PREDICTING INTERGRANULAR CORROSION OF AUSTENITIC STAINLESS STEELS
TR-3 N66-32514

GRAPHITE

LUBRICATION BY CONTINUOUS TRANSFER OF SOLID FILMS, EXAMINING LOAD CARRYING CAPACITY OF GRAPHITE AND MOLYBDENUM DISULFIDE ASLE PAPER 64-LC-19

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA
A65-23565

STRUCTURAL CHANGES DURING FRICTION OF GRAPHITIZED MATERIAL, COMPARING CRYSTAL SIZES AND INTEGRAL LINE INTENSITY OF INITIAL AND WEAR PRODUCT

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA A65-31530

TOOL WEAR IN MACHINING GRAPHITE, CONSIDERING SPEED EFFECT
ASME PAPER 64-WA/PROD-7
A65-32933

MOLYBDENUM DISULPHIDE-GRAPHITE ALLOY AS SOLID LUBRICANT DEMONSTRATING VERY LOW COEFFICIENT OF FRICTION A65-36165

STEEL PIPE HOT ROLLING LUBRICATION BY GRAPHITE AND SODIUM NITRATE SUSPENSION IN CALCIUM HYDROXIDE SOLUTION
FTD-TT-64-1086/1
N65-22403

LAMELLAR SOLID LUBRICATION - CLEAVAGE, STRESS
RELAXATION, AND SHEAR STRENGTH OF GRAPHITE
AFML-TR-65-5
N65-26072

TESTING COMPONENTS AND MATERIALS OF MACHINES AND INSTRUMENTS FOR WEAR - ANTIFRICTION PROPERTIES OF IMPREGNATED CARBON AND GRAPHITE MATERIALS WORKING IN DRY FRICTION CONDITIONS FTD-MT-64-247 N65-36286

ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE MATERIALS IMPREGNATED WITH LIQUID METALS AND ALLOYS WORKING IN DRY FRICTION CONDITIONS

ANTIFRICTION PROPERTIES OF IMPREGNATED MATERIALS
BASED ON GRAPHITE, WORKING IN DRY FRICTION
CONDITIONS
N65-36289

ULTRAHIGH TEMPERATURE REACTOR EXPERIMENT - FACILITY CONSTRUCTION, COMPONENT DEVELOPMENT, HELIUM COOLING SYSTEM, SYSTEMS ANALYSES, NEUTRONIC CALCULATIONS, AND GRAPHITE CORROSION LA/MS/-3112

GRAPHITE CONTENT EFFECT ON ANTIFRICTION PROPERTIES
OF GRAPHITIZED NICKEL-BASED COPPER AND IRON
ALLOYS
A66-10745

GRAPHITE LUBRICANT PHYSICAL AND CHEMICAL COMBINATIONS WITH OTHER MATERIALS FOR IMPROVED HIGH TEMPERATURE FRICTION AND WEAR, DISCUSSING NUCLEAR IRRADIATION FOR GRAPHITE LATTICE MODIFICATION A66-31933

GRAVITY

VIBRATION EFFECT ON FRICTION TORQUE IN CYLINDRICAL GUIDE BEARINGS FOR BALANCE-WHEEL SPINDLE FSTC-HT-23-40-66 N66-27598

GREASE

SEMIFLUID GREASE AND OIL BLEND LUBRICANT
EVALUATION FOR M61 RAPID FIRE MACHINE GUN IN
TERMS OF ANTIWEAR AND EXTREME PRESSURE PROPERTIES
A65-17897

EFFECT OF GREASE CHARACTERISTICS ON FRETTING
DAMAGE
RIA-64-3575
N65-17908

ALUMINUM COMPLEX SOAPS AS THICKENERS FOR MULTIPURPOSE GREASE RIA-64-3160 N65-18869

COMPARISON OF AUTOMOTIVE LUBRICATION GREASES RIA-64-3578 N65-19419

ALUMINUM SALTS OF SUBSTITUTED BENZOIC ACIDS FOR USE AS HIGH TEMPERATURE GREASE THICKENERS -BIBLIOGRAPHY WITH ABSTRACTS AFML-TR-64-324 N6 N65-31634

IMPROVEMENT OF RHEOLOGICAL PROPERTIES OF GREASE THICKENED BY BORON NITRIDE

N65-34121 P-51A

GREASE LUBRICANTS FOR AEROSPACE APPLICATION, DETERMINING PHYSICAL PROPERTIES AND TESTING THEM AT 400 DEGREES F AND UNDER HIGH VACUUM ASLE PAPER 66AM 3C2

WEAR AND GREASE LUBRICATION EFFECTS IN MATCHED AIRCRAFT SPLINE SPECIMENS SUBJECTED TO OSCILLATORY A66-30572 MOTION

POLYSILOXANES AS ANTIFRICTION AND ANTIWEAR ADMIXTURES TO PETROLEUM GREASES FTD-TT-65-316/16264 N66-12375

ICING OF OIL AND GREASE LUBRICANTS USED IN AIRCRAFT ORDNANCE

N66-16738 NRL-6329

ELASTICITY OF SATURATED VAPORS FROM LUBRICATING DILS AND GREASES N66-18654 FTD-TT-65-1063/18284

WEAR CHARACTERISTICS AND PHYSICAL PROPERTIES OF LUBRICATING GREASES N66-19769 RIA-TR-65-2812

HIGH TEMPERATURE OXIDATION RESISTANCE OF ALUMINUM COMPLEX SOAP GREASE N66-20013 RIA-65-3264

PHYSICAL PROPERTIES OF METAL SOAP OIL SYSTEM BEHAVIOR N66-22765

GR ID

INTERGRANULAR CORROSION OF LEAD-ANTIMONY ALLOY BATTERY PLATE GRIDS N66-31332 NRI -6387

GR INDING

WEAR AND DETERIORATION IN PRECISION LAPPING A65-29781 PROCESS

GROUND SUPPORT SYSTEM CORROSION CONTROL IN AIRCRAFT STRUCTURES, WEAPON SYSTEMS, AND GROUND SUPPORT EQUIPMENT N65-22212 P-3080

GUIDANCE SYSTEM

II MISSILE GUIDANCE COMPONENTS - INERTIAL TITAN MEASUREMENT UNIT HEAT EXCHANGER, AND MISSILE GUIDANCE COMPUTER CORROSION RESISTANCE TESTING IN OPERATIONAL READINESS ENVIRONMENT N65-26112 EP64-241

GYROSCOPE

GRAPH-ANALYTICAL METHOD FOR DETERMINING EFFECT OF FORCES OF DRY FRICTION IN BEARINGS ON OPERATION OF GYROSCOPE SUSPENSION A65-30288

STABILITY OF MOTION OF GYROSCOPE ON HORIZONTAL PLANE UNDER DRY SLIDING FRICTION ACTIVITY N65-28052

MOTION OF INTEGRATING GYROSCOPE WITH DRY FRICTION N66-26104

GYROSCOPIC STABILITY
MOTION EQUATION FOR GYROSCOPIC TURN INDICATOR SUBJECT TO DRY FRICTION A65-20040

GYROSCOPIC ROTOR VIBRATIONS EXCITED BY EFFECT OF LUBRICATION LAYER IN SLIDING BEARINGS AND STABILIZED WITH INTERVENING ELASTODAMPING SUPPORTS, TAKING INTO ACCOUNT MOMENT OF INERTIA OF A66-32605

GYROSCOPE IN GIMBAL SUSPENSION - DIFFERENTIAL EQUATIONS OF MOTION, AXIS STABILITY, AND EFFECT OF FRICTION AT GIMBAL-RING AXES N66-12595 FTD-TT-65-416/162

Н

HAL I DE

CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC MG- ZN ALLOYS IN HALIDE SOLUTION

HALOGEN

EFFECT OF HALOGENS ON CORROSION OF TITANIUM BY HYDROHALIC ACIDS, CHEMICAL STABILITY OF TITANIUM TO CHLORINE, BROMINE, AND IODINE, AND EFFECT OF AROMATIC NITRO COMPOUND ON CORROSION OF TITANIUM

HANDLING EQUIPMENT

STATE-OF-ART ON LUBRICATION IN METAL WORKING PROCESSES AND EQUIPMENT N66-24474 MAB-220-M

HARDNESS

METAL WEAR RESISTANCE DEPENDENCE ON HARDNESS DETERMINED BY RUBBING AGAINST ABRASIVE SURFACE A65-18629

EFFECT OF STEEL COMPONENT HARDNESS DIFFERENCES ON BEARING FATIGUE AND LOAD CAPACITY N66-27083 NASA-TM-X-52087

HASTELLOY

HASTELLOY F AND OTHER CORROSION RESISTANT STRUCTURAL MATERIALS FOR CENTRIFUGE IN REACTOR FUEL RECOVERY PLANT N65-20708 ORNI -3787

HIGH TEMPERATURE CORROSION RESISTANCE OF HASTELLOY X SHEET AND TUBING MATERIALS IN AIR N66-30409 AGN-TM-414

STATIC AND ISOTHERMAL CORROSION TESTS OF HASTELLOY N, INCONEL 600, AND HYMU-80 IN URANIUM CHLORIDE-POTASSIUM CHLORIDE EUTECTIC N66-30771 LA-3476-MS

COMPUTATION OF FLOW RATE IN PIPES AND CETERMINATION OF HEAD LOSSES IN PIPES OF LUBRICATION SYSTEMS WITH FLUID LUBRICANTS

A65-30155

HEAT ACCLIMATIZATION

HEAT TREATMENT VARIATIONS OF ALUMINUM ALLOYS TO STUDY ATMOSPHERIC STRESS CORROSION N65-24010 RAF-MET-PHYS-96

HEAT EXCHANGER

MINIATURE SINGLE TUBE HEAT EXCHANGER FOR MEASURING FUEL THERMAL STABILITY SAE PAPER 987A

II MISSILE GUIDANCE COMPONENTS - INERTIAL MEASUREMENT UNIT HEAT EXCHANGER, AND MISSILE GUIDANCE COMPUTER CORROSION RESISTANCE TESTING IN OPERATIONAL READINESS ENVIRONMENT N65-26112 EP64-241

HEAT FLOW

I FLUM FRICTION AND HEAT FLOW DETERMINATION FOR SELF-SIMULATING BOUNDARY LAYER PROBLEMS

N65-35856

HEAT REJECTION DEVICE

HEATT PIPE CHARACTERISTICS COVERING PERFORMANCE
ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT
TRANSFER RATE, LIFE TESTS, WORKING LIQUID
SELECTION, ETC
A66-1: A66-15544

HEAT RESISTANCE

HIGH ALLOY STEEL CASTINGS, DISCUSSING PHYSICAL AND MECHANICAL PROPERTIES OF CORROSION- AND HEAT-RESISTANT 8 PERCENT NICKEL AND/OR CHROMIUM

HEAT RESISTANCE IN AIR OF FOUR INDUSTRIAL AUSTENITIC-FERRITE STEELS WITH LOW NICKEL CONTENT AT 750-1050 DEGREES C, NOTING OXIDE SCALE **FORMATION**

HEAT AND WEAR RESISTANT PLASTIC MATERIALS WITH

HIGH FRICTION COEFFICIENTS FTD-MT-64-483

N66-16816

STRESS CORROSION EFFECTS ON HEAT RESISTANT ALLOYS
BY SODIUM CONTAINING ADMIXTURES
FTD-TT-65-1050/16264
N66-1853

N66-18539

HEAT TRANSFER

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK ELECTRODES A66-31597

SODIUM TECHNOLOGY AS RELATED TO NUCLEAR REACTOR TECHNOLOGY - MATERIALS SCIENCE, CORROSION, PURITY CONTROL, OPERATIONS, HEAT TRANSFER, AND THERMAL CYCLING N66-17405

HEAT TRANSFER FROM CYLINDRICAL SURFACE WITH DENSE RIB NETWORK TO COOLING OIL N66-20193

FLUID DYNAMICS; HEAT TRANSFER. MATERIAL DEVELOPMENT, CORROSION, INSTRUMENTATION, CHEMISTRY, AND COMPONENT DEVELOPMENT STUDIES IN HIGH TEMPERATURE LIQUID METAL TECHNOLOGY REVIEW BNL-953/PR-16/ N66-23371

HEAT TREATMENT

POTENTIODYNAMIC CURVES INDICATE THAT CHROMIUM STAINLESS STEEL CORROSION RESISTANCE MINIMUM OCCURS AFTER TEMPERING NEAR 500 DEGREES A65-26973

INFLUENCE OF CAVITATION INTENSITY ON STABILITY OF MATERIALS, EFFECT OF HEAT TREATMENT ON LONG TIME STRENGTH OF STEEL, AND KINETIC AND DIFFUSION REGIONS OF GAS CORROSION OF STEEL N65-19592

HEAT TREATMENT CYCLE EFFECT ON MECHANICAL PROPERTIES OF CORROSION RESISTANT PRECIPITATION HARDENED STEEL AM 355 IN TERMS OF METALLOGRAPHIC A66-11304

HEAT TREATMENT EFFECT ON STRUCTURE, HARDNESS, MICROHARDNESS AND CORROSION RESISTANCE OF VTI TITANIUM AND OT4 TITANIUM MANGANESE-ALUMINUM VT1 ALLOY SHEETS A66-24900

HEAVY METAL DERIVATIVE SOLID LUBRICANTS, PROPERTIES AND APPLICATION ASLE PAPER 66AM 283

A66-30406

HELICOPTER

HELICOPTER GEAR LUBRICATION AND PROTECTIVE COATINGS QPR-2

N66-12537

HELICOPTER DESIGN

HELICOPTER CORROSION PROBLEMS DISCUSSING CAUSES, EXPOSED SURFACES, PREVENTION AND TREATMENT

HELICOPTER PROPELLER DRIVE

HELICOPTER GEAR LUBRICATION - GEAR SURFACE
PRECOATING EFFECT ON GEAR PERFORMANCE AND GEAR
PERFORMANCE OF SYNTHETIC TETRAESTER FIVE
CENTISTOKE BASE OIL QPR-1 N65-33907

HELIUM

POTASSIUM CORROSION TEST LOOP DEVELOPMENT —
HELIUM ANALYSIS SYSTEM TO MEASURE IMPURITIES IN
VACUUM PURGED, INERT GAS WELDING CHAMBER NASA-CR-54168 N66-13015

HERMETIC SEAL

CONFERENCE ON LUBRICATION TECHNIQUES AND SEAL DESIGN FOR ORBITAL MANNED SPACE LABORATORY DOOR ACTUATOR AD-623336 N66-17440

HIGH FLUX ISOTOPE REACTOR /HFIR/ CORROSION BEHAVIOR OF ALUMINUM ALLOY MATERIALS FOR PERMANENT OR SEMIPERMANENT INSTALLATION IN

HIGH FLUX ISOTOPE REACTOR / HFIR/ ORNL-TM-1029

N66-10698

N65-19234

N66-19382

HIGH STRENGTH ALLOY

STRESS CORROSION OF WROUGHT HIGH-STRENGTH ALUMINUM ALLOYS, SUSCEPTIBILITY OF ALLOY STEEL TO HOT SALT STRESS CORROSION, AND KINETICS OF HOT SALT STRESS CORROSION CRACKING OF TITANIUM ALLOY ASD-TR-61-713, PT. III N65-13791

HIGH THERMAL STRESS SALT CORROSION CRACKING OF HIGH STRENGTH STEEL AND TITANIUM ALLOYS IN PRESENCE OF STRESS CONCENTRATORS NASA-CR-57914 N65-21344

MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND TITANIUM ALLOY STRESS CORROSION, CATHODIC PROTECTION, CORROSION FATIGUE, AND ANTIFOULING PAINT FOR ALUMINUM ALLOYS NRL-MEMO-1634

STRESS CORROSION CRACKING OF HIGH STRENGTH ALUMINUM ALLOYS NASA-CR-74443

HIGH STRENGTH STEEL CADMIUM-TITANIUM CORROSION RESISTANT PLATING

PROCESS FOR PROTECTING HIGH STRENGTH STEELS HIGH STRENGTH STRESS AND CORROSION RESISTANT STEEL DISCUSSING FAILURE MODE, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, MACHINING AND FORMING METHODS

A65-35056 STRESS CORROSION ON HIGH STRENGTH STEEL ALLOYS

N65-15136 CORROSION PROTECTION OF HIGH STRENGTH STEELS

STRESS CORROSION CRACKING AND CORROSION FATIGUE OF HIGH STRENGTH STEELS N65-19

HIGH STRENGTH STEEL PROTECTION AGAINST CORROSION AND HYDROGEN EMBRITTLEMENT N65-192: N65-19236

HIGH THERMAL STRESS SALT CORROSION CRACKING OF HIGH STRENGTH STEEL AND TITANIUM ALLOYS IN PRESENCE OF STRESS CONCENTRATORS NASA-CR-57914

STRUCTURAL CHANGES ASSOCIATED WITH STRESS CORROSION AND DELAYED FAILURE IN HIGH STRENGTH STEEL AD-468171 N65-31865

STRUCTURAL CHANGES IN HIGH-STRENGTH STEEL ASSOCIATED WITH STRESS CORROSION AND ITS RELATIONSHIP TO DELAYED FAILURE N65-32351

POLARIZATION CURVES OF STRESS CORROSION CRACKING IN MARTENSITIC HIGH STRENGTH STEELS REPT.-132-07 N65-34370

DIFFUSION OF ELECTROLYTIC HYDROGEN THROUGH MEMBRANES OF IRON CRYSTALS AS FUNCTION OF STRESS, TEMPERATURE AND DISSOLVED HYDROGEN CONCENTRATION A66-23071

SHOT PEENING FOR RESISTANCE TO STRESS CORROSION CRACKING OF HIGH STRENGTH STEEL AND ALUMINUM ALLOYS AND TO IMPROVE FATIGUE LIFE OF LANDING GEARS, WING SPARS, JET ENGINE COMPONENTS AND OTHER STRUCTURAL PARTS

A66-25771

STRESS-CORROSION SUSCEPTIBILITY OF HIGH-STRENGTH STEEL AT VARIOUS LEVELS OF TENSILE YIELD STRENGTH AND FRACTURE TOUGHNESS ASME PAPER 66-MET-5 A66-26973

STRESS-CORROSION SUSCEPTIBILITY OF ULTRAHIGH STRENGTH STEEL EVALUATED IN TERMS OF FRACTURE TOUGHNESS

DEFORMATION RESISTANCE OF HIGH STRENGTH AND ANTICORROSION STEEL ALLOY CLADS DURING HOT

SUBJECT INDEX HIGH TEMPERATURE ALLOY

N66-29945

FORMING N66-24253

CHEMICAL MILLING EFFECT ON SUSCEPTIBILITY OF HIGH STRENGTH STEELS TO HYDROGEN EMBRITTLEMENT AND STRESS CORROSION CRACKING

STRESS CORROSION SUSCEPTIBILITY OF HIGH STRENGTH STEELS NYO-3257-1 N66-30970

HIGH TEMPERATURE ALLOY

COMPATIBILITY OF NICKEL, IRON, AND COBALT BASE HIGH TEMPERATURE ALLOYS WITH BOILING POTASSIUM INVESTIGATION IN NATURAL CIRCULATION CORROSION TESTING LOOPS ORNL-3790

DIFFUSED ALUMINUM COATING FOR HIGH TEMPERATURE A66-12371 **APPLICATION**

CORROSION RESISTANCE OF HIGH TEMPERATURE ALLOYS FOR NUCLEAR APPLICATIONS N66-27101 RNWI -155

HIGH TEMPERATURE ENVIRONMENT

WEAR AND FRICTION BEHAVIOR OF MOLYBDENUM-TUNGSTEN-CHROMIUM ALLOYS IN HIGH TEMPERATURE SODIUM ENVIRONMENTS ASLE PAPER 64-LC-25 A65-22789

STEEL CORROSION MECHANISMS - GROWTH AND BREAKDOWN OF PROTECTIVE FILMS IN HIGH TEMPERATURE AQUEOUS SYSTEMS NRL-6082 N65-15833

ELECTRIC STRAIN GAUGE FOR HIGH TEMPERATURE OR CORROSIVE ENVIRONMENTS AND ELECTROMAGNETIC FIELDS - TENSOMETER N65-19200 FTD-TT-64-872/182

CORPOSION TESTING OF THORIUM ALLOYS IN DISTILLED WATER AT HIGH TEMPERATURES - INVESTIGATION OF THORIUM-URANIUM ALLOYS AS POSSIBLE REACTOR FUEL ANL-7006

SURFACE TREATMENT EFFECT ON STAINLESS AND CARBON STEEL CORROSION IN HIGH TEMPERATURE WATER AND STEAM - AUTOCLAVE TESTS EURAEC-1038

SPARK IGNITER THAT SUCCESSFULLY OPERATES AT 50 TO 120 PSIG CHAMBER PRESSURE AND 2300 TO 3000 DEGREES K WITHOUT OBSERVABLE THERMAL SHOCK OR ELECTRODE A66-18838 **FROSTON**

DEVICE FOR TAKING LONG TIME CORROSION FATIGUE CURVES ON SMALL CROSS SECTION SPECIMENS AT HIGH TEMPERATURES AND PRESSURES A66-20 A66-20433

FLUORIDE SOLID LUBRICANTS FOR EXTREME TEMPERATURE AND CORROSIVE ENVIRONMENTS
NASA-TM-X-52077 N66-1524: N66-15243

SALT STRESS CORROSION OF RESIDUALLY STRESSED TITANIUM-ALUMINUM-MOLYBDENUM-VANADIUM ALLOY SHEET AFTER HIGH TEMPERATURE EXPOSURE NASA-TN-D-3299 N66-19104

HIGH TEMPERATURE GAS
HIGH TEMPERATURE GAS CORROSION OF ADVANCED TEST
REACTOR / ATR/ STRUCTURAL MATERIALS N65-35021

HIGH TEMPERATURE LUBRICANT

HIGH TEMPERATURE LUBRICATION, SUPPLYING GRAPHS OF FRICTION COEFFICIENT A65-23513

MIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR DATA

A65-24242 ASLE PREPRINT 65AM 6A1

MILITARY SPECIFICATION FOR MULTIPURPOSE AERONAUTICAL LUBRICATING GREASE SAE PAPER 650817

A65-34831

NUCLEAR REACTOR RADIATION EFFECT ON HIGH TEMPERATURE SOLID FILM LUBRICANTS FZK-212

N65-22421

TECHNIQUES FOR TESTING HIGH TEMPERATURE PERFORMANCE OF GAS TURBINE SEAL LUBRICANTS AFAPL-TR-65-3 N65-30867

ORGANIC SILOXANE POLYMER LIQUIDS AS COMPONENTS OF HIGH TEMPERATURE LUBRICATING OILS N65-35941 FTD-TT-65-322/16264

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM OILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE APPLICATION A66-12259 ASLE PREPRINT 65-LC-1

HIGH TEMPERATURE BEARING LUBRICANT REQUIREMENTS FOR JET ENGINE LUBRICATION SYSTEMS SAE PAPER 660072

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR DATA ASLE PREPRINT 65AM 6A1

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM OILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE **APPLICATION** ASLE PREPRINT 65-LC-1 A66-24986

GRAPHITE LUBRICANT PHYSICAL AND CHEMICAL COMBINATIONS WITH OTHER MATERIALS FOR IMPROVED HIGH TEMPERATURE FRICTION AND WEAR, DISCUSSING NUCLEAR IRRADIATION FOR GRAPHITE LATTICE MODIFICATION

OXIDATION RESISTANCE AND DEPOSIT FORMATION OF HIGH TEMPERATURE LUBRICATING OIL N66-19474 AFAPL-TR-65-85

ANGULAR CONTACT BALL BEARING-FLUID LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS, AND HIGH TEMPERATURES N66-27931 NASA-CR-75582

HIGH TEMPERATURE MATERIAL

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN AA5-31530

SINTERING METHOD TO PROVIDE DESIRED PRECIPITATION HARDENABLE HIGH TEMPERATURE BEARING MATERIAL WITH PREFERRED LATTICE STRUCTURE A65-34836 SAE PAPER 650796

PATTERN-CONFORMING CRACKING OF OXIDE FILM ON ALUMINUM DURING HIGH TEMPERATURE OXIDATION MAY BE CAUSE OF DECREASE IN CORROSION RESISTANCE

NUCLEAR REACTOR RADIATION EFFECT ON HIGH TEMPERATURE SOLID FILM LUBRICANTS F2K-212

N65-22421

SCREENING OF HIGH TEMPERATURE BEARING ELEMENTS N65-31078

FLUID DYNAMICS, HEAT TRANSFER, MATERIAL DEVELOPMENT, CORROSION, INSTRUMENTATION, CHEMISTRY, AND COMPONENT DEVELOPMENT STUDIES IN HIGH TEMPERATURE LIQUID METAL TECHNOLOGY REVIEW N66-23371 BNL-953/PR-16/

HIGH TEMPERATURE RESEARCH

TEST RIG FOR RELIABILITY, DESIGN OF SLIDING FRICTION TEST SPECIMEN, AND CALIBRATION TECHNIQUE - HIGH TEMPERATURE BEARING ELEMENTS INVESTIGATION N65-31079 PR-2

HIGH TEMPERATURE TENSILE TESTS, ALLOY POWDER
TREATMENT, DRY LUBRICANT FRICTION, AND WEIGHT
LOSS MEASUREMENTS IN ULTRAHIGH VACUUM SYSTEM
APS646
N66-12956

FAILURE MODE AND OPERATION LIFE OF BALL BEARINGS USING FLUID LUBRICANTS AT HIGH TEMPERATURES IN RECIRCULATING SYSTEM
NASA-CR-74097

N66-2367

HOT CORROSION MECHANICS OF NICKEL AND COBALT IN HIGH TEMPERATURE SULFUR-OXYGEN ENVIRONMENT AD-629598 N66-2867

ACCELERATED HIGH TEMPERATURE NICKEL OXIDATION BY SODIUM SULFATE N66-28680

HIGH TEMPERATURE CORROSION OF NICKEL AND NICKEL ALLOYS BY SODIUM SULFATE N66-28681

COBALT CORROSION IN HIGH TEMPERATURE SULFUR-OXYGEN ENVIRONMENT N66-28682

HOT CORROSION BEHAVIOR OF NICKEL AND COBALT ALLOYS EXPOSED TO SULFATE INDUCED OXIDATION

N66 28683

HIGH TEMPERATURE CORROSION RESISTANCE OF
HASTELLOY X SHEET AND TUBING MATERIALS IN AIR
AGN-TM-414
N66-3040

HIGH VACUUM

ADSORPTION AND FRICTION OF MINERALS UNDER HIGH VACUUM AND EXTREME TEMPERATURE CONDITIONS - ENGINEERING BEHAVIOR OF PARTICULATE SYSTEM WITH CLEAN, DRY SURFACES

HILL EQUATION

EIGENVALUES AND EIGENVECTORS OBTAINED BY NUMERICAL SOLUTION OF SPECIAL HILL EQUATION IN LUBRICATION THEORY ASME PAPER 66-LUBS-13

HOT FORMING

THERMAL STABILITY, ADHESION PREVENTION, STRESS AND DIE WEAR REDUCTION AND AIR POLLUTION OF INDUSTRIAL LUBRICANTS

A66-28207

DEFORMATION RESISTANCE OF HIGH STRENGTH AND ANTICORROSION STEEL ALLOY CLADS DURING HOT FORMING N66-24253

PRODUCTION SPECIFICATIONS FOR HOT ROLLED THICK
TWO-LAYERED CORROSION RESISTANT STEEL SHEETS
N66-24265

FRICTIONAL BEHAVIOR AND LUBRICATION OF METALS IN HOT METAL DEFORMATION MTI-66TR18 N66-25854

HOT MACHINING

STEEL PIPE HOT ROLLING LUBRICATION BY GRAPHITE AND SODIUM NITRATE SUSPENSION IN CALCIUM HYDROXIDE SOLUTION FTD-TT-64-1086/1 N65-22403

ULTRASONIC AGITATION OF CORRODENT SOLUTIONS AND HOT FINISHED MILD STEEL TEST COUPONS USED TO EVALUATE EFFECTS OF VARIABLES ON EFFECTIVENESS OF TWO CORROSION INHIBITORS

HYDRAULIC ACTUATOR

FAILURE OF W C- CO COATED ROD-GLAND BEARING
CAUSED BY FRETTING AND PROTECTION MEASURES,
EXAMINING HYDRAULIC ACTUATORS AS PRECISION
POSITING DEVICES
A65-18628

HYDRAULIC FLUID

SCREW TYPE CLEARANCE SEALS AND CONTACT SEALS DETAILING HYDROSTATIC SEAL DESIGN

A65-1488

MINIATURE SINGLE TUBE HEAT EXCHANGER FOR MEASURING FUEL THERMAL STABILITY
SAE PAPER 987A A65~17005

NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS

BMPR-6

N65-14379

NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS TETRAMERIC ARYL-1,1-DI-H-POLYFLUOROALKYL
PHOSPHONITRILATES
AD-608144
N65-15846

IGNITION INHIBITORS, SCREENING METHODS OF CORROSION INHIBITOR SYSTEMS, AND FLASH AND FIRE POINTS OF WATER GLYCOL HYRAULIC FLUIDS

N65-16765

CORROSION AND OXIDATION INHIBITING SYSTEM
STABILITY IN BRAKE FLUIDS AFTER EXTENDED STORAGE
CCL-176 N65-22484

POUR POINT DEPRESSANT, POLYMER THICKENER, CORROSION TEST, AND COMPONENT COMPOUNDING FOR FIRE-RESISTANT HYDRAULIC FLUID RMR-5

CORROSION INHIBITORS IMPROVEMENT IN METALS FROM ATTACK BY WATER BASED, FIRE RESISTANT, HYDRAULIC FLUID BMR-5 NA5-27926

HYDRAULIC PUMP

MEASUREMENT OF FRICTION OF MATERIALS SLIDING IN
JP-4 FLUID TO PREDICT PERFORMANCE OF HYDRAULIC
PUMP
A66-16136

HYDRAULIC SYSTEM

DESIGN AND MAINTENANCE OF AIR TRANSPORT LANDING GEAR NOTING WEIGHT FACTOR, JOINTS, BUSHINGS AND CORROSION RESISTANCE
SAE PAPER 650842

A65-3483

HYDRAULIC VALVE

FRICTION REDUCTION IN PISTON TYPE HYDRAULIC SERVO
VALVES - FINE FILTRATION OF OIL AND PISTON
SEALING LAND TAPERING
RAE-TN-GW-312
N65-29643

EFFECT OF MOTOR OIL ADDITIVES ON PITTING GF HYDRAULIC LIFTERS N66-11126

HYDRIDE

CORROSION AND CORROSION HYDRIDING STUDIES FOR ZIRCONIUM ALLOYS
EURATOM-2683-E N66-24419

HYDROCARBON

HYDROCARBON BOUNDARY LUBRICATION OF HARD STEEL,
RELATING FRICTION AND WEAR TO HYDROCARBON
STRUCTURE AND OXYGEN CONCENTRATION
ASLE PAPER 64-LC-4
A65-18053

GALVANOSTATIC MEASUREMENTS OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES A65-22368

OXIDATION OF LOW MOLECULAR WEIGHT PARAFFINS AND OLEFINS AT PLATINIZED POROUS CARBON ANODES IN LOW TEMPERATURE ACID ELECTROLYTE FUEL CELLS

A65-22370

NATURE OF POLYSILOXANES RELATED TO IMPROVEMENT OF LUBRICATING EFFECTS OF HYDROCARBONS FTD-TT-64-1268/182 N65-28845

PHYSICAL PROPERTIES OF NEW CLASS OF LUBRICANTS, METHYL ALKYL SILICONES, ILLUSTRATING EXCEPTIONAL LUBRICATING ABILITY ASLE PREPRINT 65-LC-4 A66-1226

PHYSICAL PROPERTIES OF NEW CLASS OF LUBRICANTS, METHYL ALKYL SILICONES, ILLUSTRATING EXCEPTIONAL LUBRICATING ABILITY
A66-2498

SYNTHESIS OF SULFONATES OF ALKYL AROMATIC
HYDROCARBONS FOR USE AS ADDITIVES TO DIESEL AND
MOTOR LUBRICATING OILS
N66-11082

DIALKYLDITHIOPHOSPHATES WITH SECONDARY
HYDROCARBON RADICALS AS ANTIOXIDANT ADDITIVES
FOR LUBRICATING OILS
N66-11087

PHENOL RESIN AND POLYVINYL BUTYRAL PROTECTIVE

PRIMER WITH HIGH CORROSION RESISTANCE FOR STEELS AND LIGHT ALLOYS N66-23394 ONI-TRANS-2060

EFFECT OF HYDROCARBON ANTIOXIDANTS ON SPLINE WEAR WHEN OPERATING SUBMERGED IN MINERAL OIL N66-26576

HYDROCARBON FUEL

COULOMETRIC-POTENTIOSTATIC MEASUREMENTS OF ANODIC OXIDATION OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES

GROWTH SUPPORT STUDIES OF SELECTED MICROORGANISMS IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND LIQUID ROCKET PROPELLANT RTD-TDR-63-4117, PT. II

HYDROCHLORIC ACID

EFFECT OF SODIUM NITRITE ON CORROSION OF TITANIUM BY HYDROCHLORIC AND SULFURIC ACID

N66-10298

HYDRODYNAMIC STABILITY

HYDRODYNAMIC LUBRICATION EMPHASIZING THICKNESS OF LUBRICANT FILMS AND FORCES ON FILMS

A65-15679

HYDRODYNAMICS

THERMAL BOUNDARY CONDITIONS FOR PARALLEL-SURFACE A65-25479 THRUST BEARING

LOW TEMPERATURE CHARACTERISTICS OF LUBRICATING OILS, PHOTOGRAMMETRIC CHECKING OF WIND TUNNEL MODELS, MECHANICS, AERODYNAMICS, HYDRODYNAMICS, AND THERMODYNAMICS DME/NAE-1964/3/ N65-20570

HYDRODYNAMIC BEARING LUBRICATION OF ROTATING CYLINDER WITH REFERENCE TO SUB-CAVITY PRESSURE AND CAVITATION REGIONS N65-35473 UDC-621.89.032

CIRCULAR CHANNEL PRESSURE DROP, FLOW QUALITY, AND CORROSION FILM THICKNESS MEASUREMENTS EURAEC-1288 N66-18864

OIL FILM THICKNESS CAUSING HYDRODYNAMIC LUBRICATION BETWEEN MOVING SURFACES OF MACHINE COMPONENTS COA-AERO-184

LUBRICANT FILM-VAPOR INTERFACE ANALYSIS AFTER FLOW SEPARATION AND RUPTURE MT1-65TR58

GAS SPARGE CORROSION PROTECTION FOR HYDROFLUORIC SALT CONTAINER N66-18224 BMI-X-329

HYDROGEN

BRITTLENESS OF ANNEALED STEELS USING CORROSION TESTS UNDER TENSION IN PRESENCE OF HYDROGEN A65-28628

HIGH STRENGTH STEEL PROTECTION AGAINST CORROSION AND HYDROGEN EMBRITTLEMENT

DIFFUSION OF ELECTROLYTIC HYDROGEN THROUGH MEMBRANES OF IRON CRYSTALS AS FUNCTION OF STRESS, TEMPERATURE AND DISSOLVED HYDROGEN CONCENTRATION A66-23071

EMBRITTLEMENT OF TANTALUM BY ROOM TEMPERATURE DEFORMATION IN PRESENCE OF HYDROGEN

A66-33441

ENDURANCE AND CORROSION RESISTANCE TESTS OF CATALYST FOR RECOMBINATION OF RADIOLYTIC OXYGEN AND HYDROGEN CEND-525

METALLURGICAL INVESTIGATION OF HYDROGEN PREHEATER TUBE FAILURE - STRESS CORROSION, ZINC CONTAMINATION, CRACK DETECTION, OVERHEATING EFFECTS, AND FAILURE SIMULATION RN-TM-0312 N66-29548

HYDROGEN EMBRITTLEMENT RESULTING FROM CORROSION, CATHODIC PROTECTION, AND ELECTROPLATING CR-3

N66-31544

HYDROGEN PEROXIDE

JRUGEN PERUXIUE
HYDROGEN PEROXIDE VAPOR DECOMPOSITION ON METAL
SURFACES AND ROLE IN ATMOSPHERIC CORROSION
INVESTIGATED BY PHOTOGRAPHIC AND OPTICAL
POLARIZATION METHODS
A65-2

REACTION MECHANISMS OF OXIDATION RESISTANT ADDITIVES IN OXIDATION PROCESS IN LUBRICATING OILS - HYDROGEN PEROXIDE FORMATION

N66-11111

HYDROSTATIC PRESSURE

TEST EQUIPMENT DESIGN AND MANUFACTURE FOR RESEARCH ON OPTIMUM SIZING OF PRESSURE LUBRICATED PARALLEL A65-27311 FLAT-FACE THRUST BEARINGS

HYDROSTATIC BORING BAR AND PRODUCTION-SIZE SPINDLE USE HYDROSTATIC AIR BEARINGS AND POROUS GRAPHITE BEARING PADS WITH APPLICATION AS LATHE COMPONENTS N66-15092 Y-DA-921

HYDROSTATICS

FEASIBILITY OF LIQUID LUBRICATED HYDROSTATIC JOURNAL AND THRUST BEARINGS FOR LARGE LIQUID ROCKET ENGINE TURBOPUMPS NA5-19446 REPT.-7439-Q-1

HYDROX FUEL CELL

HYDROGEN-DXYGEN ELECTROLYTIC REGENERATIVE FUEL CELL DEVELOPMENT AND TESTS - MATERIAL CORROSION STUDIES, CYCLE CONTROLLER ASSEMBLY, AND PARTS FABRICATION N65-20807 NASA-CR-57665

METAL, ALLOY, AND METAL COMPOUND TESTING FOR CORROSION RESISTANCE AND ACTIVITY AS OXYGEN ELECTRODES FOR HYDROX FUEL CELL WITH ALKALINE **ELECTROLYTE** NASA-CR-75199

١

N66-26759

ICE PREVENTION

FACTORS AFFECTING ICING RESISTANCE OF LUBRICANTS N66-27009 FOR AIRCRAFT ORDNANCE

ICING OF OIL AND GREASE LUBRICANTS USED IN AIRCRAFT ORDNANCE N66-16738 NRL-6329

IGNITION INHIBITORS, SCREENING METHODS OF CORROSION INHIBITOR SYSTEMS, AND FLASH AND FIRE POINTS OF WATER GLYCOL HYRAULIC FLUIDS N65-16765 BMR-4

IGNITION TEMPERATURE CHARACTERISTICS OF AIRCRAFT FUELS AND LUBRICANTS
AFAPL-TR-65-18 NA5-25889

IMPACT SENSITIVITY

COMPATIBILITY TEST OF NITROGEN TETROXIDE AND TITANIUM ALLOY, STUDYING CORROSIVE ATTACK AND IMPACT SENSITIVITY A65-: A65-32404

IMPACT SENSITIVITY TEST METHOD FOR LUBRICANTS IN CONTACT WITH LIQUID PROPELLANT AFAPL-TR-65-70

IMPEDANCE MEASUREMENT

IMPEDANCE MEASUREMENT OF METAL OXIDATION FOR STUDY OF CORROSION RESISTANCE IN AQUEOUS SOLUTIONS N65-32319 FURAFC-1129. PT. 2

IMPINGEMENT

IMMERSION AND IMPINGEMENT ELECTROPOLISHING METHODS FOR INCREASING CORROSION RESISTANCE OF STAINLESS STEELS AND NICKEL ALLOYS USED IN PROPELLANT DUCTS N65-22641 NASA-CR-57864

IMPREGNATED MATERIAL

TESTING COMPONENTS AND MATERIALS OF MACHINES AND INSTRUMENTS FOR WEAR - ANTIFRICTION PROPERTIES OF IMPREGNATED CARBON AND GRAPHITE MATERIALS WORKING IN DRY FRICTION CONDITIONS FTD-MT-64-247

N65-36286

ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE MATERIALS IMPREGNATED WITH LIQUID METALS AND ALLOYS WORKING IN DRY FRICTION CONDITIONS

ANTIFRICTION PROPERTIES OF IMPREGNATED MATERIALS BASED ON GRAPHITE, WORKING IN DRY FRICTION

OPERATING LIFETIME OF POROUS BEARINGS, DISCUSSING DEPENDENCE ON QUALITY OF IMPREGNATING LUBRICANT

POLYPHENYL ETHER, POLYSILOXANE, SEBACATE, AND HIGH VISCOSITY MINERAL OIL AS IMPREGNATED LUBRICANTS IN BALL-BEARING RETAINERS AT .000010 TORR NASA-TN-D-3259 N66-16058

IMPURITY

POTASSIUM CORROSION TEST LOOP DEVELOPMENT -HELIUM ANALYSIS SYSTEM TO MEASURE IMPURITIES IN VACUUM PURGED, INERT GAS WELDING CHAMBER NASA-CR-54168 N66-13015

INCOMPRESSIBLE FLUID

PERFORMANCE OF HYDRODYNAMIC, HYDROSTATIC OR HYBRID BEARINGS DETERMINED BY NUMERICAL SOLUTION OF REYNOLDS LUBRICATION EQUATION FOR INCOMPRESSIBLE FLUID FILMS ASME PAPER 66-LUBS-4 A66-33186

CORROSION FILM ON INCONEL AND AISI 304 STAINLESS STEEL INVESTIGATION WITH SCANNING ELECTRON MICROSCOPE AND SPINNING SOURCE HASS SPECTROGRAPH MICROPROBE WERL-1114-1 N66-18899

STATIC AND ISOTHERMAL CORROSION TESTS OF HASTELLOY N, INCONEL 600, AND HYMU-80 IN URANIUM CHLORIDE-POTASSIUM CHLORIDE EUTECTIC LA-3476-MS N66-30771

INDUCTION HEATING EQUIPMENT
LOAD-CARRYING CAPACITY OF GEAR LUBRICANTS FROM
TESTS WITH HIGH TEMPERATURE GEAR MACHINE AND
INDUCTION HEATED GEARS AFAPL-TR-65-23 N65-36192

INFRITA

LIQUID METAL LUBRICATED JOURNAL BEARINGS - FILM-INERTIA AND TURBULENCE EFFECT SWRI-1228-60

INERTIA OF MOVING BODY UNDER WATER, ATMOSPHERIC CIRCULATION IN STRATOSPHERE, AND CORROSION RESISTANCE OF ALLOYS - TRANSLATION FROM COMMUNIST CHINESE LITERATURE JPRS-33046

N66-13388

INERTIA MOMENT

GYROSCOPIC ROTOR VIBRATIONS EXCITED BY EFFECT OF LUBRICATION LAYER IN SLIDING BEARINGS AND STABILIZED WITH INTERVENING ELASTODAMPING SUPPORTS, TAKING INTO ACCOUNT MOMENT OF INERTIA OF ROTOR A66-32605

INERTIAL MEASURING UNIT
TITAN II MISSILE GUIDANCE COMPONENTS - INERTIAL
MEASUREMENT UNIT HEAT EXCHANGER, AND MISSILE
GUIDANCE COMPUTER CORROSION RESISTANCE TESTING IN OPERATIONAL READINESS ENVIRONMENT N65-26112

INFORMATION PROCESSING

INFORMATION SERVICES RELATING TO PREVENTION OR LIMITATION OF ENVIRONMENT ASSOCIATED DEGRADATION OF MATERIAL AND EQUIPMENT NASA-CR-71680 N66-23825

INFRARED SPECTRUM

MEASUREMENT OF SURFACE EMITTANCE OF SURFACE

COATINGS FOR SELECTED METALS, PROVIDING LOW-THERMAL EMITTANCE CHARACTERISTICS IN IR SPECTRUM FOR THERMAL AND CORROSION CONTROL AIAA PAPER 66-18 A66-15849

INHIBITOR

IGNITION INHIBITORS, SCREENING METHODS OF CORROSION INHIBITOR SYSTEMS, AND FLASH AND FIRE POINTS OF WATER GLYCOL HYRAULIC FLUIDS

CORROSION INHIBITORS AND METALLIC SALTS EVALUATION FOR PREVENTION OR RETARDATION OF GALVANIC CORROSION OF MAGNESIUM STEEL ASSEMBLIES CCL-175 N65-18674

VOLATILE CORROSION INHIBITORS FOR IMPROVING PRESERVATIVE CHARACTERISTICS OF STANDARD OPERATING DILS RIA-64-3577

N65-21177

CORROSION AND OXIDATION INHIBITING SYSTEM STABILITY IN BRAKE FLUIDS AFTER EXTENDED STORAGE N65-22484

STATIC TESTING FOR CHEMICALS EFFECTIVE FOR INHIBITING ALUMINUM AND STEEL CORROSION

ULTRASONIC AGITATION OF CORRODENT SOLUTIONS AND HOT FINISHED MILD STEEL TEST COUPONS USED TO EVALUATE EFFECTS OF VARIABLES ON EFFECTIVENESS OF TWO CORROSION INHIBITORS BM-R1-6696

FIELD TEST OF TRANSPORT VEHICLE COOLING SYSTEM CORROSION INHIBITOR CCL-190 N66-19466

CORROSION INHIBITORS AND CLEANING TECHNIQUES FOR CONTAINERS AND TANKS FSTC-381-T65-673

GALVANIC CORROSION OF ALUMINUM ASSEMBLIES BY STAINLESS STEEL WIRE INSERTS NASA-TM-X-53404 N66-19762

CORROSION BEHAVIOR OF ALUMINUM ALLOY MATERIALS FOR PERMANENT OR SEMIPERMANENT INSTALLATION IN HIGH FLUX ISOTOPE REACTOR / HFIR/ ORNL-TM-1029 N66-10 N66-10698

INTERFACE FRICTION BETWEEN TOOL AND WORKPIECE DURING HOT METAL DEFORMATION IITRI-B6027-2 N65-13989

SURFACE TEMPERATURES AT SLIDING INTERFACES IN VACUA AND METAL ADHESION, AND FRICTION AND WEAR **APPARATUS** ML-TOR-64-97 N66-27676

INTERMETALLICS

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF
AL-BASED FE, NI, TI, CU AND SB ALLOYS AND
INTERMETALLIC COMPOUNDS
A66-20

ROLLING FRICTION STUDIES OF INTERMETALLIC AND ZIRCONIUM OXIDE FOR CONTROL SURFACE BEARINGS FOR SPACE REENTRY VEHICLE ASLE PAPER 66AM 5D4 A66-30413

INTERNAL COMBUSTION ENGINE

CHARACTERISTICS OF SOVIET AND OTHER LUBRICATING OILS FOR USE IN WINTER WEATHER TO START AND MAINTAIN INTERNAL COMBUSTION MACHINES

N66-11077

PISTON SHAPE CHANGED, BREATHING AND LUBRICATION IMPROVED TO INCREASE LIFESPAN OF INTERNAL COMBUSTION AIRCRAFT ENGINES FTD-TT-65-723/16264 N66-12606

OIL OXIDATION EFFECT ON RUNNING-IN PROCESS OF RING-SOCKET PAIR IN INTERNAL COMBUSTION ENGINE FTD-TT-65-1039/1&2&4 N66-23581

SUBJECT INDEX INTERNAL FRICTION

INTERNAL FRICTION

USE OF INTERNAL FRICTION METHODS TO DEFERMINE THE PHYSICAL SITUATION OF DXYGEN IN NIGBIUM-ZIRCONIUM ALLOYS AND ITS EFFECTS ON CORROSION N66-13857 CNLM-6344

TODINE

OLEIC ACID AND CRYSTALLINE IODINE MIXTURE AS ANTICORROSION LUBRICANT FOR TITANIUM PARTS N66-18656 FID-TT-65-1193

IDNIZING RADIATION

LUBRICANT RADIATION RESISTANCE DEPENDENT ON LUBRICANT CHEMICAL COMPOSITION AND INTENSITY AND TYPE OF IONIZING RADIATION FTD-TT-65-325/1&2&4 N65-32852

IRON

ELECTROCHEMICAL CORROSION OF CAST IRON IN SODIUM AND POTASSIUM SOLUTIONS PROM . - 3549

CORROSION OF CAST IRON PIPES AS ELECTROBIOCHEMICAL PROCESS IN ANAEROBIC SOIL FD3-3957/T-166-/

CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR CORROSION MECHANISM ANALYSIS
ASLE PREPRINT 65-LC-11

CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR CORROSION MECHANISM ANALYSIS ASLE PREPRINT 65-LC-11 A66-24993

CHLORIDEBENZYL QUINOLINE TO INCREASE CORROSION RESISTANCE OF IRON AND STEEL IN ACIDS FTD-TT-65-770/164 N66-10787

POTENTIOSTATIC POLARIZATION STUDIES OF IRON AND STAINLESS STEEL ALLOYS IN ELECTROLYTE SYSTEMS FOR CORROSION RESISTANCE PREDICTION N66-17119

IRON AND STEEL CORROSION PREVENTION BY PROTECTIVE COATINGS AND CATHODIC PROTECTION N66-18493 AD-625900

CORROSION RESISTANT POLYMERIC MATERIALS FOR USE AS PROTECTIVE COATINGS ON IRON AND STAINLESS STEEL SURFACES JPRS-35452

IRON ALLOY

ORNL-3790

LOW CORROSION RESISTANCE OF IRON-ALUMINUM ALLOYS IN FLUORINE ATMOSPHERE AT HIGH TEMPERATURE N65-13415

S NAP-8 MATERIALS RESEARCH - MERCURY CORROSION CAPSULE TESTS OF FERRITIC ALLOYS FOR MASS TRANSFER, STRESS CORROSION, MODE OF ATTACK, AND MECHANICAL PROPERTIES N65-22558 NASA-CR-62379

COMPATIBILITY OF NICKEL, IRON, AND COBALT BASE HIGH TEMPERATURE ALLOYS WITH BOILING POTASSIUM INVESTIGATION IN NATURAL CIRCULATION CORROSION TESTING LOOPS

STRESS CORROSION CRACKING EXPERIMENTS WITH IRON-NICKEL-CHROMIUM ALLOYS C00-1319-24 NA5-34319

GRAPHITE CONTENT EFFECT ON ANTIFRICTION PROPERTIES OF GRAPHITIZED NICKEL-BASED COPPER AND IRON ALLOVS 466-10745

CORROSION OF SOME URANIUM-PLUTONIUM-IRON ALLOYS AWRE-0-18/65 N66-14170

STRESS CORROSION CRACKING IN CHROMIUM-NICKEL-IRON ALLOYS WITH FOURTH ELEMENT ADDED COO-1319-27 N66-17533

DEFORMATION RESISTANCE OF HIGH STRENGTH AND ANTICORROSION STEEL ALLOY CLADS DURING HOT FORMING NA6-24253

STRESS CORROSION CRACKING MECHANISM IN IRON-NICKEL-CHROMIUM ALLOY SYSTEM COO-1319-32 N66-25978

RADIOACTIVE TRACERS TO DETERMINE WEAR RESISTANCE OF CHROMIUM-NICKEL-IRON ALLOY GRINDING BALLS USED IN FABRICATING CEMENT

CNEA-187

STRESS CORROSION CRACKING MICROTOPOLOGY STUDIES ON THIN FILMS OF IRON-NICKEL-CHROMIUM BASE ALLOYS EXPOSED TO BOILING MAGNESIUM CHLORIDE C00-1319-36

IRRADIATION

STRESS CORROSION OF IRRADIATED STAINLESS STEEL AERE-R-5014 N66-1 N66-15921

CORROSION TESTING OF NUCLEAR MATERIALS CONDUCTED IN-PILE AND AFTER PILE IRRADIATION N66-21940

CORROSION ANALYSIS OF ZIRCONIUM ALLOYS EXPOSED TO REACTOR IRRADIATION AECL-2257

ISOTHERMAL PROCESS

COMPUTER METHOD FOR ISOTHERMAL PROBLEM OF RIGID AND ELASTIC CYLINDERS LUBRICATED BY CONSTANT AND VARIABLE PROPERTY FLUID, DISCUSSING FILM THICKNESS A65-31716 ASLE PAPER 64-LC-22

J- 2 ROCKET ENGINE PHENDL RESIN BONDED, WOVEN GLASS AND TEFLON FIBER LUBRICANT FOR J-2 ROCKET ENGINE GIMBAL SYSTEM NASA-TM-X-53379 N66-16158

JET ENGINE

LABORATORY, COMPONENT AND ENGINE TESTS FOR LUBRICANT PROPERTIES OF J-79 JET ENGINE INCLUDING ELASTOMER VOLUME SWELL, OXIDATION-CORROSION, LUBRICITY, ETC. SAE PAPER 650816

HIGH ACTIVITY OF ALKALI METAL SALTS OF CARBOXYLIC ACIDS AND SUBSTITUTED PHENOLS AS SYNERGISTS FOR ARYLAMINE ANTIOXIDANTS IN ESTER-TYPE SYNTHETIC LUBRICATING DILS

AIRCRAFT LUBRICANT AND SELECTED SOLVENT TESTS FOR REMOVAL OF CARBONACEOUS DEPOSITS ON JET ENGINE BEARING AFAPL-TR-65-118 N66-19564

JET ELOM

JET OIL LUBRICATION AND SCAVENGING TECHNIQUE FOR 20 MM HIGH SPEED BALL BEARING ASLE PAPER 66AM 1B4

JET FUEL

ELIMINATION OF FUEL CONTAMINATION AND CORROSION OF FUEL TANKS IN AIRCRAFT USING JET TURBINE FUEL

ADDITIVE EFFECT ON ANTIWEAR PROPERTIES OF JET FT0-TT-64-937/1&2

CONTAMINATION OF JET FUEL SYSTEMS WITH MICROBIAL ENTITIES AND IMPLICATION OF MICROBIAL GROWTH IN CORROSION AND EQUIPMENT MALFUNCTION AMRI -TR-65-30

LUBRICITY PROPERTIES OF HIGH TEMPERATURE JET FUELS OPR-1

GROWTH SUPPORT STUDIES OF SELECTED MICROORGANISMS IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND LIQUID ROCKET PROPELLANT RTD-TOR-63-4117, PT. II N66-2482 N66-24820

HIGH SPEED RELIABILITY OF OIL-LUBRICATED TILTING-PAD POTASSIUM TURBINE BEARING ASME PAPER 65-LUBS-10 A65-2860 A65-28600

SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION

N65-25517

SPONSORED BY INSTITUTION OF MECHANICAL ENGINEERS AT LEEDS, ENGLAND IN SEPTEMBER 1965 A65-32761

ELECTRICALLY CONDUCTING LUBRICANT, USING MOMENTUM INTEGRAL METHOD TO INVESTIGATE EFFECT OF MAGNETIC FIELD ON LOAD CAPACITY OF FULL JOURNAL BEARING

STATIC AND DYNAMIC LOAD RESPONSE TESTS ON TILTING-PAD AND FLOATING-RING JOURNAL BEARINGS AND FUNDAMENTAL PROCESSES OF LUBRICANT FLOW NASA-CR-54259

FEASIBILITY OF LIQUID LUBRICATED HYDROSTATIC JOURNAL AND THRUST BEARINGS FOR LARGE LIQUID ROCKET ENGINE TURBOPUMPS REPT.-7439-Q-1

N65-19446 MATERIALS FOR POTASSIUM LUBRICATED JOURNAL

BEARINGS NASA-CR-54264

N65-19849

LIQUID METAL LUBRICATED JOURNAL BEARINGS - FILM-INERTIA AND TURBULENCE SEFECT SWRI-1228-60 N65-277

N65-27786

TEST PROGRAM TO EVALUATE MATERIALS SUITABLE FOR POTASSIUM LUBRICATED JOURNAL BEARING AND SHAFT APPLICATIONS IN SPACE SYSTEM TURBOGENERATORS OPERATING AT HIGH TEMPERATURES NASA-CR-54345

WEAR RESISTANCE OF SLEEVE BEARINGS MADE FROM POLYMERPOLYFORMALDEHYDE /PFA/ FTD-TT-65-329/18284

PRANUTL MIXING-LENGTH THEORY USED TO PREDICT PERFORMANCE OF JOURNAL BEARINGS OPERATING IN TURBULENT REGIME

ASME PAPER 65-LUB-17 A66-14249

TEST RIG FOR GAS-LUBRICATED JOURNAL BEARINGS MEASURING FRICTIONAL TORQUE, GAS FILM PRESSURE DISTRIBUTION, STATIC AND DYNAMIC ECCENTRICITY CHANGES. ETC. A66-24929

TURBULENT HYDRODYNAMIC LUBRICATION THEORIES AND SOLUTION OF CONSTANTINESCU EQUATION FOR FINITE-LENGTH JOURNAL BEARING ASME PAPER 66-LUBS-11

EIGENVALUES AND EIGENVECTORS OBTAINED BY NUMERICAL SOLUTION OF SPECIAL HILL EQUATION IN LUBRICATION THEORY

ASME PAPER 66-LUBS-13

SLIDING FRICTION JOURNAL BEARING FOR TURBOCOMPRESSOR AND OTHER HIGH SPEED MACHINES FTD-TT-65-517/18284 N66-10873

FILM RUPTURE AND CAVITATION IN JOURNAL BEARINGS WITH LOW KINEMATIC VISCOSITY LUBRICANTS MTI-65TR13 N66-20254

HIGH SPEED ROTORS SUPPORTED IN JOURNAL BEARINGS WITH LOW VISCOSITY LUBRICANT IN TURBULENT FLOW MTI-65TR12 N66-20259

JP-4 JET FUEL

MEASUREMENT OF FRICTION OF MATERIALS SLIDING IN JP-4 FLUID TO PREDICT PERFORMANCE OF HYDRAULIC

KINETIC FRICTION

LOAD EFFECTS ON KINETIC FRICTION COEFFICIENT OF
MOLYBDENUM DISULFIDE POWDERS
ASLE PAPER 64-LC-21

A65-22 A65-22794

KINETICS

KINETICS OF POLYTETRAFLUOROETHYLENE /PTFE/ SLIDING ON PTFE, OBSERVED BY CONSTANT FORCE OF FRICTION AND MEASURING SLIDE VELOCITY ML-TDR-64-303 N65-27803 LAMINAR BOUNDARY LAYER

HEAT EXCHANGE, FRICTION AND MASS EXCHANGE IN LAMINAR MULTICOMPONENT BOUNDARY LAYER DURING INJECTION OF EXTRANEOUS GASES A65-29304

L

LAMINAR HEAT TRANSFER

HEAT EXCHANGE, FRICTION AND MASS EXCHANGE IN LAMINAR MULTICOMPONENT BOUNDARY LAYER DURING INJECTION OF EXTRANEOUS GASES A65-29304

DESIGN AND MAINTENANCE OF AIR TRANSPORT LANDING GEAR NOTING WEIGHT FACTOR, JOINTS, BUSHINGS AND CORROSION RESISTANCE SAE PAPER 650842

A65-34:

FRICTION COEFFICIENTS AND WEAR CHARACTERISTICS FOR X-15 AIRCRAFT SKID LANDING GEAR NASA-TN-D-3331

LATHE

HYDROSTATIC BORING BAR AND PRODUCTION-SIZE
SPINULE USE HYDROSTATIC AIR BEARINGS AND
POROUS GRAPHITE BEARING PADS WITH APPLICATION AS LATHE COMPONENTS Y-DA-921 N66-15092

LEAD METALLURGY - ARCHITECTURAL AND WROUGHT LEAD APPLICATIONS, CABLE SHEATHING, SOLDERS, JOINING, LEAD COATED STEEL, BATTERY APPLICATIONS, CORROSION CONTROL, AND FUNDAMENTAL RESEARCH N65-23264

LEAD AND LEAD-SALT CORROSION IN THERMAL CONVECTION LOOPS DRNL-TM-1437

N66-31070

LEAD ALLOY

EFFECT OF OIL ADDITIVES ON CORROSIONAL WEAR OF LEAD ALLOY BEARINGS N66-11117

INTERGRANULAR CORROSION OF LEAD-ANTIMONY ALLOY BATTERY PLATE GRIDS NRL-6387 N66-31332

LIFESPAN

PISTON SHAPE CHANGED, BREATHING AND LUBRICATION IMPROVED TO INCREASE LIFESPAN OF INTERNAL COMBUSTION AIRCRAFT ENGINES FTD-TT-65-723/16264

LIFETIME

FAILURE MODE AND OPERATION LIFE OF BALL BEARINGS USING FLUID LUBRICANTS AT HIGH TEMPERATURES IN RECIRCULATING SYSTEM NASA-CR-74097

BALL BEARING LIFE TESTS IN VACUUM USING MOLYBDENUM SULFIDE SOLID FILMS WITH HIGH VACUUM OILS AS LUBRICANTS NASA-CR-71695

LIFETIME, LOAD-CARRYING ABILITY, AND FRICTION AND WEAR CHARACTERISTICS OF PLAIN SLEEVE BEARINGS FOR AIRCRAFT SUPPORT STRUCTURES AD-628937

ANGULAR CONTACT BALL BEARING-FLUID LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS, AND HIGH TEMPERATURES NASA-CR-75582 N66-27931

LIQUID COOLING

HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE
ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT
TRANSFER RATE, LIFE TESTS, WORKING LIQUID
SELECTION, ETC
A66-1: A66-15544

LIQUID FLOW

COMPUTATION OF FLOW RATE IN PIPES AND DETERMINATION OF HEAD LOSSES IN PIPES OF LUBRICATION SYSTEMS WITH FLUID LUBRICANTS

A65-30155

TURBULENT FLOW FRICTION REDUCTIONS IN DILUTE

POLYMER SOLUTIONS NAVWEPS-8636

N65-22385

LIQUID HYDROGEN

MATERIALS FOR USE AS ROLLING-CONTACT BEARING LUBRICANTS IN LIQUID HYDROGEN ENVIRONMENT ASLE PREPRINT 65-LC-9

LUBRICANT MATERIALS FOR ROLLING CONTACT BEARINGS OPERATING IN LIQUID HYDROGEN ENVIRONMENT N66-15815 NASA-CR-69569

LIQUID METAL

MYDROMAGNETIC THEORY FOR SQUEEZE FILMS OF CONDUCTING LUBRICANTS WITH REFERENCE TO ROLLER AND SLIPPER BEARING ASME PAPER 64-LUBS-12

MAGNETOHYDRODYNAMIC FLUID FLOW BOUNDARY LAYERS FOR LIQUID METAL BEARINGS

LIQUID METAL LUBRICATED JOURNAL BEARINGS - FILM-INERTIA AND TURBULENCE EFFECT N65-27786 SWR1-1228-60

THEORY, TESTING, AND ANALYSIS OF LIQUID METAL CORROSION - MERCURY AND PLUTONIUM LIQUID ALLOYS NASA-TM-X-54722 N65-29 N65-29446

LIQUID POTASSIUM METAL LUBRICATED BEARINGS FOR SUPPORT OF ROTOR WITH SPACE POWER SYSTEM WEIGHT DISTRIBUTION N65-33491 R-5086-7

ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE MATERIALS IMPREGNATED WITH LIQUID METALS AND ALLOYS WORKING IN DRY FRICTION CONDITIONS

LIQUID METAL EMBRITTLEMENT NOTING STRESS AND INTERGRANULAR CORROSION, HYDROGEN EMBRITTLEMENT AND BEHAVIOR OF SILVER CHLORIDE CRYSTAL

466-11698

LIQUID MERCURY AND ALKALI HALIDE METALS LOOP FOR LIQUID METAL LUBRICATED ROTOR BEARINGS -SNAP

MT1-64TR72, REV.-2 N66-11728

FLUID FILM SHAFT BEARINGS FOR LIQUID METAL PUMP -SNAP-50/SPUR POWERPLANT

LIQUID METAL LUBRICANT ANTI-WEAR PROPERTIES STUDY. AND CARBAMIDE DEWAXING EFFECTS DETERMINATION FOR DIESEL ENGINE FUELS N66-17611 AID-U-64-37

FLUID DYNAMICS, HEAT TRANSFER, MATERIAL DEVELOPMENT, CORROSION, INSTRUMENTATION, CHEMISTRY, AND COMPONENT DEVELOPMENT STUDIES IN HIGH TEMPERATURE LIQUID METAL TECHNOLOGY REVIEW N66-23371 BNL-953/PR-16/

CORROSIVE ACTION OF LIQUID METALS CONSIDERED FOR LUBRICANTS N66-26504

FTD-TT-65-1447/16264

MEASURING PERFORMANCE CHARACTERISTICS OF LIQUID METAL LUBRICATED TURBOMACHINE BEARING UNDER STEADY STATE AND DYNAMIC LOAD CONDITIONS N66-31686

LIQUID POTASSIUM

COMPATIBILITY OF NICKEL, IRON, AND COBALT BASE HIGH TEMPERATURE ALLOYS WITH BOILING POTASSIUM INVESTIGATION IN NATURAL CIRCULATION CORROSION TESTING LOOPS N65-25517

DXYGEN EFFECTS ON CORROSION OF NIOBIUM BY LIQUID POTASSIUM N65-28141 ORNL-3751

CORROSION RESISTANCE OF NIOBIUM AND TANTALUM BASE ALLOYS TO REFLUXING POTASSIUM NASA-TM-X-52136 N65-34252 LIQUID PROPELLANT

ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO PREVENT ASH DEPOSITS AND VANADIUM CORROSION N66-11130

IMPACT SENSITIVITY TEST METHOD FOR LUBRICANTS IN CONTACT WITH LIQUID PROPELLANT AFAPL-TR-65-70 N66-14228

GROWTH SUPPORT STUDIES OF SELECTED MICROORGANISMS IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND LIQUID ROCKET PROPELLANT N66-24820 RTD-TDR-63-4117, PT. II

METAL CORROSION PREVENTION METHODS FOR CENTAUR LAUNCH VEHICLE LIQUID PROPELLANT TANKS N66-29292 NASA-CR-72000

LIQUID SODIUM CORROSION RESISTANCE OF CHROME-NICKEL STEEL AND NICKEL BASE ALLOYS IN LIQUID SODIUM N65-22886 FTD-TT-64-1210/1

MOLTEN SODIUM CORROSION OF AUSTENITIC STEEL N65-32983 CEA-2371

LIQUID-SOLID INTERFACE LIQUID FLUORINE CORROSION OF METALS IN IMPURITY-FREE DRY SYSTEM AND RESULTANT PRODUCTS, NOTING EFFECT OF SURFACE CONTAMINANTS A65-192 A65-19259

HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT TRANSFER RATE, LIFE TESTS, WORKING LIQUID SELECTION, ETC A66-1:

STRESS CORROSION AND HIGH TEMPERATURE PROPERTIES OF MAGNESIUM-LITHIUM-SILICON ALLOYS

FA-A64-31 LITHIUM FLUORIDE

CORROSION RESISTANCE OF IRON-BASE, NICKEL-BASE, AND COBALT-BASE SUPERALLOYS TO LITHIUM FLUORIDE AT CYCLIC ELEVATED TEMPERATURES NASA-CR-54781

LITHIUM HYDRIDE EXTENDED EXPOSURE TO HEATED LITHIUM HYDRIDE EFFECT ON TENSILE PROPERTIES OF STAINLESS STEELS NAA-SR-MEMO-10885

I DAD DISTRIBUTION ELECTRICALLY CONDUCTING LUBRICANT, USING MOMENTUM INTEGRAL METHOD TO INVESTIGATE EFFECT OF MAGNETIC FIELD ON LOAD CAPACITY OF FULL JOURNAL BEARING A65-32784

FILM THICKNESS MEASURING APPARATUS IN ELASTOHYDRUDYNAMIC LUBRICATION EXAMINING FRICTION COEFFICIENT, VISCOSITY AND SLIDING SPEED DATA

LUBRICANT EFFECT ON FATIGUE LIFE OF STATIONARY BALL ON FLAT CONTACT SUBJECTED TO OSCILLATORY NORMAL LOAD ASME PAPER 65-WA/CF-3

LOAD FACTOR

SPEED, LOAD, AND TEMPERATURE EFFECT ON MINIMUM OIL FLOW REQUIREMENTS OF 30 AND 75 MILLIMETER-BORE RALL REARINGS N65-27392 NASA-TN-D-2908

LUBRICATION PARAMETERS WITH RESPECT TO EXPERIMENTAL VALUES AND REPRODUCIBILITY

A66-28465

LOAD TEST

PRESSURE DISTRIBUTION OF COUNTERFORMEL CYLINDERS MEASURED TO DETERMINE HYDRODYNAMIC LOAD A65-31717 ASLE PAPER 64-LC-12

STATIC AND DYNAMIC LOAD RESPONSE TESTS ON FILTING-PAD AND FLOATING-RING JOURNAL BEARINGS AND FUNDAMENTAL PROCESSES OF LUBRICANT FLOW N65-16201 NASA-CR-54259

LOAD-CARRYING CAPACITY OF GEAR LUBRICANTS FROM TESTS WITH HIGH TEMPERATURE GEAR MACHINE AND INDUCTION HEATED GEARS AFAPL-TR-65-23

N65-36192

LOOP

PORCED CIRCULATION, CROLOY 9 M MERCURY LOOP DESIGNED TO INVESTIGATE CORROSION PRODUCT SEPARATION TECHNIQUES NASA-CR-217

MATERIAL PROCUREMENT AND QUALITY ASSURANCE FOR ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM NASA-CR-54477

CORROSION TEST LOOP FOR EVALUATION OF REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS WHICH SIMULATE PROJECTED SPACE ELECTRIC POWER SYSTEMS NASA-CR-54843 N66-14785

ADVANCED REFRACTORY ALLOY CORROSION LOOP NASA-CR-54845

N66-15373

PURIFICATION OF ALKALI METALS FUR USE IN ADVANCED REFRACTORY ALLOY CORROSION LOOP NASA-CR-54911

PERFORMANCE CHARACTERISTICS OF POTASSIUM CORROSION TEST LOOP NASA-CR-54912

LOW TEMPERATURE ENVIRONMENT

LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR BELOW AND ABOVE FILM MELTING POINT ASLE PAPER 64-LC-6 A65-18054

LUBRICANT

BEARINGS AND LUBRICANTS REVIEW AND DIGEST OF LITERATURE FROM 1962 TO 1963 A65 A65-14065

HYDRODYNAMIC LUBRICATION EMPHASIZING THICKNESS OF LUBRICANT FILMS AND FORCES ON FILMS

BUILDUP OF MOLYBDENUM DISULFIDE FILMS ON COPPER SURFACE, EXAMINING BURNISHING PROCESS AND EFFECTS
OF LOAD AND HUMIDITY CONDITIONS

A65-15680

A65-22794

PRESSURE EXPRESSIONS DERIVED FOR FLOW OF NONLINEARLY VISCOPLASTIC LUBRICANT BETWEEN PLATES

UNCONVENTIONAL LUBRICANTS CAPABLE OF WITHSTANDING EXTREMES OF TEMPERATURE, PRESSURE AND RADIATION A65-16816

FRICTION AND WEAR STUDY OF LUBRICATION MECHANISM OF TRICRESYL PHOSPHATE ON STEEL ASLE PAPER 64-LC-1

HYDROMAGNETIC THEORY FOR SQUEEZE FILMS OF CONDUCTING LUBRICANTS WITH REFERENCE TO ROLLER AND SLIPPER BEARING ASME PAPER 64-LUBS-12 A65-20115

PROPERTIES, CHARACTERISTICS AND PERFORMANCE OF LUBRICANTS AND SELF-LUBRICATING MATERIALS USED IN SPACECRAFT SYSTEMS INCLUDING OILS, GREASES, PLASTICS, CERMETS, MOLYBDENUM SULFIDE, ETC

A65-22744 LOAD EFFECTS ON KINETIC FRICTION COEFFICIENT OF MOLYBDENUM DISULFIDE POWDERS ASLE PAPER 64-LC-21

VISCOELASTIC NON- NEWTONIAN LUBRICANT FLOW EQUATIONS WITH SQUEEZE FILM SOLUTIONS ASLE PAPER 64-LC-10 A65-22795

THERMAL BOUNDARY CONDITIONS FOR PARALLEL-SURFACE THRUST BEARING A65-25479

SYNTHETIC LUBRICANTS COMPOUNDED FROM ORGANIC A65-25505

LUBRICANTS EFFECT ON STEEL AND OTHER METAL FATIGUE

LIVES IN ROTATING CANTILEVER FATIGUE TESTS A65-26570

FUELS AND LUBRICANTS WITH THERMALLY STABLE MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET REQUIREMENTS OF SUPERSONIC TRANSPORT

A65-27161

RATING SYSTEM ASSESSING PERFORMANCE OF AIRCRAFT GAS TURBINE SYNTHETIC LUBRICANTS BASED ON DEMERIT A65-29501

TESTING DRY FILM LUBRICANTS EXPOSED TO ULTRAHIGH VACUUM ENVIRONMENT A65-30030

RELATION BETWEEN CHAIN LENGTH IN SATURATED ALIPHATIC ACIDS AND STRUCTURE OF PSEUDOGELS THICKENED WITH THEIR LI AND CA SOAPS STUDIED FOR LUBRICATING PURPOSES

ELECTRON MICROSCOPE STUDY OF SURFACE TOPOGRAPHY CHANGES IN RUNNING TRACK IN ROLLING CONTACT FATIGUE TESTER ASLE PAPER 64-LC-29

CONDUCTING LUBRICANT IN EXTERNALLY PRESSURIZED BEARING WITH VARIABLE FILM THICKNESS IN PRESENCE OF MAGNETIC FIELD DETERMINING FLOW, LOAD AND ELECTRICAL CHARACTERISTICS A65-3231 A65-32310

BEST LUBRICANT CHARACTERISTICS OF ESTERS, SILICONES AND FLUORINATED HYDROCARBONS COMBINED IN NEW SYNTHETIC LUBRICANT A65-33627 A65-33627

OXIDATIVE AND DEPOSIT FORMING PROPERTIES OF HIGH TEMPERATURE LUBRICANTS ASD-TDR-62-222, PT. III N65-1414 N65-14144

NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS N65-14379

NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS -TETRAMERIC ARYL-1,1-DI-H-POLYFLUOROALKYL PHOSPHONITRILATES AD-608144 N65-15846

ELASTOHYDRODYNAMIC LUBRICANT FILM EFFECTS IN ROLLING BALL TWO-BALL CONTACTS AL64T067 N65-15986

STATIC AND DYNAMIC LOAD RESPONSE TESTS ON TILTING-PAD AND FLOATING-RING JOURNAL BEARINGS AND FUNDAMENTAL PROCESSES OF LUBRICANT FLOW NASA-CR-54259 N65-16201

DRY THIN-FILM LUBRICANTS AND SOFT-METAL LUBRICANTS APPLIED TO BEARINGS AND GEARS FOR USE UNDER HEAVY LOADS AND SLOW SPEEDS IN SPACE **ENVIRONMENTS** AEDC-TR-65-1 N65-17429

TOOL STEEL BEARING LUBRICANT ENDURANCE AT HIGH SPEEDS AND TEMPERATURES NASA-CR-57445

EQUATIONS FOR SELF-ACTING FOIL BEARINGS - EFFECTS OF BENDING STIFFNESS OF TAPE AND COMPRESSIBILITY OF LUBRICANT RR-65-1 N65-21054

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND HIGH TEMPERATURES NASA-CR-57982 N65-21303

ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND TEMPERATURES ON BEARING LUBRICANT NASA-CR-62341 N65-22166

COLD WELDING OF METAL CONTACTING SURFACES OF SYSTEM FOR NUCLEAR AUXILIARY POWER-19 EJECTION MECHANISMS AND MINIMIZATION WITH LUBRICANT **APPLICATION** MND-3169-66

IGNITION TEMPERATURE CHARACTERISTICS OF AIRCRAFT FUELS AND LUBRICANTS

BEARING AND LUBRICANT PROBLEMS

AD-429247

N65-26280

LIQUID METAL LUBRICATED JOURNAL BEARINGS - FILM-INERTIA AND TURBULENCE EFFECT SWRI-1228-60

SYNTHETIC DILS FOR TURBINE ENGINES AND AIRCRAFT LUBRICATION FTD-TT-64-117/162

HIGHLY SULFUROUS ENGINE FUEL ADDITIVES -ANTICORROSION LUBRICANT ADDITIVES

N65-28108 FTD-TT-64-778/1 TEST PROGRAM TO EVALUATE MATERIALS SUITABLE FOR POTASSIUM LUBRICATED JOURNAL BEARING AND SHAFT APPLICATIONS IN SPACE SYSTEM TURBOGENERATORS OPERATING AT HIGH TEMPERATURES

N65-28354

NASA-CR-54345 MOLYBDENUM DISULFIDE AS ANTIFRICTION COATING -

LUBRICANT N65-28697 FTD-TT-64-1242/1

FIRE RESISTANT LUBRICANT FOR TURBINES USING PHOSPHOROUS COMPOUNDS AS BASE N65-28723 FTD-TT-64-1291/1

ADDITIVES FOR FUEL CILS AND LUBRICANTS -LITERATURE REVIEW N65-30004 FTD-TT-65-62/1

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED. HEAVILY LOADED ROLLING CONTACTS - MEASUREMENT OF DEFORMATION BY X-RAY TECHNIQUE ASD-TDR-61-643, PT. V N65-305 N65-30505

TECHNIQUES FOR TESTING HIGH TEMPERATURE PERFORMANCE OF GAS TURBINE SEAL LUBRICANTS N65-30867 AFAPL-TR-65-3

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND TEMPERATURES N65-31051 NASA-CR-64183

LUBRICANT RADIATION RESISTANCE DEPENDENT ON LUBRICANT CHEMICAL COMPOSITION AND INTENSITY AND TYPE OF IONIZING RADIATION N65-32852 FTD-TT-65-325/16264

CALCIUM SDAPS OF SYNTHETIC FATTY ACID FRACTION AS METAL DRAWING LUBRICANT FTD-TT-64-1197/1 N65-33475

VAPOR-DEPOSITED THIN GOLD FILMS AS LUBRICANT IN VACUUM NASA-TN-D-3040 N65-34221

EVAPORATION RATES, FRICTION, AND WEAR OF LUBRICATING MATERIALS UNDER VACUUM CONDITIONS N65-35475 NASA-TM-X-52009

LOAD-CARRYING CAPACITY OF GEAR LUBRICANTS FROM TESTS WITH HIGH TEMPERATURE GEAR MACHINE AND INDUCTION HEATED GEARS AFAPL-TR-65-23

VACUUM DEPOSITION OF GOLD THIN FILMS ON NICKEL, NICKEL-CHROMIUM, AND NICKEL-RHENIUM SUBSTRATES FOR USE AS LUBRICANTS N65-36775 NASA-TM-X-52125

SLIDING FRICTION TESTS AT ULTRAHIGH LOAD OF EIGHT GREASES AND 18 DRY LUBRICANTS AND VARIOUS BASE MATERIALS

ASLE PREPRINT 65-LC-23 MATERIALS FOR USE AS ROLLING-CONTACT BEARING LUBRICANTS IN LIQUID HYDROGEN ENVIRONMENT

PHYSICAL PROPERTIES OF NEW CLASS OF LUBRICANTS METHYL ALKYL SILICONES, ILLUSTRATING EXCEPTIONAL LUBRICATING ABILITY ASLE PREPRINT 65-LC-4

FUELS AND LUBRICANTS WITH THERMALLY STABLE MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET REQUIREMENTS OF SUPERSONIC TRANSPORT

ASLE PREPRINT 65-LC-9

A66-13221

DENSITY AND VISCOSITY CHANGES OF LUBRICANTS IN CONTACT DUE TO PRESSURE CHANGES IN CONCENTRATED-CONTACT LUBRICATION A66-14240 ASME PAPER 65-LUB-4

PARTIAL POROUS METAL BEARINGS PERFORMANCE DURING STEADY STATE OPERATION WITH FULL FILM OF LUBRICANT, DETERMINING PRESSURE DISTRIBUTION A66-15526 ASME PAPER 65-WA/LUB-3

LUBRICANT EFFECT ON FATIGUE LIFE OF STATIONARY BALL ON FLAT CONTACT SUBJECTED TO OSCILLATORY NORMAL LOAD ASME PAPER 65-WA/CF-3

GOLD THIN FILMS OF 1800 ANGSTROMS TO BE USED AS LUBRICANTS WERE VAPOR-DEPOSITED ON NI, NI- CR AND NI- RE SUBSTRATES IN VACUUM

AIRCRAFT TURBINE LUBRICANT TECHNOLOGY FOR HIGH MACH NUMBER ENGINES ESPECIALLY SST, NOTING STABILITY, AUTOIGNITION, COKING, TOXICITY, ETC. A66-20156 SAE PAPER 660071

MEANS OF ASSESSING AVIATION TURBINE LUBRICANT CUALITY, CONSIDERING SPECIFICATION, MAINTENANCE, OPERATIONAL FACTOR AND EQUIPMENT STRIP APPROACH A66-20159 SAE PAPER 660074

SOLID AND DRY-FILM LUBRICANTS, TABULATING KINETIC COEFFICIENTS OF FRICTION, NOTING PARTICLE SIZE. VISCOSITY, COSTS, WEAR LIFE, APPLICATION, ETC

PHYSICAL PROPERTIES OF NEW CLASS OF LUBRICANTS, METHYL ALKYL SILICONES, ILLUSTRATING EXCEPTIONAL LUBRICATING ABILITY

ASLE PREPRINT 65-LC-4 STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER BOUNDARY FRICTION CONDITIONS IN PRESENCE OF SURFACE ACTIVE LUBRICANT ADDITIVES

A66-25884

NONSTRUCTURAL MATERIALS FOR SPACE UTILIZATION INCLUDING LUBRICANTS, SLIDING ELECTRICAL CONTACTS A66-28006 AND DIELECTRICS

METAL FLOW, FRICTION AND LUBRICANT PERFORMANCE DURING STAMPING OF THIN TITANIUM ALLOY BLANKS A66-28202

THERMAL STABILITY, ADHESION PREVENTION, STRESS AND DIE WEAR REDUCTION AND AIR POLLUTION OF INDUSTRIAL A66-28207 LUBRICANTS

GREASE LUBRICANTS FOR AEROSPACE APPLICATION,
DETERMINING PHYSICAL PROPERTIES AND TESTING THEM
AT 400 DEGREES F AND UNDER HIGH VACUUM
ASLE PAPER 66AM 3C2
A66-3040 A66-30409

LUBRICANT SELECTION FOR LUNAR MISSIONS AND MANNED SPACECRAFT BASED ON COMPATIBILITY WITH DXYGEN-RICH ENVIRONMENT, PROPELLANT, ANODIC COATINGS AND SLIDING FRICTION BEHAVIOR IN VACUUM A66-30415 ASLE PAPER 66AM 7A2

SLIDING FRICTION TESTS AT ULTRAHIGH LOAD OF EIGHT GREASES AND 18 DRY LUBRICANTS AND VARIOUS BASE MATERIALS A66-30571 ASLE PREPRINT 65-LC-23

DIFFERENTIAL THERMAL ANALYSIS FOR STUDY OF THERMAL DECOMPOSITION OF ORGANIC LUBRICANT SYSTEM

VAPOR DEPOSITED GOLD THIN FILMS TO OBTAIN ADHESION AND DURABILITY BETWEEN FILM AND SUBSTRATE ESSENTIAL AS LUBRICANTS IN HIGH VACUUM

OPERATING LIFETIME OF POROUS BEARINGS, DISCUSSING DEPENDENCE ON QUALITY OF IMPREGNATING LUBRICANT

HIGH LOAD, LOW SPEED SLIDING FRICTION TESTS ON

A66-12255

FLUID LUBRICANTS AND DRY LUBRICANTS FOR DETERMINING COEFFICIENT OF FRICTION NASA-TM-X-53331

N66-10669

SYNTHESIS OF CHLORINE AND SULFUR AROMATIC
HYDROCARBON ADDITIVES AND ANTIWEAR PROPERTIES OF
ADDITIVES TO LUBRICANTS
N66-11092

ALUMINUM STEARATE AND OLEOSTEARATE ADDITIVES FOR ANTIWEAR AND ANTICORROSION IMPROVEMENT OF LUBRICANTS N66-11093

SYNTHESIS, PRODUCTION TECHNOLOGY, AND TEST OF BARIUM ALKYLPHENOLATE, ZINC DIALKYLPHENYLDITHIO PHOSPHATE, AND DIAKYLPHENYLDITHIOPHOSPHORIC ACID FOR MULTICOMPONENT ADDITIVES TO LUBRICANTS N66-11094

EFFECTS OF LUBRICANTS ON MACHINE CUTTING TOOL LIFE RIA-65-1491 N66-11372

HIGH TEMPERATURE TENSILE TESTS, ALLOY POWDER TREATMENT, DRY LUBRICANT FRICTION, AND WEIGHT LOSS MEASUREMENTS IN ULTRAHIGH VACUUM SYSTEM APS64G N66-12956

CHEMISTRY AND TECHNOLOGY OF FUELS AND LUBRICANTS - U.S.S.R. FTD-TT-65-704/182 N66-13716

IMPACT SENSITIVITY TEST METHOD FOR LUBRICANTS IN CONTACT WITH LIQUID PROPELLANT AFAPL-TR-65-70 N66-14228

SLIDING CONTACTS IN ROLLER BEARINGS - WEAR TESTING MACHINE AND LUBRICANT TESTING AL65L081 N66-14463

S NAP-8 REACTOR MATERIALS DEVELOPMENT PROGRAM -LUBRICANT, CODIANT, CORROSION LOOP, AND STRUCTURAL MATERIALS EVALUATION NASA-CR-54718 N66-15

VASA-CR-54718 N66-15186

LUBRICANT MATERIALS FOR ROLLING CONTACT BEARINGS
OPERATING IN LIQUID HYDROGEN ENVIRONMENT
NASA-CR-69569 N66-15815

POLYPHENYL ETHER, POLYSILOXANE, SEBACATE, AND HIGH VISCOSITY MINERAL DIL AS IMPREGNATED LUBRICANTS IN BALL-BEARING RETAINERS AT .000010 TORR NASA-TN-D-3259

PHENOL RESIN BONDED, WOVEN GLASS AND TEFLON FIBER LUBRICANT FOR J-2 ROCKET ENGINE GIMBAL SYSTEM NASA-TM-X-53379 N66-16158

ICING OF OIL AND GREASE LUBRICANTS USED IN
AIRCRAFT ORDNANCE
NRL-6329
N66-16738

LIQUID METAL LUBRICANT ANTI-WEAR PROPERTIES STUDY, AND CARBAMIDE DEWAXING EFFECTS DETERMINATION FOR DIESEL ENGINE FUELS AID-U-64-37 N66-17611

OLEIC ACID AND CRYSTALLINE IODINE MIXTURE AS ANTICORROSION LUBRICANT FOR TITANIUM PARTS FTD-TT-65-1193 N66-18656

AIRCRAFT LUBRICANT AND SELECTED SOLVENT TESTS FOR REMOVAL OF CARBONACEGUS DEPOSITS ON JET ENGINE BEARING AFAPL-TR-65-118 N66-19564

OILS, LUBRICANTS, AND COOLANTS FOR DIESEL ENGINE, AIRCRAFT ENGINE, AND ROCKET ENGINE

AIRCRAFT ENGINE, AND ROCKET ENGINE FTD-MT-64-382 N66-19816

EFFECTS OF ORGANIC ADDITIVES CONTAINING SULFUR, CHLORINE, AND PHOSPHOROUS ON POLYSILOXANE LUBRICANTS

FSTC-381-T65-553 N66-20010

HIGH TEMPERATURE OXIDATION RESISTANCE OF ALUMINUM COMPLEX SOAP GREASE RIA-65-3264 N66-20013

FILM RUPTURE AND CAVITATION IN JOURNAL BEARINGS WITH LOW KINEMATIC VISCOSITY LUBRICANTS

MTI-65TR13

N66-20254

HIGH SPEED ROTORS SUPPORTED IN JOURNAL BEARINGS WITH LOW VISCOSITY LUBRICANT IN TURBULENT FLOW MTI-65TR12 N66-20259

ETHYLHEXYLAZELATE BASED LUBRICANTS FOR BALL
BEARINGS
NRL-6356
N66-21121

FACTORS INFLUENCING CORROSION PROTECTION PROVIDED BY SOLID FILM LUBRICANT COATINGS RIA-65-3380 NACE-21473

LUBRICANT FILM-VAPOR INTERFACE ANALYSIS AFTER FLOW SEPARATION AND RUPTURE MTI-65TR58 N66-22717

PLASTIC RESEARCH - SILICONE FLUIDS TO DECREASE ADHESION OF PLASTIC TO SOLID SURFACES, AND LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES OF POLYAMIDES
FTO-TT-65-909/18284

N66-22759

QUANTITATIVE CHEMICAL ANALYSIS, USING GAS CHROMATOGRAPHY, FOR ACYL COMPONENTS OF NEOPENTYL POLYOL ESTER AIRCRAFT ENGINE LUBRICANT NL-6338 N66-22779

FAILURE MODE AND OPERATION LIFE OF BALL BEARINGS USING FLUID LUBRICANTS AT HIGH TEMPERATURES IN RECIRCULATING SYSTEM NASA-CR-74097

BALL BEARING LIFE TESTS IN VACUUM USING MOLYBDENUM SULFIDE SOLID FILMS WITH HIGH VACUUM OILS AS LUBRICANTS NASA-CR-71695 N66-24604

GROWTH SUPPORT STUDIES OF SELECTED MICROORGANISMS IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND LIQUID ROCKET PROPELLANT RTD-TDR-63-4117, PT. II N66-2482

FLOW OF NONLINEAR VISCOPLASTIC MEDIUM BETWEEN TWO PLATES N66-2621

CORROSIVE ACTION OF LIQUID METALS CONSIDERED FOR LUBRICANTS

FACTORS AFFECTING ICING RESISTANCE OF LUBRICANTS
FOR AIRCRAFT ORDNANCE N66-27009

WEAR AND FRICTION OF LUBRICATED AND UNLUBRICATED STAINLESS STEEL BEARINGS IN SLIDING AND ROLLING CONTACT IN ULTRAHIGH VACUUM AND VARIOUS GAS ENVIRONMENTS
NASA-CR-65374

N66-27232

ANGULAR CONTACT BALL BEARING-FLUID LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS, AND HIGH TEMPERATURES NASA-CR-75582 N66-27931

LUBRICANT SELECTION FOR APOLLO AND OTHER MANNED SPACECRAFT - COMPATIBILITY CRITERIA NASA-TM-X-58002 N66-28033

RADIATION EFFECT ON MINERAL OILS USED AS DISPERSION MEDIA FOR PLASTIC LUBRICANTS FTD-TT-65-1731/164 N66-28246

LOW-FREEZING-POINT OIL PREPARATION BY EXTRACTING PARAFFINS FROM PETROLEUM DISTILLATES WITH CARBAMIDE NACA-2827

NONLINEAR SOLUTION FOR FLOW INTERACTION BETWEEN SELF-ACTING FOIL BEARING LUBRICANT AND EXTERNAL PRESSURE

EVALUATION OF PERFORMANCE OF VARIOUS LUBRICANTS ON BALL BEARINGS OPERATING IN SIMULATED SPACE ENVIRONMENT N66-32538

LUBRICATING OIL
ANTIWEAR ADDITION TESTING FOR THERMAL STABILITY IN

LUBRICATING OILS, NOTING EFFECT OF LUBRICANTS AND OTHER ADDITIONS A65-14875

COMPARISON OF POTENTIOMETRIC AND INDICATOR
TITRATIONS FOR ACID-ALKALINE PROPERTIES OF OILS
WITH ADDITIONS A65-14877

SCREW TYPE CLEARANCE SEALS AND CONTACT SEALS DETAILING HYDROSTATIC SEAL DESIGN

A65-14886

DYNAMIC RESPONSE OF OIL SEAL LIP TO SHAFT ECCENTRICITY, NOTING FOLLOWABLE LIMITS INDEPENDENCY TO SHAFT SPEED A65-14894

MINIATURE SINGLE TUBE HEAT EXCHANGER FOR MEASURING FUEL THERMAL STABILITY SAE PAPER 987A A65-17005

GEAR TOOTH PITTING DUE TO LUBRICANT FILM
CAVITATION, NOTING EFFECTS OF VIBRATION AND
INCREASED VISCOSITY OF FLUID
A65-17527

SEMIFLUID GREASE AND OIL BLEND LUBRICANT EVALUATION FOR M61 RAPID FIRE MACHINE GUN IN TERMS OF ANTIMEAR AND EXTREME PRESSURE PROPERTIES A65-17897

DETERGENT ACTION OF OIL ADDITIVES, INVESTIGATING SORPTION OF CHARGED PARTICLES ON CARBONACEOUS PRODUCTS OF FUEL COMBUSTION AND OIL OXIDATION ASLE PAPER 64-LC-9 A65-18057

SLIDING VELOCITY AND TEMPERATURE EFFECT ON LUBRICATING PROPERTIES OF POLYETHYLSILOXANE SOLUTIONS IN PETROLEUM A65-20015

AVIATION LUBRICATING OIL FOR JET AND TURBOPROP, NOTING REQUIREMENTS OF EACH SYSTEM

A65-22234

PRESSURE AND ELASTIC DISTORTION EFFECT ON THIN FILM LUBRICATION OIL THICKNESS A65-23504

BOUNDARY LUBRICATION IN OIL SYSTEM DISCUSSED IN TERMS OF FILM STRENGTH COVERING ADSORBED, CHEMISORBED AND CHEMICAL REACTION FILM FORMATION A65-23505

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL OILS AND ESTERS ASLE PREPRINT 65AM 4A4 A65-24250

APPLICABILITY OF ELASTICITY THEORY EQUATIONS FOR CYLINDERS IN DRY CONTACT TO PRESSURE DISTRIBUTION AT ROLLER AND BALL BEARING CONTACT POINTS IN PRESENCE OF LUBRICATING FILM 465-26533

DRY AND FLUID LUBRICATION EFFECTS ON INSTRUMENT BALL BEARING TORQUES AT HIGH SPEED

A65-26662

HIGH SPEED RELIABILITY OF OIL-LUBRICATED TILTING-PAD POTASSIUM TURBINE BEARING ASME PAPER 65-LUBS-10 A65-28600

COMPUTER METHOD FOR ISOTHERMAL PROBLEM OF RIGID AND ELASTIC CYLINDERS LUBRICATED BY CONSTANT AND VARIABLE PROPERTY FLUID, DISCUSSING FILM THICKNESS ASLE PAPER 64-LC-22

FAILURE POINT OF NONREACTIVE MINERAL OIL PREDICTED BY BLOK CRITICAL TEMPERATURE HYPOTHESIS IN ROLLING AND SLIDING CONTACT ASLE PAPER 64-LC-13

INERTIA, TURBULENT AND VISCOUS TERMS COMPUTED FOR SLIDER BEARING LUBRICATION, USING MATRIX ALGEBRA METHODS
ASLE PAPER 64-LC-16
A65-31720

ELASTOHYDRODYNAMIC LUBRICATION THEORY, COMPARING OIL-FILM THICKNESS PREDICTED BY DOWSON AND HIGGINSON WITH MEASUREMENTS FROM DISK MACHINE LUBRICATED BY VARIOUS FLUIDS A65-32764

FOIL BEARING THEORY TO EXPLAIN LUBRICATION CONDITION OF LIP SEAL, TAKING INTO ACCOUNT SURFACE

ROUGHNESS EFFECT AND VISCOELASTIC PROPERTY OF MATERIAL A65-32769

LUBRICATION OF BALL BEARINGS IN HIGH SPEED APPLICATION NOTING OIL TYPES, GREASE SHEAR AND OIL CHURNING A65-33125

ELASTOHYDRODYNAMIC LUBRICATION, REVIEWING WORK ON FILM THICKNESS AND SHAPE, PRESSURE AND STRESS DISTRIBUTION, SIDE LEAKAGE, ETC

A65-33218

CONSTANT OIL MONITORING SYSTEM USING ELECTRIC CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS TURBINE ENGINES SAE PAPER 650814 A65-34699

FATIGUE LIFE AND CONTACT WEAR IN TOOL STEEL
EFFECTED BY DIESTER AND MINERAL DIL LUBRICANTS
RS-441
N65-16825

SYNTHESIS OF ORGANIC COMPOUNDS AS ADDITIVES TO LUBRICATING OILS FTD-TT-64-880/1 N65-190

LOW TEMPERATURE CHARACTERISTICS OF LUBRICATING OILS, PHOTOGRAMMETRIC CHECKING OF WIND TUNNEL MODELS, MECHANICS, AERODYNAMICS, HYDRODYNAMICS, ANG THERMODYNAMICS MECHANICS N65-205

LOW TEMPERATURE CHARACTERISTICS OF MULTIPURPOSE LUBRICATING OIL FOR VEHICLE GEARS

N65-20571

SYNTHESIS, CHARACTERIZATION, AND ESTER-ESTER
INTERCHANGE STUDY OF MIXED ESTER 2-ETHYLHEXYL
BENZYL AZELATE FOR USE AS LOW TEMPERATURE
INSTRUMENT OILS
NRL-6149
N65-22144

ANTIOXIDATION, ANTICORROSION, AND DETERGENT ADDITIVES FOR LUBRICATING OILS OBTAINED BY TREATING PRODUCTS OF OXIDATION OF PARAFFIN WITH PHOSPHORUS PENTASULFIDE FID-TI-64-1087/1 N65-224

ADMIXTURE SYNTHESIS AND APPLICATION TO LUBRICATING OILS FOR QUALITY IMPROVEMENT FTD-TT-64-860/162 N65-24415

SPEED, LOAD, AND TEMPERATURE EFFECT ON MINIMUM OIL FLOW REQUIREMENTS OF 30 AND 75 MILLIMETER-BORE BALL BEARINGS
NASA-TN-D-2908
N65-27392

IMPROVING ANTIWEAR PROPERTIES OF LUBRICATING OILS WITH DERIVATIVES OF 2-MERCAPTOBENZTHIAZOLE FTD-TT-64-1287/1 N65-28624

HELICOPTER GEAR LUBRICATION - GEAR SURFACE PRECUATING EFFECT ON GEAR PERFORMANCE AND GEAR PERFORMANCE OF SYNTHETIC TETRAESTER FIVE CENTISTOKE BASE OIL

ORGANIC SILOXANE POLYMER LIQUIDS AS COMPONENTS OF HIGH TEMPERATURE LUBRICATING OILS FTD-TT-65-322/18284 N65-35941

LABORATORY, COMPONENT AND ENGINE TESTS FOR LUBRICANT PROPERTIES OF J-79 JET ENGINE INCLUDING ELASTOMER VOLUME SWELL, OXIDATION-CORROSION, LUBRICITY, ETC SAE PAPER 650816 A66-10821

DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET LUBRICANT ASLE PREPRINT 65-LC-16 A66-1225

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM DILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE APPLICATION A66-12259

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING

CONFIGURATION FOR MINERAL OILS AND ESTERS

A66-18292

HIGH ACTIVITY OF ALKALI METAL SALTS OF CARBOXYLIC ACIDS AND SUBSTITUTED PHENOLS AS SYNERGISTS FOR ARYLAMINE ANTIOXIDANTS IN ESTER-TYPE SYNTHETIC LUBRICATING DILS A66-23123

SIMULATION OF LUBRICATING OIL CIRCULATION IN AVIATION TURBINE ENGINES BY CONSTRUCTED MODEL, NOTING CHANGE OF VISCOSITY, ACID NUMBER AND ELECTRICAL CONDUCTIVITY AT HIGH TEMPERATURES A66-23751

CONSTANT OIL MONITORING SYSTEM USING ELECTRIC CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS TURBINE ENGINES SAE PAPER 650814 A66-23844

VACUUM EFFECTS ON LUBRICANTS AND BEARING MATERIALS DUE TO REDUCED AMBIENT PRESSURE AND LOW CONCENTRATION OF UXIDIZING GASES

A66-24383

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PEIKULEUM UILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE APPLICATION ASLE PREPRINT 65-LC-1

OIL CUSHION RESILIENCE IN HYDRODYNAMIC BEARINGS. EXAMINING EFFECT ON DYNAMIC BEHAVIOR OF UNSYMMETRICAL SHAFT WITH ONE DISK

A66-24999

FRICTION AND LUBRICATION OF POLYMERS

A66-26304

LUBRICATION PARAMETERS WITH RESPECT TO EXPERIMENTAL VALUES AND REPRODUCIBILITY

A66-28465

JET DIL LUBRICATION AND SCAVENGING LECHNIQUE FOR 20 MM HIGH SPEED BALL BEARING ASLE PAPER 66AM 1B4 A66-30402

BALL BEARING LIFE OPERATING IN VACUUM WITH MOLYBDENUM DISULFIDE AND OILS AS LUBRICANT ASLE PAPER 66AM 7A3 A66-30416

DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET LUBRICANT ASLE PREPRINT 65-LC-16 A66-30574

CHARACTERISTICS OF SOVIET AND OTHER LUBRICATING OILS FOR USE IN WINTER WEATHER TO START AND MAINTAIN INTERNAL COMBUSTION MACHINES

N66-11077

CLASSIFICATION OF SULFUR-CONTAINING LUBRICATING OILS, WITH AND WITHOUT ADDITIVES, FOR USE WITH VARIOUS TYPES OF DIESEL ENGINES

ALKYLPHENOL ADDITIVES OF FORMALDEHYDE CONDENSATION FOR USE IN LUBRICATING MOTOR DILS

N66-11079

SYNTHESIS OF SULFONATES OF ALKYL AROMATIC HYDROCARBONS FOR USE AS ADDITIVES TO DIESEL AND MOTOR LUBRICATING OILS N66-11082

EFFECTIVENESS OF ORGANO-MOLYBDENUM AND ORGANO-SULFUR COMPOUNDS AS ANTIWEAR ADDITIVES TO LUBRICATING DILS

ORGANO-PHOSPHORUS ANTIOXIDANT LUBRICATING DIL ADDITIVES OBTAINED FROM REACTION OF PHOSPHORUS PENTASULFIDES AND TERPENES IN PRESENCE OF SULFURIC ACID N66-11086

DIALKYLDITHIOPHOSPHATES WITH SECONDARY HYDROCARBON RADICALS AS ANTIOXIDANT ADDITIVES FOR LUBRICATING OILS N66-N66-11087

VACUUM FRICTION MACHINE INVESTIGATIONS FOR FRICTION REDUCTION BY LUBRICATING OILS WITH DXYGEN AND OTHER GAS ADDITIVES N66-11105 RADIDACTIVE TRACER INVESTIGATION OF REACTION MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH COPPER FILMS IN HYDROCARBON LUBRICATING OIL MEDIUM - FRICTION REDUCING ADDITIVES

N66-11106

REACTION MECHANISM OF ANTISCORING ADDITIVES IN LUBRICATING OILS FOR FRICTION REDUCTION

N66-11107

ORGANIC METALLIC SALTS AS OXIDATION CATALYSTS IN LUBRICATING OILS - CORROSION RESISTANT ADDITIVES N66-11108

REACTION MECHANISM AND EFFECTIVENESS OF ADDITIVES IN LUBRICATING OILS FOR FRICTION REDUCTION

CHEMICAL KINETIC MECHANISMS IN OXIDATION RESISTANT ADDITIVES TO LUBRICATING OILS N66-11110

REACTION MECHANISMS OF OXIDATION RESISTANT ADDITIVES IN OXIDATION PROCESS IN LUBRICATING OILS - HYDROGEN PEROXIDE FORMATION

TEST METHODS AND MEASURING APPARATUS FOR RAPID APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL OILS, LUBRICATING OILS, AND ADDITIVES - SCALE MODELS AND MICROANALYSIS N66-11112

DETERMINING ANTIOXIDATION EFFECTIVENESS OF MOTOR OIL ADDITIVES N66-11114

NEW METHOD OF EVALUATING EFFECTIVENESS OF ANTIABRASIVE PROPERTIES OF FUEL AND OIL ADDITIVES N66-11115

EFFECT OF LUBRICATING MATERIALS AND ADDITIVES ON PITTING FORMATION N66-11116

EFFECT OF DIL ADDITIVES ON CORROSIONAL WEAR OF LEAD ALLOY BEARINGS N66-1 N66-11117

DETERMINATION OF WORKING PROPERTIES OF INHIBITED INSULATING TRANSFORMER DILS N66-11118

CALCULATING NECESSARY CONCENTRATION OF NEUTRALIZING ADDITIVES IN MOTOR OILS WHEN USING FUELS WITH LARGE SULFUR CONTENTS

N66-11119

DETERMINING REQUIREMENTS FOR QUALITY OF LUBRICATING DILS FOR TRACTOR DIESEL ENGINES N66-11120

TESTING MOTOR OILS FROM SULFUROUS CRUDES WITH DIFFERENT ADDITIVES N66-11121

TESTING LUBRICATING OILS WITH ANTICORROSIVE ADDITIVES ON DIESEL ENGINES N66-11122

TESTING OIL ADDITIVES ON DIESEL LOCOMOTIVE WHILE OPERATING ON SULFUR BEARING FUEL

N66-11123

DETERGENT AND ANTIWEAR ADDITIVES FOR IMPROVING OPERATIONAL PROPERTIES OF DIESEL FUELS AND LUBRICATING DILS N66-1: N66-11124

USE OF LUBRICATING OIL ADDITIVES FROM SULFUR BEARING CRUDE OILS IN DIESEL LOCOMOTIVE ENGINES N66-11125

EFFECT OF MOTOR OIL ADDITIVES ON PITTING OF HYDRAULIC LIFTERS N66-11126

TESTING AUTOMOBILE TRANSMISSION OIL WITH DIFFERENT ADDITIVES FOR ANTIWEAR, ANTIABRASSIVE, ANTICORROSIVE, STABILITY, AND FOAM PROPERTIES N66-11127

EFFECTIVENESS OF ANTIWEAR ADDITIVE DURING PROLONGED OPERATION OF HIGH SPEED AND FORCED SHIP DIESEL ENGINES ON SULFUR BEARING FUELS AND

EFFECT OF VISCOSITY ON ANTIWEAR PROPERTIES OF OIL ADDITIVES N66-11129 ROLLING CONTACT LUBRICATION CHARACTERISTICS OF POLYPHENYL ETHERS AND MINERAL OILS AT REDUCED PRESSURES

NASA-TN-D-3130

N66-12

N66-18654

THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS
OF ANTIOXIDANT ADDITIVES IN LUBRICATING OILS U.S.S.R. N66-13718

TECHNIQUE FOR EVALUATING THERMAL STABILITY OF ANTIMEAR ADDITIVES IN LUBRICATING OILS FID-IT-65-867/184 N66-145

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPIC ANALYSIS
OF MIXED PENTAERYTHRITOL, DIPENTAERYTHRITOL, AND
TRIMETHYLOLPROPANE ESTERS
NAC-15016

PERFORMANCE OF AIRCRAFT GAS TURBINE MAINSHAFT BALL BEARINGS, SEALS, AND LUBRICANTS UNDER SIMULATED SUPERSONIC TRANSPORT ENGINE CONDITIONS NASA-CR-54312 N66-15366

CONFERENCE ON LUBRICATION TECHNIQUES AND SEAL DESIGN FOR ORBITAL MANNED SPACE LABORATORY DOOR ACTUATOR N66-17440

FLUID LUBRICATION OF MANNED ORBITAL SPACE STATION DOOR MECHANISM N66-17441

COMBUSTION AND DETONATION PHYSICS FOR MIXTURES
OF LUBRICATING OILS AND OXYGEN
FTD-TT-65-1106/18284 N66-18553

ELASTICITY OF SATURATED VAPORS FROM LUBRICATING OILS AND GREASES

OXIDATION RESISTANCE AND DEPOSIT FORMATION OF HIGH TEMPERATURE LUBRICATING OIL AFAPL-TR-65-85 N66-19474

WEAR CHARACTERISTICS AND PHYSICAL PROPERTIES OF LUBRICATING GREASES RIA-TR-65-2812 N66-19769

HEXACHLOROCYCLOPENTADIENE USED AS ANTIWEAR
ADDITIVE TO LUBRICATING OILS
FTD-TI-65-795/18284 N66-1977

HEAT TRANSFER FROM CYLINDRICAL SURFACE WITH DENSE RIB NETWORK TO COOLING OIL N66-20193

FRICTION MACHINE USED FOR EVALUATING EFFECTIVENESS
OF ACTION OF ANTI-SCORING ADMIXTURES TO DILS AND
FUELS
FID-TI-65-1491/16264
N66-29690

EFFECT OF AIRCRAFT GAS TURBINE ENGINE LUBRICANTS AND SOLVENTS ON REMOVAL OF CARBONACEOUS DEPOSITS AFAPL-TR-65-118 N66-31108

LUBRICATION SYSTEM

FTD-TT-65-1063/18284

FRICTION STRESSES IN TURBULENT LUBRICATION FILM
AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE
DISTRIBUTION STUDIED, USING MIXING-LENGTH
HYPOTHESIS
ASLE PREPRINT 65AM 3A1
A65-24252

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION FILM WITH THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2 A65-24256

COMPUTATION OF FLOW RATE IN PIPES AND DETERMINATION OF HEAD LOSSES IN PIPES OF LUBRICATION SYSTEMS WITH FLUID LUBRICANTS

A65-30155

ROTATING MACHINES IN EXTREME ENVIRONMENT DISCUSSING CONDUCTORS, MAGNETIC MATERIALS, INSULATIONS, BEARINGS AND PERFORMANCE A65-31144

SURVEY OF LUBRICATION DEVICES FOR REDUCING FRICTION IN MECHANISMS OPERATING IN SPACE NASA-CR-62281 N65-22556

SPECIROMETRIC OIL ANALYSIS METHOD FOR MONITORING TURBUJET AIRCRAFT ENGINES AND OIL LUBRICATED AIRCRAFT MECHANISMS

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIEC, USING MIXING-LENGTH HYPOTHESIS
ASIF PREPRINT 65AM 3A1
A66-18:

THERMAL ELASTOHYDROCYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION WITH FILM THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2 A66-1829.

HIGH TEMPERATURE BEARING LUBRICANT REQUIREMENTS
FOR JET ENGINE LUBRICATION SYSTEMS
SAE PAPER 660072 A66-20157

OPERATION, MAINTENANCE AND INSTALLATION OF FRICTION AND NONFRICTION BEARINGS, NOTING CHARACTERISTICS, PROBLEMS, ETC A66-22951

WEAR AND GREASE LUBRICATION EFFECTS IN MATCHED AIRCRAFT SPLINE SPECIMENS SUBJECTED TO OSCILLATORY MOTION A66-30572

PERFORMANCE OF AIRCRAFT GAS TURBINE MAINSHAFT BALL BEARINGS, SEALS, AND LUBRICANTS UNDER SIMULATED SUPERSONIC TRANSPORT ENGINE CONDITIONS NASA-CR-54312 N66-15366

LUBRICATION TESTING MACHINE
WEAR MACHINE LUBRICANTS EFFECT ON TRANSITION
TEMPERATURE DISCUSSING VISCOSITY, SPEED AND LOAD

ASLE PAPER 64-LC-7

CONCEPT THAT NONINTERCONNECTED LUBRICANT
RESERVOIRS SURFACE HAS LESS BOUNDARY LAYER
FRICTION THAN SMOOTHER SURFACE WITH APPARENT LAY,
GIVING TORQUE TEST ON SURFACE FINISHES

A65-20034

SPACE ENVIRONMENT SIMULATION TEST EQUIPMENT FOR EVALUATING FLUID LUBRICANTS AND LUBRICATING

FOUR-BALL WEAR TESTER TO EVALUATE SOLID LUBRICANT DISPERSIONS INCLUDING MOLYBDENUM DISULFIDE A66-27774

M

MACHINE TOOL
WEAR AND DETERIORATION IN PRECISION LAPPING
PROCESS A65-29781

TOOL WEAR IN MACHINING GRAPHITE, CONSIDERING SPEED EFFECT
ASME PAPER 64-WA/PROD-7
A65-32933

SOLID MOLYBDENUM DISULFIDE LUBRICANT APPLIED TO CUTTING PORTION OF TOOLS AND FRICTIONAL PARTS OF MACHINES FTD-TT-64-1148/1 N65-224

EFFECTS OF LUBRICANTS ON MACHINE CUTTING TOOL LIFE RIA-65-1491 N66-11372

MACHINING

BASIC MECHANISMS OF ULTRASONIC MACHINING PROCESS
ARE MICROCHIP REMOVAL AND MATERIAL DISPLACEMENT BY
PLASTIC DEFORMATION AND PARTICLE REMOVAL BY
FRACTURE
ASME PAPER 64-PROD-4
A65-16986

MACHINING AND MACHINABILITY IMPROVEMENTS OF STAINLESS STEEL ALLOYS PRESENTING COST, AVAILABILITY, LUBRICATION AND CORROSION RESISTANCE DATA A65-26951

CHEMICAL COOLANTS FOR MACHINING URANIUM IN
PRESENCE OF TRACE AMOUNTS OF CHLORIDE CORROSION PREVENTION
V=1475
N65-18429

ANNOTATED BIBLIOGRAPHY ON SOLID LUBRICANTS - WITH

NASA-SP-5037

N66-17358

MAGNESIUM

CORROSION OF MAGNESIUM IN WATER

A66-29724

STRUCTURAL STATE, COMPOSITION, P H OF MEDIUM, AND CORROSION OF MAGNESIUM AND ITS ALLOYS CEA-R-2815

N66-26038

MAGNESIUM ALLOY

CORROSION CHARACTERISTICS OF AL- ZN- MG ALLOYS A65-30744

CORROSION INHIBITORS AND METALLIC SALTS EVALUATION FOR PREVENTION OR RETARDATION OF GALVANIC CORROSION OF MAGNESIUM STEEL ASSEMBLIES CCI - 175 N65-18674

CORROSION RATES OF MAGNESIUM AND MAGNESIUM ALLOYS IN MAGNESIUM SALT SOLUTIONS OF CHLORIDE.

BROMIDE, AND PERCHLORATE ECOM-2517 N65-19161

CORROSION OF ALUMINUM AND MAGNESIUM ALLUYS IN TROPICAL ENVIRONMENTS NRL-6105

STRESS CORROSION AND HIGH TEMPERATURE PROPERTIES OF MAGNESIUM-LITHIUM-SILICON ALLOYS

FA-A64-31 N65-36228

GALVANIC CORROSION IN PANEL-TYPE COUPLES OF DISSIMILAR METALS WITH MAGNESIUM EVALUATED FROM TENSILE STRENGTH LOSS A66-19: A66-19714

CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC MG- ZN ALLOYS IN HALIDE SOLUTION

SODIUM CHLORIDE CORROSION RESISTANCE OF MAGNESIUM AND ALUMINUM ALLOYS WITH PROTECTIVE COATING OF TEFLON

MAGNESIUM BROWIDE

CORROSION RATES OF MAGNESIUM AND MAGNESIUM ALLOYS
IN MAGNESIUM SALT SOLUTIONS OF CHLORIDE,
BROMIDE, AND PERCHLORATE
ECOM-2517
N65-1916 N65-19161

MAGNESIUM COMPOUND

CORROSION RATES OF MAGNESIUM AND MAGNESIUM ALLOYS
IN MAGNESIUM SALT SOLUTIONS OF CHLORIDE,
BROWIDE, AND PERCHLORATE

ECOM-2517

N65-19161

MAGNESIUM PERCHLORATE
CORROSION RATES OF MAGNESIUM AND MAGNESIUM ALLOYS
IN MAGNESIUM SALT SOLUTIONS OF CHLORIDE, BROMIDE, AND PERCHLORATE ECOM-2517

MAGNETIC FIELD

DIAMAGNETIC, SUPERCONDUCTING, ELECTROSTATIC AND FREELY AND PARTIALLY SUSPENDED MAGNETIC BEARINGS

SURFACE ROUGHNESS EFFECTS IN HYDROMAGNETICALLY LUBRICATED EXTERNALLY PRESSURIZED BEARINGS AND HYDROMAGNETIC SQUEEZE FILM BETWEEN TWO CIRCULAR PLATES ASME PAPER 66-LUBS-9 A66-33182

MAGNETOHYDRODYNAMIC FLOW
HYDROMAGNETIC THEORY FOR SQUEEZE FILMS OF
CONDUCTING LUBRICANTS WITH REFERENCE TO ROLLER AND
SLIPPER BEARING ASME PAPER 64-LUBS-12 A65-20115

HYDROMAGNETICALLY SQUEEZED FILMS BETWEEN TWO CONDUCTING SURFACES USED AS LUBRICATOR, DISCUSSING LOAD CAPACITY, PRESSURE AND TIME OF APPROACH ASME PAPER 65-LUBS-6 A65-28635

CONDUCTING LUBRICANT IN EXTERNALLY PRESSURIZED BEARING WITH VARIABLE FILM THICKNESS IN PRESENCE

OF MAGNETIC FIELD DETERMINING FLOW, LOAD AND ELECTRICAL CHARACTERISTICS A65-32310

ELECTRICALLY CONDUCTING LUBRICANT, USING MOMENTUM INTEGRAL METHOD TO INVESTIGATE EFFECT OF MAGNETIC FIELD ON LOAD CAPACITY OF FULL JOURNAL BEARING

M HD PARALLEL PLATE SLIDER BEARING UNDER NONUNIFORM MAGNETIC FIELD ASME PAPER 64-WA/LUB-2 A65-33851

M HD SQUEEZE FILM BEARINGS IN PRESENCE OF ELECTROMAGNETIC FIELD ASME PAPER 64-WA/LUB-3

MAGNETOHYDRODYNAMIC FLUID FLOW BOUNDARY LAYERS FOR LIQUID METAL BEARINGS N65-27510

PRESSURE DISTRIBUTION OF VISCOUS ELECTRICALLY CONDUCTING FLUID IN LUBRICATING LAYER OF CYLINDRICAL BEARING

M HD INCLINED SLIDER BEARING WITH AZIMUTHAL MAGNETIC FIELD, NOTING LOAD CAPACITY

A66-29407

M HD LUBRICATION FLOW IN THRUST BEARING, NOTING FLUID INERTIA EFFECT ON LOAD CAPACITY AND FLOW RATE

ASME PAPER 66-LUBS-8

MANGANESE

CR AND MN EFFECTS ON AGING MECHANISM AND ANTICORROSION PROPERTIES OF AL- ZN- MG ALLOYS A66-12723

MANGANESE ALLOY

CORROSION RESISTANCE AND ANODIC BEHAVIOR OF
KH18 N9 STEELS WITH VARIOUS NICKEL-MANGANESECARBON-TITANIUM CONTENTS
A66-10 466-10987

MANGANESE COMPOUND

SILICONE OIL STABILITY AND OXIDATION RESISTANCE ENHANCED BY CYCLOPENTADIENYL TRICARBONYL MANGANESE FTD-TT-65-520/164 N66-13754

MANNED ORBITAL SPACE STATION /MOSS/ CONFERENCE ON LUBRICATION TECHNIQUES AND SEAL DESIGN FOR ORBITAL MANNED SPACE LABORATORY DOOR ACTUATOR AD-623336 N66-17440

FLUID LUBRICATION OF MANNED ORBITAL SPACE STATION DOOR MECHANISM N66-17441

SOLID LUBRICATION OF MANNED ORBITAL SPACE STATION DOOR ACTIVATOR N66-1744

LUBBICANT SELECTION FOR LUNAR MISSIONS AND MANNED SPACECRAFT BASED ON COMPATIBILITY WITH OXYGEN-RICH ENVIRONMENT, PROPELLANT, ANODIC COATINGS AND SLIDING FRICTION BEHAVIOR IN VACUUM ASLE PAPER 66AM 7A2 A66-30415

LUBRICANT SELECTION FOR APOLLO AND OTHER MANNED SPACECRAFT - COMPATIBILITY CRITERIA NASA-TM-X-58002 N66-28033

MARAGING STEEL

STRESS CORROSION PROPERTIES OF 12 PERCENT NICKEL MARAGING STEEL WELDMENTS IN MARINE ENVIRONMENTS 5-23309

FRACTURE TOUGHNESS AND STRESS CORROSION RESISTANCE OF SEVERAL HEATS OF MARAGING STEEL COMPARED WITH RESULTS FOR LOW-ALLOY AND HOT-WORK DIE STEEL

AQUEOUS ENVIRONMENT EFFECTS ON HIGH STRESS LOW-CYCLE FATIGUE OF 18 PERCENT NICKEL MARAGING STEELS NRL-MEMO-1685 N66-27661

MARTENSITIC STEEL

POLARIZATION CURVES OF STRESS CORROSION CRACKING IN MARTENSITIC HIGH STRENGTH STEELS

REPT .- 132-Q7

N65-34370

ACCELERATED COOLING OF FERRITIC-MARTENSITIC STEEL AND FERRITIC STEEL AFTER SINTERING, COMBINED WITH ADDITIONAL HEAT TREATMENT, INCREASES STRENGTH AND CORROSION RESISTANCE A66-16690

STRESS CORROSION CRACKING TEST EMPLOYING PRECRACKED BAR STRESSED IN BENDING, NOTING APPARATUS AND RESULTS ON MARTENSITIC STEEL AND TITANIUM ALLOY A66-23647

MASER

FLUID MECHANICS, LUBRICATION, CORROSION, MASERS, BIOLOGICAL STRESS, PROTECTIVE COATINGS, NEUTRON ACTIVATION, FRACTOGRAPHY, METABOLISM, GUIDED MISSILE LAUNCHING, AND CATAPULTS AD-623630 N66-14468

MASS SPECTROMETER

CORROSION FILM ON INCONEL AND AISI 304 STAINLESS STEEL INVESTIGATION WITH SCANNING ELECTRON MICROSCOPE AND SPINNING SOURCE MASS SPECTROGRAPH MICROPROBE N66-18899 WERL-1114-1

MASS TRANSFER

HEAT EXCHANGE, FRICTION AND MASS EXCHANGE IN LAMINAR MULTICOMPONENT BOUNDARY LAYER DURING INJECTION OF EXTRANEOUS GASES A65

ALKALI METAL STRESS CORROSION AND MASS TRANSFER EFFECTS ON REFRACTORY METAL AND STAINLESS STEEL ALLDYS NASA-CR-54281

S NAP-8 MATERIALS RESEARCH - MERCURY CORROSION CAPSULE TESTS OF FERRITIC ALLOYS FOR MASS TRANSFER, STRESS CORROSION, MODE OF ATTACK, AND MECHANICAL PROPERTIES NASA-CR-62379 N65-22558

INFLUENCE OF STRESS ON CORROSION BEHAVIOR OF REFRACTORY ALLOY IN POTASSIUM, AND CORROSION MASS TRANSFER EFFECTS IN STAINLESS STEEL-NIOBIUM ALLOY-POTASSIUM SYSTEM NASA-CR-54390

INFLUENCE OF STRESS ON CORROSION BEHAVIOR AND MASS TRANSFER EFFECT ON REFRACTORY MATERIALS FOR ADVANCED SPACE POWER SYSTEMS NASA-CR-54476 N66-12264

CORROSIVE ATTACK MECHANISMS OF LIQUID CESIUM ON CONTAINMENT METALS AND TEMPERATURE GRADIENT MASS TRANSFER COMPARISON MSAR-65-111

DIFFERENCES IN CORROSION AND MASS TRANSFER RATES IN CORROSION LOOPS FOR SNAP-8 SYSTEM AND EFFECTIVENESS OF COLD TRAPPING IN REDUCING HYDROGEN CONCENTRATION NASA-CR-67272 N66-22205

MASS TRANSFER AND CORROSION RATES OF MATERIALS IN FLOWING SODIUM

CORROSION, MASS TRANSFER, AND CORROSION PRODUCT REMOVAL FOR NUCLEAR TO ELECTRIC POWER CONVERSION SYSTEM USING MERCURY AS WORKING FLUID NAA-SR-6321

N66-32126

BASIC MECHANISMS OF ULTRASONIC MACHINING PROCESS ARE MICROCHIP REMOVAL AND MATERIAL DISPLACEMENT BY PLASTIC DEFORMATION AND PARTICLE REMOVAL BY FRACTURE ASME PAPER 64-PROD-4 A65-16986

MATERIAL TESTING

PITTING CHARACTERISTICS OF EARLY PHASE CAVITATION
DAMAGE TO TEST SPECIMENS IN VENTURI
ASME PAPER 64-WA/FE-2
A65-26503

TESTING DRY FILM LUBRICANTS EXPOSED TO ULTRAHIGH VACUUM ENVIRONMENT A65-30030

THIN FILM LUBRICANT DEVELOPED FOR GOLD-PLATED

ELECTRIC CONTACTS DISCUSSING CHARACTERISTICS, PERFORMANCE AND TESTING A65-30815

COMPATIBILITY TEST OF NITROGEN TETROXIDE AND TITANIUM ALLOY, STUDYING CORROSIVE ATTACK AND IMPACT SENSITIVITY A65-A65-32404

HIGH STRENGTH STRESS AND CORROSION RESISTANT STEEL DISCUSSING FAILURE MODE, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, MACHINING AND FORMING METHODS

THERMAL AFTERTREATMENT AND FLAME SPRAYING CHARACTERISTICS OF POLYAMIDE COATINGS FTD-TT-64-1324/162 N65-28276

INFLUENCE OF THERMAL AFTERTREATMENT ON PROPERTIES OF POLYAMIDE COATING IN CORROSION PREVENTION N65-28277

MATERIAL PROCUREMENT AND QUALITY ASSURANCE FOR ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM NASA-CR-54477 N65-33966

MATERIALS FOR USE AS ROLLING-CONTACT BEARING LUBRICANTS IN LIQUID HYDROGEN ENVIRONMENT ASLE PREPRINT 65-LC-9

OPERATING CONDITION AND GAP SIZE EFFECTS ON FRICTION COEFFICIENT FOR POLYMER PLASTIC BEARINGS - MATERIAL TESTING FTD-TT-65-737/16264 N66-12106

CORROSION RESISTANCE TESTS ON HIGH SILICON ALUMINUM ALLOYS

N66-12932 BNWL-125

CORROSION PROPERTIES OF MOLYBDENUM, TUNGSTEN, VANADIUM, AND SOME VANADIUM ALLOYS BM-RI-6715 N66-N66-16451

TEST RIG FOR MEASURING WEAR AND FRICTION FOR MATERIALS TESTED IN WATER UNDER PRESSURE MAPD-288

FRICTION AND WEAR CHARACTERISTICS OF MATERIALS FOR GAS LUBRICATED BEARINGS UNDER STAT-STOP AND WHIRL INDUCED RUBBING CONDITIONS F-82232 N66-20592

ABSTRACTS ON CORROSION OF CONCRETE AND STEEL, PROTECTIVE COATING MATERIALS, MATERIAL TESTING, WATER AND AIR PURIFICATION, PACKAGING, AND BIBLIOGRAPHIC INFORMATION N66-20801

CORROSION TESTING OF NUCLEAR MATERIALS CONDUCTED IN-PILE AND AFTER PILE IRRADIATION EUR-2674

COMPARATIVE CORROSION EXPERIMENTS OF ZIRCONIUM ALLOY FOR JACKETING MATERIAL IN WATER COOLED REACTORS EURAEC-1115

MASS TRANSFER AND CORROSION RATES OF MATERIALS IN FLOWING SODIUM N66-24268

CORROSION RESISTANCE AND ENVIRONMENT EFFECT ON STEEL ALLOY COMPONENTS OF SNAP-8
NASA-CR-54719 N66-24442

CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS WITH AN ALKALINE ELECTROLYTE-CORROSION RESISTANCE AND ACTIVITY TESTING OF MATERIALS AND ELEMENTS NASA-CR-70930

METAL, ALLOY, AND METAL COMPOUND TESTING FOR CORROSION RESISTANCE AND ACTIVITY AS OXYGEN ELECTRODES FOR HYDROX FUEL CELL WITH ALKALINE **ELECTROLYTE** NASA-CR-75199

MATERIALS EROSION

LUBRICATION BY CONTINUOUS TRANSFER OF SOLID FILMS. EXAMINING LOAD CARRYING CAPACITY OF GRAPHITE AND MOLYBDENUM DISULFIDE ASLE PAPER 64-LC-19 A65-22792 CORROSION OF MATERIALS BY ETHYLENE GLYCOL-WATER

CORROSION CONTROL ON AIRCRAFT SKIN, COUNTERSINKS AND FASTENERS DESCRIBING TESTS, SEALANT COATINGS, CHEMICAL TREATMENTS, MECHANICAL BARRIERS, PLATINGS ON FASTENERS AND ORGANIC COATINGS

A66-12298

MATERIALS SCIENCE

TEXTBOOK ON CHARACTERISTICS OF PRINCIPAL METALLIC AND NONMETALLIC MATERIALS USED IN AIRCRAFT STRUCTURES A65-16908

REACTOR MATERIALS AND COMPONENTS, FUEL DEVELOPMENT, RADIOISOTOPE AND RADIATION APPLICATIONS, COATED-PARTICLE FUEL MATERIALS, CORROSION STUDIES, AND GAS COOLED REACTORS N66-11852

SODIUM TECHNOLOGY AS RELATED TO NUCLEAR REACTOR TECHNOLOGY - MATERIALS SCIENCE, CORROSION, PURITY CONTROL, OPERATIONS, HEAT TRANSFER, AND THERMAL CYCLING N66-174 N66-17405

INFORMATION SERVICES RELATING TO PREVENTION OR LIMITATION OF ENVIRONMENT ASSOCIATED DEGRADATION OF MATERIAL AND EQUIPMENT NASA-CR-71680

MATRIX ALGEBRA

INERTIA, TURBULENT AND VISCOUS TERMS COMPUTED FOR SLIDER BEARING LUBRICATION, USING MATRIX ALGEBRA METHODS

ASLE PAPER 64-LC-16

MEASURING APPARATUS

MEASURING APPARATUS FOR STUDYING BALL BEARING SPINNING FRICTION NASA-TN-D-2796

EFFECT OF AGE AND WEAR ON RELIABILITY OF MEASURING

TEST METHODS AND MEASURING APPARATUS FOR RAPID APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL OILS, LUBRICATING OILS, AND ADDITIVES - SCALE MODELS AND MICROANALYSIS N66-111: N66-11112

MECHANICAL PROPERTY

HIGH ALLOY STEEL CASTINGS, DISCUSSING PHYSICAL AND MECHANICAL PROPERTIES OF CORROSION- AND HEAT-RESISTANT 8 PERCENT NICKEL AND/OR CHROMIUM

PHASE RELATIONS OF GADOLINIUM ALLOYS STUDIED FOR MECHANICAL AND CORROSION PROPERTIES BM-RI-6636 N65-26040

MECHANICAL AND PHYSICAL PROPERTIES OF OILS THICKENED BY VISCOUS POLYMER ADDITIVES FTD-TT-64-1274/162

EFFECT OF FRICTION ON DYNAMICS OF SERVO SYSTEMS WITH RANDOM SELECTION OF MECHANICAL RESISTANCE MAGNITUDE

HEAT TREATMENT CYCLE EFFECT ON MECHANICAL PROPERTIES OF CORROSION RESISTANT PRECIPITATION HARDENED STEEL AM 355 IN TERMS OF METALLOGRAPHIC STRUCTURE A66-11304

NUCERITE, CERAMIC-METAL COMPOSITE WITH HIGH MECHANICAL STRENGTH AND ABRASION RESISTANCE NOTING CRYSTAL STRUCTURE, APPLICATION, PROPERTIES, ETC. A66-11742

SUPER CHROMIUM STEEL SURVEY, INCLUDING APPLICATIONS IN GAS TURBINES AND AEROSPACE INDUSTRIES, PHYSICAL AND MECHANICAL PROPERTIES, THERMAL STABILITY, CORROSION RESISTANCE, ETC

CORROSION RESISTANCE, ELECTROCHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM-NIOBIUM SYSTEM A66 A66-20839

CORROSION RESISTANT STAINLESS STEEL WITH BETTER MECHANICAL PROPERTIES FOR TROPICAL CLIMATE

FTD-TT-65-487/1

N66-12509

MECHANICAL PROPERTIES OF STEELS IN MAGNESIUM CHLORIDE SOLUTIONS EURAEC-1397 N66-17856

CORROSION RESISTANT ZINC PAINT EFFECTS ON MECHANICAL PROPERTIES OF STEEL WELD JOINTS N66-20026

MECHANICAL AND FRICTION PROPERTIES OF PLASTIC COATINGS, AND WATERPROOFED GLASS FIBER STRENGTH DEPENDENCE ON BINDERS FTD-TT-65-319/18284

FRICTION REDUCTION AND MECHANICAL STRENGTH
DEPENDENCE ON METHOD OF APPLYING POLYAMIDE AND
POLYETHYLENE COATINGS TO MACHINE PARTS

N66-28856

MECHANICAL SYSTEM

VANISHING OF SLIDING IN MECHANICAL SYSTEMS WITH DRY FRICTION A65-27690

MECHANISM

CHEMICAL KINETIC MECHANISMS IN OXIDATION RESISTANT ADDITIVES TO LUBRICATING UILS N66-11110

REACTION MECHANISMS OF OXIDATION RESISTANT ADDITIVES IN OXIDATION PROCESS IN LUBRICATING OILS - HYDROGEN PEROXIDE FORMATION

MEMBRANE STRUCTURE
CHARACTERISTICS OF PARTIALLY CLAMPED CORRUGATED
MEMBRANE, INVESTIGATING EFFECT OF FORCES OF CLAMPING FRICTION

MERCAPTO COMPOUND

IMPROVING ANTIMEAR PROPERTIES OF LUBRICATING OILS WITH DERIVATIVES OF 2-MERCAPTOBENZTHIAZOLE FTD-TT-64-1287/1

MERCURY /METAL/

S NAP-8 MATERIALS RESEARCH - MERCURY CORROSION CAPSULE TESTS OF FERRITIC ALLOYS FOR MASS TRANSFER, STRESS CORROSION, MODE OF ATTACK, AND MECHANICAL PROPERTIES NASA-CR-62379 N65-22558

LIQUID MERCURY AND ALKALI HALIDE METALS LOOP FOR LIQUID METAL LUBRICATED ROTOR BEARINGS -SNAP

MTI-64TR72, REV.-2

CORROSION, MASS TRANSFER, AND CORROSION PRODUCT REMOVAL FOR NUCLEAR TO ELECTRIC POWER CONVERSION SYSTEM USING MERCURY AS WORKING FLUID NAA-SR-6321 N66-32126

MERCURY ALLOY

THEORY, TESTING, AND ANALYSIS OF LIQUID METAL CORROSION - MERCURY AND PLUTONIUM LIQUID ALLOYS NASA-TH-X-54722 N65-29446

MERCURY COMPOUND

CORROSION RESISTANCE OF MOLYBDENUM-CHROMIUM STEEL
IN MERCURY FORCED CONVECTION CORROSION LOOP FOR
NUCLEAR AUXILIARY POWER SYSTEM COMPONENTS
NASA-CR-54719
N66-1951

MERCURY VAPOR

FORCED CIRCULATION, HAYNES ALLOY 25, MERCURY LOOP TO STUDY CORROSION PRODUCT SEPARATION NASA-CR-241 N65-27394

METAL WEAR RESISTANCE DEPENDENCE ON HARDNESS DETERMINED BY RUBBING AGAINST ABRASIVE SURFACE A65-18629

CORROSION TEST ON BURIED METAL WITH DIRECT CURRENT INTRODUCED INTO GROUND CHE-34 N65-26345

IMPERFECTIONS IN METALS - CORROSION AND OXIDATION EUR-2363 N66-13944 METAL BONDING

NUCERITE, CERAMIC-METAL COMPOSITE WITH HIGH MECHANICAL STRENGTH AND ABRASION RESISTANCE NOTING CRYSTAL STRUCTURE, APPLICATION, PROPERTIES, ETC A66-11742

EXPLOSION CLADDING FOR BONDING SIMILAR AND DISSIMILAR METALS WITHOUT INTERMEDIATE METAL OR EXTERNALLY APPLIED HEAT A66-1231

COMPOSITE CASTING AS METALLURGICAL BONDING TECHNIQUE, NOTING APPLICATION TO WEIGHT REDUCTION AND INCREASE OF CORROSION RESISTANCE

A66-25779

METAL CORROSION

STRESS CORROSION CRACKING CAUSED BY
ELECTROCHEMICAL DISSOLUTION, ALLOYING AND HYDROGEN
EMBRITTLEMENT OF STEELS IN SOLUTIONS AND LIQUID
METALS
A65-15126

BASIC MECHANISMS OF ULTRASONIC MACHINING PROCESS
ARE MICROCHIP REMOVAL AND MATERIAL DISPLACEMENT BY
PLASTIC DEFORMATION AND PARTICLE REMOVAL BY
FRACTURE
ASME PAPER 64-PROD-4
A65-16986

LIQUID FLUORINE CORROSION OF METALS IN IMPURITY-FREE DRY SYSTEM AND RESULTANT PRODUCTS, NOTING EFFECT OF SURFACE CONTAMINANTS A65-19259

ALUMINUM ALLOY CORROSION AND FRACTURE UNDER TENSION SHOWING RELATION TO INTERGRANULAR CORROSION A65-19790

HYDROGEN PEROXIDE VAPOR DECOMPOSITION ON METAL SURFACES AND ROLE IN ATMOSPHERIC CORROSION INVESTIGATED BY PHOTOGRAPHIC AND OPTICAL POLARIZATION METHODS A65-20347

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF TITANIUM IN SULFURIC ACID AND HYDROCHLORIC ACID SOLUTIONS DURING SQUARE WAVE AC POLARIZATION

AIRCRAFT PROTECTION FROM CORROSION COVERING STRESS AND INTEGRAL FUEL TANK CORROSION AND COATING METHODS A65-21650

COMPONENT DESIGN FOR CORROSION RESISTANCE
CONSIDERING CONFIGURATION, LOCATION, PROCESSING,
FABRICATION AND ASSEMBLY
A65-21666

WAVEGUIDE INSERTION LOSS DUE TO CORROSION BY ACIDIFIED HYDROGEN SULFIDE AND SALT SPRAY TESTED FOR VARIOUS COATINGS

A65-2189

CORROSION MECHANISMS WITH EMPHASIS ON PREVENTION, DESTRUCTIVE CATASTROPHIC CORROSION AND INDUSTRIAL PROBLEMS A65-22208

SULFUR AND SEA SALT CORROSIVE ATTACK ON TURBINE BLADES AND AERO ENGINES, EMPHASIZING MARINE CONDITIONS ASME PAPER 65-GTP-7 A65-23447

PITTING CHARACTERISTICS OF EARLY PHASE CAVITATION
DAMAGE TO TEST SPECIMENS IN VENTURI
ASME PAPER 64-MA/FE-2
A65-26503

INTERACTION OF CO WITH POWDERED AND SOLID NIOBIUM, EMPHASIZING DXYCARBIDE FORMATION, CHEMICAL STRENGTH, ACTIVATION ENERGIES AND DIFFUSION COEFFICIENTS A65-28341

SOVIET TEXTBOOK ON BASIC METHODS FOR METAL CORROSION STUDIES A65-28653

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK ELECTRODES A65-29312

THROAT EROSION RATES OF CARBON CHOKES IN ROCKET
MOTOR NOZZLE PREDICTED, USING MATHEMATICAL
APPROACH COMBINED WITH EXPERIMENTAL RESULT
A65-30199

THIN FILM LUBRICANT DEVELOPED FOR GOLD-PLATED ELECTRIC CONTACTS DISCUSSING CHARACTERISTICS.

PERFORMANCE AND TESTING

A65-30815

ELECTROCHEMICAL AND METALLOGRAPHIC FEATURES
ASSOCIATED WITH CORROSION RESISTANCE OF NICKELCHROMIUM PROTECTIVE COATINGS, NOTING CATHODE
POLARIZATION
A65-32167

CORROSION RESISTANCE OF BERYLLIUM AND CORROSION PREVENTION VIA DIFFERENT COATINGS

A65-32402

CURVES AS QUANTITATIVE CRITERIA OF CORROSION FATIGUE OF METALS A65-36015

VOLTAGE AND DENSITY OF CONTACT-CORROSION CURRENT ARISING AT CONTACT SURFACE OF DIFFERENT METALS A65-36016

IMPROVED TECHNIQUE OF DETERMINING METAL CORROSION RATE BY WEIGHT LOSS R-341 N65-1807

CORROSION RATES OF MAGNESIUM AND MAGNESIUM ALLOYS
IN MAGNESIUM SALT SOLUTIONS OF CHLORIDE,
BROMIDE, AND PERCHLORATE
ECOM-2517
N65-19161

HIGH STRENGTH STEEL PROTECTION AGAINST CORROSION AND HYDROGEN EMBRITTLEMENT N65-19236

CORROSION OF ALUMINUM AND MAGNESIUM ALLOYS IN TROPICAL ENVIRONMENTS NRL-6105 N65-19

INFLUENCE OF CAVITATION INTENSITY ON STABILITY OF MATERIALS, EFFECT OF HEAT TREATMENT ON LONG TIME STRENGTH OF STEEL, AND KINETIC AND DIFFUSION REGIONS OF GAS CORROSION OF STEEL

STAINLESS STEEL CORROSION REACTIONS AND MECHANISMS IN SODIUM-POTASSIUM SERVICE IDO-14651 N65-19660

SOLDER DISSOLUTION OF METAL BEING SOLDERED N65-20203

MECHANISMS OF CORROSION PROCESSES ON ALUMINUM CORROSION WEIGHT LOSSES, OXIDE FILM THICKNESS
DETERMINATION AND ELECTROCHEMICAL MEASUREMENTS
ARL/MET-54
N65-22059

ZIRCONIUM HYDRIDE IN ZIRCALOY 2 AND ZIRCONIUM-NIOBIUM ALLDYS - STEAM AND WATER CORROSION TESTS, HYDROGEN PICKUP, MICROGRAPHY, AND HYDROGEN CONTENT EFFECT ON MECHANICAL PROPERTIES EURAEC-1161 N65-24285

CATHODE PROTECTION, METALLIC AND STRESS CORROSION
RESEARCH, AND DEEP OCEAN TECHNOLOGY
NRL-1574
N65-27111

INFLUENCE OF STRESS ON CORROSION BEHAVIOR OF REFRACTORY ALLOY IN POTASSIUM, AND CORROSION MASS TRANSFER EFFECTS IN STAINLESS STEEL-NIOBIUM ALLOY-POTASSIUM SYSTEM NASA-CR-54390 N65-27271

OXYGEN EFFECTS ON CORROSION OF NIOBIUM BY LIQUID POTASSIUM ORNL-3751 N65-28141

THEORY, TESTING, AND ANALYSIS OF LIQUID METAL CORROSION - MERCURY AND PLUTONIUM LIQUID ALLOYS NASA-TM-X-54722 N65-29446

MICROPROBE APPLICATION IN METAL ALLOY CORROSION STUDIES N65-314

DISSOLUTION OF ZINC IN ALKALI
NASA-TT-F-252

N65-32968

MOLTEN SODIUM CORROSION OF AUSTENITIC STEEL CEA-2371 N65-32983

CORROSION OF URANIUM AND URANIUM ALLOYS IN AQUEOUS AND NON-AQUEOUS MEDIA AND PROTECTIVE COATINGS JPRS-31728 N65-33652 INCREASED URANIUM AND URANIUM ALLOY CORROSION RESISTANCE IN WATER AND STEAM N65-33653

ATMOSPHERIC CORROSION MECHANISM OF URANIUM AND URANIUM ALLOYS IN RELATION TO TEMPERATURE AND HUMIDITY EFFECTS ON CORROSION RATES

N65-33654

MATERIAL PROCUREMENT AND QUALITY ASSURANCE FOR ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM NASA-CR-54477 N65-33966

HIGH TEMPERATURE GAS CORROSION OF ADVANCED TEST
REACTOR / ATR/ STRUCTURAL MATERIALS
BNML-100 N65-35021

FUEL-WATER AND OXIDIZER-WATER CORROSION IN
ALUMINUM CAPILLARIES OF FUEL AND OXIDIZER TANKS
OSR-S-11047
N65-35287

SYSTEM FOR NUCLEAR AUXILIARY POWER- 2 /SNAP-2/POWER CONVERSION SYSTEM - SELECTION OF MATERIALS WITH MINIMUM FORMATION OF CORROSION PRODUCTS TRW-ER-5643

HEAT RESISTANCE IN AIR OF FOUR INDUSTRIAL AUSTENITIC-FERRITE STEELS WITH LOW NICKEL CONTENT AT 750-1050 DEGREES C. NOTING OXIDE SCALE FORMATION A66-10988

CORROSION RATE OF BT-1 TITANIUM AND
9 KH18 N12 M2 T STAINLESS STEEL IN MANGANESEAMMONIUM SULFATE SOLUTIONS A66-10990

AIRCRAFT MATERIALS STRESS CORROSION AT HIGH TEMPERATURE DISCUSSING TEST AND RESULTS ON TITANIUM ALLOYS, PRECIPITATION HARDENING STEELS AND SUPERALLOYS A66-12299

PREVENTION OF METALLIC EDGE CORROSION OF NAVAL AIRCRAFT, EVALUATING SURFACE TREATMENTS, PRIMERS, EPOXY ENAMELS, ETC A66-12318

DIFFUSED ALUMINUM COATING FOR HIGH TEMPERATURE APPLICATION A66-12371

EFFECT OF CORROSIVE ENVIRONMENTS ON VARIOUS METALS AND ANTICORROSION TECHNIQUES TO PROTECT METAL SURFACES A66-13374

4ETALLIC CORROSION MEASUREMENT BY RADIATION 3ACKSCATTERING AND RADIATION INDUCED X-RAYS A66-13933

DEVICE FOR TAKING LONG TIME CORROSION FATIGUE CURVES ON SMALL CROSS SECTION SPECIMENS AT HIGH TEMPERATURES AND PRESSURES A66-20433

PAPERS ON CORROSION OF METALS AND ALLOYS

A66-20836

ALLOYING ELEMENTS EFFECT ON ANODIC CORROSION AND PASSIVATION OF STAINLESS STEELS

A66-20837

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF AL-BASED FE, NI, TI, CU AND SB ALLOYS AND INTERMETALLIC COMPOUNDS A66-20840

CATHODIC DEPOLARIZATION THEORY OF BACTERIAL CORROSION, USING DESULFOVIBRIO DESULFURICANS WITH BENZYL VIOLOGEN AS ELECTRON ACCEPTOR

A66-22303

CORROSION OCCURRENCE AND CONTROL, NOTING PRONE AREAS, DETECTION AND REMOVAL A66-23014

EFFECT OF CORROSIVE AND SURFACE ACTIVE MEDIA ON FATIGUE STRENGTH OF ALUMINUM ALLOYS WIDELY USED IN AIRCRAFT CONSTRUCTION A66-25883

CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC MG- ZN ALLOYS IN HALIDE SOLUTION

A66-26026

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK ELECTRODES A66-31597

OXIDATION CHARACTERISTICS OF TITANIUM ALLOYS
TI-679 AND TI-8 AL-1 MO-1 V DETERMINED WITH
WEIGHT-GAIN TECHNIQUES A66-33426

STRESS CORROSION, DELAYED FAILURES, FATIGUE CORROSION AND RELATION BETWEEN THESE PHENOMENA - COMMISSARIAT ON ATOMIC ENERGY, METALLURGICAL COLLOQUIUM, CADARACHE, RHONE, FRANCE, JUNE 466-33440

EMBRITTLEMENT OF TANTALUM BY ROOM TEMPERATURE DEFORMATION IN PRESENCE OF HYDROGEN

A66-33441

STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION AND DELAYED FAILURES IN STAINLESS STEEL USED FOR BOLTS A66-33442

CHLORIDEBENZYL QUINOLINE TO INCREASE CORROSION RESISTANCE OF IRON AND STEEL IN ACIDS FTD-TT-65-770/184 N66-10787

EFFECT OF LUBRICATING MATERIALS AND ADDITIVES ON PITTING FORMATION N66-11116

EFFECT OF CIL ADDITIVES ON CORROSIONAL WEAR OF LEAD ALLOY BEARINGS N66-11117

TESTING LUBRICATING DILS WITH ANTICORROSIVE ADDITIVES ON DIESEL ENGINES N66-11122

EFFECT OF MOTOR OIL ADDITIVES ON PITTING OF HYDRAULIC LIFTERS N66-11126

ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO PREVENT ASH DEPOSITS AND VANADIUM CORROSION N66-11130

DATA ON USE OF ANTICORROSIVE ADDITIVES IN RESIDUAL FUELS CONTAINING VANADIUM AND SULFUR
N66-11131

PROCURÉMENT AND QUALITY EVALUATION OF NIOBIUM ALLOY FOR BOILING ALKALI METAL CORROSION STUDIES ORNL-TM-1179 N66-11700

CAUSE OF CORROSION OF CADMIUM PLATED STEEL IN ELECTRONIC VAN

POTASSIUM CORROSION TEST LOOP FOR EVALUATING REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS SIMULATING SPACE ELECTRIC POMER SYSTEMS
NASA-CR-54735 N66-12126

POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR METALLIC INGOTS PREPARED AS ROTATING DISK ELECTRODES - CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS NASA-CR-68891 N66-13991

CORROSION OF SOME URANIUM-PLUTONIUM-IRON ALLOYS
AWRE-0-18/65 N66-14170

MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND TITANIUM ALLOY STRESS CORROSION, CATHODIC PROTECTION, CORROSION FATIGUE, AND ANTIFOULING PAINT FOR ALUMINUM ALLOYS NRL-MEMO-1634 N66-14232

HOT CORROSION IN MARINE GAS TURBINE ENGINES MEL-32/65 N66-15557

OXIDE AND CARBIDE CORROSION PRODUCTS IN MATRIX AND SURFACE OF STEEL PLATE BY ELECTRON DIFFRACTION M65-933

FUEL TANK MATERIAL COMPATIBILITY WITH FAST BREEDER REACTOR FUEL LA-DC-7315 N66-18:

ZIRCALOY-2 LOCALIZED CORROSION BY WEAR AND CREVICE EFFECTS
BNWL-SA-313 N66-18889

CORROSION FILM ON INCONEL AND AISI 304 STAINLESS STEEL INVESTIGATION WITH SCANNING ELECTRON MICROSCOPE AND SPINNING SOURCE MASS SPECTROGRAPH

MICROPROBE WERL-1114-1

AD-629598

N66-18899

EXTENDED EXPOSURE TO HEATED LITHIUM HYDRIDE EFFECT ON TENSILE PROPERTIES OF STAINLESS STEELS NAA-SR-MEMO-10885

SALT STRESS CORROSION OF RESIDUALLY STRESSED TITANIUM-ALUMINUM-MOLYBDENUM-VANADIUM ALLOY SHEET AFTER HIGH TEMPERATURE EXPOSURE NASA-TN-D-3299 N66-19104

GALVANIC CORROSION OF ALUMINUM ASSEMBLIES BY STAINLESS STEEL WIRE INSERTS NASA-TM-X-53404 N66 N66-19762

ABSTRACTS ON CORROSION OF CONCRETE AND STEEL, PROTECTIVE COATING MATERIALS, MATERIAL TESTING, MATER AND AIR PURIFICATION, PACKAGING, AND BIBLIOGRAPHIC INFORMATION

N66-20 N66-20801

COMPARATIVE CORROSION EXPERIMENTS OF ZIRCONIUM ALLOY FOR JACKETING MATERIAL IN WATER COOLED REACTORS N66-22187

MASS TRANSFER AND CORROSION RATES OF MATERIALS IN N66-24268 FLOWING SODIUM

TITANIUM CORROSION IN AQUEOUS SOLUTIONS

N66-24565

RUST-REMOVING CORROSION PREVENTATIVE TO ABSORB RUST FROM STORED STEEL AND IRON SURFACES AND PREVENT DETERIORATION IITR I-C6032-17 N66-24781

EFFECTIVENESS, SAFETY, AND ECONOMICS OF CHEMICAL COMPOUNDS IN DESCALING METAL AND NONMETALLIC SURFACES N66-25289 SD-22

STRUCTURAL STATE, COMPOSITION, P H OF MEDIUM, AND CHLORIDE CONCENTRATION TO DETERMINE PITTING CORROSION OF MAGNESIUM AND ITS ALLOYS CEA-R-2815 N66-26038

COMPOSITION EFFECT ON PLUTONIUM METAL CORROSION STUDIED BY SPECTROGRAPHIC ANALYSIS, METALLOGRAPHY, AND ELECTRON MICROSCOPIC **EXAMINATIONS** RFP-511 N66-27404

TEMPERATURE EFFECT ON CHROMIUM-NICKEL STAINLESS STEEL CORROSION IN PASSIVITY RANGES FTD-TT-65-1223/1626364

HOT CORROSION MECHANICS OF NICKEL AND COBALT IN HIGH TEMPERATURE SULFUR-DXYGEN ENVIRONMENT N66-28679

ACCELERATED HIGH TEMPERATURE NICKEL OXIDATION BY N66-28680 SODIUM SULFATE

HIGH TEMPERATURE CORROSION OF NICKEL AND NICKEL ALLOYS BY SODIUM SULFATE N66-28681

COBALT CORROSION IN HIGH TEMPERATURE SULFUR-OXYGEN N66-28682

HOT CORROSION BEHAVIOR OF NICKEL AND COBALT ALLOYS EXPOSED TO SULFATE INDUCED OXIDATION N66-28683

REVISED ELECTROMOTIVE SERIES INCLUDING METALS AND ALLOYS RELATED TO CORROSION N66-29157

METAL CORROSION PREVENTION METHODS FOR CENTAUR LAUNCH VEHICLE LIQUID PROPELLANT TANKS NASA-CR-72000 N66-29292

CORROSION AND OXIDATION FILM FORMATION ON ZIRCONIUM AND ZIRCALOY 2 IN AIR AND WATER FURAFC-1457 N66-30236

INTERGRANULAR CORROSION OF LEAD-ANTIMONY ALLOY BATTERY PLATE GRIDS NRL-6387 N66-31332 PREDICTING INTERGRANULAR CORROSION OF AUSTENITIC STAINLESS STEELS N66-32514

METAL CRYSTAL

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS AS RELATED TO CRYSTAL STRUCTURE AND LATTICE PARAMETERS IN VACUUM ASLE PREPRINT 65-LC-18

DIFFUSION OF ELECTROLYTIC HYDROGEN THROUGH MEMBRANES OF IRON CRYSTALS AS FUNCTION OF STRESS, TEMPERATURE AND DISSOLVED HYDROGEN CONCENTRATION A66-23071

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS AS RELATED TO CRYSTAL STRUCTURE AND LATTICE PARAMETERS IN VACUUM ASLE PREPRINT 65-LC-18 A66-30568

METAL FATIGUE

DESIGN CRITERIA FOR AVOIDANCE OF FATIGUE BREAKAGE AND EXCESSIVE WEAR BASED ON THEORIES OF FAILURE FOR DUCTILE AND BRITTLE MATERIALS

CONTACT FRICTION EFFECTS ON FATIGUE PHYSICAL LIMIT AND CYCLIC STRENGTH OF STEEL A65-14788

AL- ZN- MG ALLOYS SENSITIVITY AND RESISTANCE TO WELDING AND STRESS CORROSION CRACKING A65-16238

HARDNESS EFFECTS OF STEEL BRIDGES ON ADHESION TO COLD DRAWN MILD STEEL AS INITIAL STAGE OF FRETTING PROCESS IN INITIATION OF FATIGUE CRACKS

A65-18627

LUBRICANTS EFFECT ON STEEL AND OTHER METAL FATIGUE LIVES IN ROTATING CANTILEVER FATIGUE TESTS

AIRCRAFT CORROSION FAILURES AND SOLUTIONS DISCUSSING HYDRAULIC LINES, ANGLE OF ATTACK INDICATOR, HOT AIR DUCTING, CONTROL CABLE AND RELLOWS

STRESS CORROSION CRACKING AND CORROSION FATIGUE OF HIGH STRENGTH STEELS N65-193 N65-19235

CORROSION RESISTANCE, FATIGUE STRENGTH, AND ENGINEERING PROCESSES IN MANUFACTURING OF CLAD STAINLESS STEELS JPRS-32087

EFFECT OF CORROSIVE AND SURFACE ACTIVE MEDIA ON FATIGUE STRENGTH OF ALUMINUM ALLOYS WIDELY USED IN AIRCRAFT CONSTRUCTION A66-25883

SYNERGISTIC ACTION OF DYNAMIC STRESSES AND FATIGUE CORROSION IN METALS A66-33443

EFFECT OF STEEL COMPONENT HARDNESS DIFFERENCES ON BEARING FATIGUE AND LOAD CAPACITY NASA-TM-X-52087 N66-2708:

AQUEOUS ENVIRONMENT EFFECTS ON HIGH STRESS LOW-CYCLE FATIGUE OF 18 PERCENT NICKEL MARAGING STEELS

NRL-MEMO-1685

N66-27661

A66-31979

METAL FILM PATTERN-CONFORMING CRACKING OF OXIDE FILM ON ALUMINUM DURING HIGH TEMPERATURE OXIDATION MAY BE CAUSE OF DECREASE IN CORROSION RESISTANCE A65-34857

GOLD THIN FILMS OF 1800 ANGSTROMS TO BE USED AS LUBRICANTS WERE VAPOR-DEPOSITED ON NI, NI- CR AND NI- RE SUBSTRATES IN VACUUM

A66-15937

VAPOR DEPOSITED GOLD THIN FILMS TO OBTAIN ADHESION AND DURABILITY BETWEEN FILM AND SUBSTRATE ESSENTIAL AS LUBRICANTS IN HIGH VACUUM

METAL HALIDE

CORROSION RESISTANT CONTAINER FOR RARE EARTH-RARE

EARTH HALIDE SOLUTION ORNL-P-814

N66-23233

METAL JOINT

SELECTION, MANUFACTURE, CORROSION RESISTANCE, AND PECULIARITIES OF ALUMINUM ALLOYS USED AS STRUCTURAL BUILDING MATERIALS N66-12735

ALUMINUM POWDER, TALCUM, GRAPHITE, AND MOLYBDENUM DISULFIDE ADDITIONS TO POLYCAPROLACTUM COATINGS FOR IMPROVED ADHESION AND FRICTION PROPERTIES OF METAL JOINTS FTD-TT-65-986/18284 N66~18514

METAL-METAL BONDING

FACTORS AFFECTING PERFORMANCE AND RELIABILITY OF THIN FILM CAPACITORS NOTING CORROSION EFFECT AT POINTS OF INTERMETALLIC MOUNTINGS

A65-23538

METAL DXIDE

BOOK ON METAL OXIDATION COVERING STRUCTURAL DEFECTS, TRANSPORT PROCESS, PHASE BOUNDARIES. DIFFUSION. ETC A65-36334

IMPEDANCE MEASUREMENT OF METAL UXIDATION FOR STUDY OF CORROSION RESISTANCE IN AQUEOUS SOLUTIONS

EURAEC-1129, PT. 2

N65-32319

METAL PLATE

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR BENDING THEORY ASME PAPER 65-AV-3 A65-23464

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR BENDING THEORY

ASME PAPER 65-AV-3 A66-22470

HEAT TREATMENT EFFECT ON STRUCTURE, HARDNESS, MICROHARDNESS AND CORROSION RESISTANCE OF VII TITANIUM AND OT4 TITANIUM MANGANESE-ALUMINUM ALLOY SHEETS A66-24900

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS AD-625454 N66-18520

METAL SURFACE

BUILDUP OF MOLYBDENUM DISULFIDE FILMS ON COPPER SURFACE, EXAMINING BURNISHING PROCESS AND EFFECTS OF LOAD AND HUMIDITY CONDITIONS

A65-15680

BOOK CONCERNING MOLECULAR PHYSICS OF BOUNDARY FRICTION ON METAL SURFACES A65-16663

MICROTOPOGRAPHICAL CHANGES OF GROUND STEEL SURFACES RELATION TO CONTACT AND WEAR UNDER HIGH PRESSURE LUBRICANTS ASLE PAPER 64-LC-15 A65-22788

GOLD PLATING COATED WITH DRY THIN TEFLON LUBRICANT FILM SYSTEM FOR LONG LIFE SLIDING ELECTRIC CONTACT ON MICROWAVE DEVICE

FACTORS DETERMINING METAL CHARACTERISTICS IN SPACE VACUUM NOTING EVAPORATION, SUBLIMATION, SPUTTERING, LUBRICATION, ETC A65-26262

VOLATILE CORROSION INHIBITORS FOR FERROUS METAL SURFACES - NITRITE SALTS OF VARIOUS AMINES

COLD WELDING OF METAL CONTACTING SURFACES OF SYSTEM FOR NUCLEAR AUXILIARY POWER-19 EJECTION MECHANISMS AND MINIMIZATION WITH LUBRICANT APPLICATION MND-3169-66 N65-25522

CORROSION RESISTANCE METALS AND COATINGS FOR PROTECTING CHEMICAL EQUIPMENT N65-26208

ANDDIC PASSIVATION OF STAINLESS STEEL BY ELECTROCHEMICAL OXIDATION OF METAL SURFACE - CORROSION RESISTANCE RIA-65-1190

N65-36739

STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER BOUNDARY FRICTION CONDITIONS IN PRESENCE OF SURFACE ACTIVE LUBRICANT ADDITIVES

A66-25884

FRICTION AND WEAR BETWEEN UNLUBRICATED METAL AND NONMETAL SURFACES RM-239 N66-17654

METAL WORKING

INTERFACE FRICTION BETWEEN TOOL AND WORKPIECE DURING HOT METAL DEFORMATION IITRI-86027-2

FRICTION AT TOOL-WORK INTERFACE IN HOT METAL DEFORMATION PROCESSING IIIRI-86027-3 N65-14222

CALCIUM SOAPS OF SYNTHETIC FATTY ACID FRACTION AS METAL DRAWING LUBRICANT FTD-TT-64-1197/1

METAL FLOW, FRICTION AND LUBRICANT PERFORMANCE DURING STAMPING OF THIN TITANIUM ALLOY BLANKS

FRICTION COEFFICIENTS AND LUBRICATION FOR EXTREME PRESSURE METAL WORKING MTI-65TR59

DEFORMATION THEORY APPLICATIONS, LUBRICATION, EXTRUSION LIMITATIONS, AND THIN SHEET ROLLING PROBLEMS IN METAL WORKING MAB-206-M/3/

STATE-OF-ART ON LUBRICATION IN METAL WORKING PROCESSES AND EQUIPMENT MAB-220-M

FRICTIONAL BEHAVIOR AND LUBRICATION OF METALS IN HOT METAL DEFORMATION MTI-66TR18

EFFECTS OF WEAR AND SEIZURE IN METAL FINISHING N66-26118

METALLOGRAPHY

STRESS CORROSION CRACKING MECHANISM IN FACE-CENTERED CUBIC METALS AFDSR-65-2702 N66

STRUCTURAL STATE, COMPOSITION, P H OF MEDIUM, AND CHLORIDE CONCENTRATION TO DETERMINE PITTING CORROSION OF MAGNESIUM AND ITS ALLOYS N66-26038

METALLURGY

ALUMINUM ALLOYS WITH IMPROVED CORROSION AND ABRASION RESISTANCE BY NEW PRODUCTION AND FABRICATION TECHNIQUES A65-30467

PHYSICAL METALLURGY, CORROSION, FABRICATION, POMDER PRODUCTION, AND STRUCTURAL APPLICATIONS OF BERYLLIUM AND BERYLLIUM ALLOYS

LEAD METALLURGY - ARCHITECTURAL AND WROUGHT LEAD APPLICATIONS, CABLE SHEATHING, SOLDERS, JOINING, LEAD COATED STEEL, BATTERY APPLICATIONS, CORROSION CONTROL, AND FUNDAMENTAL RESEARCH N65-23264

CATHODE PROTECTION OF ALUMINUM ALLOY UNDER STRESS CORROSIVE CONDITIONS IN ACID CHLORIDE SOLUTION - METALLURGY AD-615789 N65-29112

STRESS CORROSION, DELAYED FAILURES, FATIGUE
CORROSION AND RELATION BETWEEN THESE PHENOMENA —
COMMISSARIAT ON ATOMIC ENERGY, METALLURGICAL
COLLOQUIUM, CADARACHE, RHONE, FRANCE, JUNE 1964

ELECTRICAL CORROSION OF METALS BY REPEATED DISCHARGES N66-26152 ORGANIC AND INORGANIC MEDIA COMPOSITION EFFECTS N66-26154 ON METAL EROSION

METHYL POLYSILOXANE

NATURE OF POLYSILOXANES RELATED TO IMPROVEMENT OF LUBRICATING EFFECTS OF HYDROCARBONS FTD-TT-64-1268/1&2

N65-28845

CHEMICAL STABILITY OF SILVER GRAPHITE, MOLYBDENUM DISULFIDE, ZINC OXIDE, BORON NITRIDE, MUSCOVITE AND PHLOGOPITE MICA SOLID LUBRICANTS

MICROANALYSIS

MICROPROBE APPLICATION IN METAL ALLOY CORROSION STUDIES

TEST METHODS AND MEASURING APPARATUS FOR RAPID APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL OILS, LUBRICATING OILS, AND ADDITIVES - SCALE
MODELS AND MICROANALYSIS N66-N66-11112

MICROGRAPHY

ZIRCONIUM HYDRIDE IN ZIRCALDY 2 AND ZIRCONIUM-NIOBIUM ALLOYS - STEAM AND WATER CORROSION TESTS, HYDROGEN PICKUP, MICROGRAPHY, AND HYDROGEN CONTENT EFFECT ON MECHANICAL PROPERTIES N65-24285

MICROORGANISM

CONTAMINATION OF JET FUEL SYSTEMS WITH MICROBIAL ENTITIES AND IMPLICATION OF MICROBIAL GROWTH IN CORROSION AND EQUIPMENT MALFUNCTION AMR1 - TR-65-30

GROWTH SUPPORT STUDIES OF SELECTED MICROORGANISMS IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND LIQUID ROCKET PROPELLANT RTD-TDR-63-4117. PT. II

TRANSMISSION ELECTRON MICROSCOPY STRUCTURAL ANALYSIS OF DISLOCATIONS IN STRESS-CORROSION CRACKING OF 7075 ALUMINUM ALLOY

A66-18761

MICROSTRUCTURE AND SUBSTRUCTURE DISLOCATION IN STRESS CORROSION CRACKING OF AUSTENITIC STAINLESS STEEL N66-18773

MICROWAVE APPARATUS

GOLD PLATING COATED WITH DRY THIN TEFLON LUBRICANT FILM SYSTEM FOR LONG LIFE SLIDING ELECTRIC CONTACT ON MICROWAVE DEVICE

A65-24115

N66-28246

MINERAL

ADSORPTION AND FRICTION OF MINERALS UNDER HIGH VACUUM AND EXTREME TEMPERATURE CONDITIONS — ENGINEERING BEHAVIOR OF PARTICULATE SYSTEM WITH CLEAN, DRY SURFACES N65-30626

RADIATION EFFECT ON MINERAL OILS USED AS DISPERSION MEDIA FOR PLASTIC LUBRICANTS FTD-TT-65-1731/164

FATIGUE LIFE AND CONTACT WEAR IN TOOL STEEL EFFECTED BY DIESTER AND MINERAL OIL LUBRICANTS N65-16825

ROLLING CONTACT LUBRICATION CHARACTERISTICS OF POLYPHENYL ETHERS AND MINERAL DILS AT REDUCED **PRESSURES** NASA-TN-D-3130

POLYPHENYL ETHER, POLYSILOXANE, SEBACATE, AND HIGH VISCOSITY MINERAL OIL AS IMPREGNATED LUBRICANTS IN BALL-BEARING RETAINERS AT .000010 TORR NASA-TN-D-3259

EFFECT OF HYDROCARBON ANTIOXIDANTS ON SPLINE WEAR WHEN OPERATING SUBMERGED IN MINERAL OIL N66-26576 RS-485

MIXING LENGTH FLOW THEORY

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS

ASLE PREPRINT 65AM 3A1

COHERENT THEORY OF TURBULENT LUBRICATION BASED ON MIXING-LENGTH HYPOTHESIS

PRANDTL MIXING-LENGTH THEORY USED TO PREDICT PERFORMANCE OF JOURNAL BEARINGS OPERATING IN TURBULENT REGIME ASME PAPER 65-LUB-17 A66-14249

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS

ASLE PREPRINT 65AM 3A1

A66-18289

MOLECULAR PHYSICS
BOOK CONCERNING MOLECULAR PHYSICS OF BOUNDARY
FRICTION ON METAL SURFACES
A65-465-16663

MOLTEN-SALT ELECTROLYTE

MOLTEN SODIUM CORROSION OF AUSTENITIC STEEL N65-32983 CEA-2371

DIFFUSION OF CARBON INTO TUNGSTEN AND MOLYBDENUM AT LOW CARBON CONCENTRATIONS AND HIGH TEMPERATURE A65-29870

CHROMIUM STEEL STRENGTH AND CORROSION RESISTANCE IMPROVEMENT BY MOLYBDENUM AND TUNGSTEN ADDITION A66-22747

STRESS CORROSION CRACKING OF VANADIUM, MOLYBDENUM, AND TITANIUM-VANADIUM ALLOY IN HYDROCHLORIC ACID AND SULFURIC ACID SOLUTIONS BM-RI-6680 N66-10098

CORROSION PROPERTIES OF MOLYBOENUM, TUNGSTEN, VANADIUM, AND SOME VANADIUM ALLCYS BM-RI-6715 N66-

MOLYBDENUM ALLOY

MEAR AND FRICTION BEHAVIOR OF MOLYBDENUM-TUNGSTEN-CHROMIUM ALLOYS IN HIGH TEMPERATURE SODIUM **ENVIRONMENTS**

ASLE PAPER 64-LC-25

CORROSION RESISTANCE OF MOLYBDENUM-CHROMIUM STEEL IN MERCURY FORCED CONVECTION CORROSION LOOP FOR NUCLEAR AUXILIARY POWER SYSTEM COMPONENTS NASA-CR-54719

MOLYBDENUM COMPOUND

PURITY AND GRAIN SIZE OF VARIOUS NATURAL AND SYNTHETIC MOLYBDENUM DISULFIDE INFLUENCING FRICTION AND WEAR OF METAL SURFACES WHEN USED AS A65-30156 LUBRICANT

SOLID MOLYBOENUM DISULFIDE LUBRICANT APPLIED TO CUTTING PORTION OF TOOLS AND FRICTIONAL PARTS OF MACHINES N65-22441 FTD-TT-64-1148/1

MOLYBDENUM DISULFIDE AS ANTIFRICTION COATING -LUBRICANT FTD-TT-64-1242/1

SPONTANEOUS TRANSITION OF SLIDING FRICTION TO ROLLING FRICTION WITH REFRACTORY VANADIUM AND MOLYBDENUM CARBIDES AT HIGH TEMPERATURES NASA-TT-F-9499 N65-29738

EFFECTIVENESS OF ORGANO-MOLYBDENUM AND ORGANO-SULFUR COMPOUNDS AS ANTIWEAR ADDITIVES TO LUBRICATING DILS N66-1

MOLYBDENUM SULFIDE
BUILDUP OF MOLYBDENUM DISULFIDE FILMS ON COPPER SURFACE, EXAMINING BURNISHING PROCESS AND EFFECTS OF LOAD AND HUMIDITY CONDITIONS

A65-15680

PROPERTIES, CHARACTERISTICS AND PERFORMANCE OF

LUBRICANTS AND SELF-LUBRICATING MATERIALS USED IN SPACECRAFT SYSTEMS INCLUDING OILS, GREASES, PLASTICS, CERMETS, MOLYBDENUM SULFIDE, ETC

A55-22744

LUBRICATION BY CONTINUOUS TRANSFER OF SOLID FILMS, EXAMINING LOAD CARRYING CAPACITY OF GRAPHITE AND MOLYBDENUM DISULFIDE ASLE PAPER 64-LC-19

LIFE EXPECTANCY OF MOLYBDENUM DISULFIDE LUBRICANT FILM VARIES WITH PRESENCE OF DXYGEN AND ADDITION OF GRAPHITE ASLE PAPER 64-LC-30

LOAD EFFECTS ON KINETIC FRICTION COEFFICIENT OF MOLYBDENUM DISULFIDE POWDERS ASLE PAPER 64-LC-21 A65-2279

MOLYBDENUM SULFIDE AND TEFLON AS SOLID FILM LUBRICATING MATERIALS FOR SPACECRAFT APPLICATIONS CONSIDERING LOW FRICTION COEFFICIENT, WEAR RATE, ETC A65-23318

MOLYBDENUM DISULPHINE-GRAPHITE ALLCY AS SOLID LUBRICANT DEMONSTRATING VERY LOW COEFFICIENT OF FRICTION A65-36165

FOUR-BALL WEAR TESTER TO EVALUATE SOLID LUBRICANT DISPERSIONS INCLUDING MOLYBDENUM DISULFIDE

A66-27774

BALL BEARING LIFE OPERATING IN VACUUM WITH MOLYBDENUM DISULFIDE AND DILS AS LUBRICANT ASLE PAPER 66AM 7A3 A66-30416

CHEMICAL STABILITY OF SILVER GRAPHITE, MOLYBDENUM DISULFIDE, ZINC OXIDE, BORON NITRIDE, MUSCOVITE AND PHLOGOPITE MICA SOLID LUBRICANTS

A66-31675

MOLYBDENUM DISULFIDE SOLID LUBRICANT PROPERTIES - COMPRESSION, TENSION, TORSION, COMESION, ADHESION, AND SLIDING FRICTION MEASUREMENTS RS-460

RS-460 N66-14469

BALL BEARING LIFE TESTS IN VACUUM USING MOLYBDENUM SULFIDE SOLID FILMS WITH HIGH VACUUM OILS AS

NASA-CR-71695 N66-24
MOLYBDENUM DISULFIDE-BASE SOLID LUBRICANTS WITH
LOW FRICTION COEFFICIENTS BETWEEN COUPLED

ELEMENTS ATD-66-52

LUBRICANTS

N66-31864

MOMENTUM ENERGY

ELECTRICALLY CONDUCTING LUBRICANT, USING MOMENTUM
INTEGRAL METHOD TO INVESTIGATE EFFECT OF MAGNETIC
FIELD ON LOAD CAPACITY OF FULL JOURNAL BEARING
A65-32784

MOTION EQUATION

TRACK CURVE MADE BY PIVOT CENTER POINT OF
DYNAMICALLY LOADED CYLINDRICAL SLIDING BEARING OF
ARBITRARY CROSS SECTION
A65-21245

GYROSCOPE IN GIMBAL SUSPENSION - DIFFERENTIAL EQUATIONS OF MOTION, AXIS STABILITY, AND EFFECT OF FRICTION AT GIMBAL-RING AXES FTD-TT-65-416/1&2 N66-12595

MOTION STABILITY

STABILITY OF MOTION OF GYROSCOPE ON HORIZONTAL PLANE UNDER DRY SLIDING FRICTION ACTIVITY

N65-28052

N-TYPE SEMICONDUCTOR

ANDDIC DISSOLUTION OF N-TYPE GE STUDIED,

CONSTRUCTING POTENTIAL VS CURRENT DIAGRAM IN BROAD

CURRENT DENSITY RANGE

A65-30552

Ν

NAVIGATION INSTRUMENT
MOTION OF INTEGRATING GYROSCOPE WITH DRY FRICTION
N66-26104

NEUTRAL IZATION

CALCULATING NECESSARY CONCENTRATION OF NEUTRALIZING ADDITIVES IN MOTOR DILS WHEN USING FUELS WITH LARGE SULFUR CONTENTS

N66-11119

NEWTONIAN FLUID

DENSITY AND VISCOSITY CHANGES OF LUBRICANTS IN
CONTACT DUE TO PRESSURE CHANGES IN CONCENTRATED—
CONTACT LUBRICATION
ASME PAPER 65-LUB-4
A66-14240

NICKE

NICKEL CORROSION TESTS FOR FLUORIDE VOLATILITY
PROGRAM - SMALL SCALE LABORATORY TESTS IN TUBE
FURNACES AND IN-PLANT EXPOSURE TESTS
ANL-6979
N65-24709

VACUUM DEPOSITION OF GOLD THIN FILMS ON NICKEL, NICKEL-CHROMIUM, AND NICKEL-RHENIUM SUBSTRATES FOR USE AS LUBRICANTS NASA-TM-X-52125 N65-36775

INFLUENCE OF NICKEL SULFATE ADDITIONS ON CORROSION PROPERTIES OF TITANIUM ALLOYS IN SULFURIC ACID
N66-10295

AQUEOUS ENVIRONMENT EFFECTS ON HIGH STRESS LOW-CYCLE FATIGUE OF 18 PERCENT NICKEL MARAGING STEELS NRL-MEMO-1685

ACCELERATED HIGH TEMPERATURE NICKEL OXIDATION BY SODIUM SULFATE N66-28680

NICKEL ALLOY

EFFECTS OF SUBSTITUTING COBALT FOR NICKEL ON ACID CORROSION RESISTANCE OF STAINLESS STEEL BM-RI-6591

HIGH TEMPERATURE TESTING FOR MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF NICKEL BASE AND CHROMIUM-NICKEL STEEL ALLOYS IN LIQUID SODIUM FTD-TT-64-704/182 N65-21108

IMMERSION AND IMPINGEMENT ELECTROPOLISHING METHODS FOR INCREASING CORROSION RESISTANCE OF STAINLESS STEELS AND NICKEL ALLOYS USED IN PROPELLANT DUCTS

NASA-CR-57864

CORROSION RESISTANCE OF CHROME-NICKEL STEEL AND NICKEL BASE ALLOYS IN LIQUID SODIUM FTD-TT-64-1210/1 N65-22886

COMPATIBILITY OF NICKEL, IRON, AND COBALT BASE HIGH TEMPERATURE ALLOYS WITH BOILING POTASSIUM INVESTIGATION IN NATURAL CIRCULATION CORROSION TESTING LOOPS
ORNL-3790
N65-25517

STRESS CORROSION CRACKING EXPERIMENTS WITH IRON-NICKEL-CHROMIUM ALLOYS COO-1319-24 N65-34319

GRAPHITE CONTENT EFFECT ON ANTIFRICTION PROPERTIES
OF GRAPHITIZED NICKEL-BASED COPPER AND IRON
ALLOYS
A66-10745

CORROSION RESISTANCE AND ANDDIC BEHAVIOR OF KH18 N9 STEELS WITH VARIOUS NICKEL-MANGANESE-CARBON-TITANIUM CONTENTS A66-10987

STRESS CORROSION CRACKING IN CHROMIUM-NICKEL-IRON ALLOYS WITH FOURTH ELEMENT ADDED
COO-1319-27
N66-17533

STRESS CORROSION CRACKING MECHANISM IN IRON-NICKEL-CHROMIUM ALLOY SYSTEM COO-1319-32 N66-25978

TEMPERATURE EFFECT ON CHROMIUM-NICKEL STAINLESS
STEEL CORROSION IN PASSIVITY RANGES
FTD-TT-65-1223/1828384 N66-27891

RADIOACTIVE TRACERS TO DETERMINE WEAR RESISTANCE OF CHROMIUM-NICKEL-IRON ALLOY GRINDING BALLS USED IN FABRICATING CEMENT CNEA-187 N66-28244

SUBJECT INDEX

MICKEL PLATING

HOT CORROSION MECHANICS OF NICKEL AND COBALT IN HIGH TEMPERATURE SULFUR-DXYGEN ENVIRONMENT AD-629598

HIGH TEMPERATURE CORROSION OF NICKEL AND NICKEL N66-28681 ALLOYS BY SODIUM SULFATE

HOT CORROSION BEHAVIOR OF NICKEL AND COBALT ALLOYS EXPOSED TO SULFATE INDUCED OXIDATION

N66-28683

STRESS CORROSION CRACKING MICROTOPOLOGY STUDIES ON THIN FILMS OF IRON-NICKEL-CHROMIUM BASE ALLOYS EXPOSED TO BOILING MAGNESIUM CHLORIDE N66-31092 COO-1319-36

ELECTROCHEMICAL AND METALLOGRAPHIC FEATURES
ASSOCIATED WITH CORROSION RESISTANCE OF NICKELCHROMIUM PROTECTIVE COATINGS, NOTING CATHODE A65-32167

NIOBIUM

OBIUM
INTERACTION OF CO WITH POWDERED AND SOLID
NIOBIUM, EMPHASIZING OXYCARBIDE FORMATION,
CHEMICAL STRENGTH, ACTIVATION ENERGIES AND
DIFFUSION COEFFICIENTS
A A65-28341

DXYGEN EFFECTS ON CORROSION OF NIOBIUM BY LIQUID POTASSIUM ORNL-3751

CORROSION RESISTANCE OF NIOBIUM AND TANTALUM BASE ALLOYS TO REFLUXING POTASSIUM NASA-TM-X-52136 N65-34252

CORROSION RESISTANCE OF NIOBIUM AND TANTALUM TUBING ALLOYS TO REFLUXING POTASSIUM N66-25004 NASA-TN-D-3429

NIOBIUM ALLOY
NIOBIUM BASE ALLOY FOR USE AS CLADDING OR
STRUCTURAL MATERIAL RESISTANT TO CORROSION BY SUPERHEATED STEAM BM T- 1700

ZIRCONIUM HYDRIDE IN ZIRCALOY 2 AND ZIRCONIUM-NIOBIUM ALLOYS - STEAM AND WATER CORROSION TESTS, HYDROGEN PICKUP, MICROGRAPHY, AND HYDROGEN CONTENT EFFECT ON MECHANICAL PROPERTIES N65-24285

INFLUENCE OF STRESS ON CORROSION BEHAVIOR OF REFRACTORY ALLOY IN POTASSIUM, AND CORROSION MASS TRANSFER EFFECTS IN STAINLESS STEEL-NIOBIUM ALLOY-POTASSIUM SYSTEM NASA-CR-54390

CORROSION RESISTANCE AND ELECTROCHEMICAL PROPERTIES OF ALLOYS OF NIOBIUM-TITANIUM SYSTEM A66-20838

CORROSION RESISTANCE, ELECTROCHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM-A66-20839 NIOBIUM SYSTEM

PROCUREMENT AND QUALITY EVALUATION OF NIOBIUM ALLOY FOR BOILING ALKALI METAL CORROSION STUDIES ORNL-TM-1179

USE OF INTERNAL FRICTION METHODS TO DETERMINE THE PHYSICAL SITUATION OF OXYGEN IN NIOBIUM-ZIRCONIUM ALLOYS AND ITS EFFECTS ON CORROSION N66-13857

STRESS CORROSION REFLUX CAPSULE TESTS OF NIOBIUM ALLOY IN POTASSIUM NASA-CR-54844 N66-14754

NITRIC ACID FUEL CELL PERFORMANCE USING NITRIC ACID-OXYGEN REDOX CATHODES IN SULFURIC ACID AND CARBON OR NOBLE METAL ANODES A65-22363

EFFECT OF SODIUM NITRITE ON CORROSION OF TITANIUM BY HYDROCHLORIC AND SULFURIC ACID

NITROAMINE

VOLATILE CORROSION INHIBITORS FOR FERROUS METAL SURFACES - NITRITE SALTS OF VARIOUS AMINES

PHASE, THERMODYNAMIC, OXIDATION, AND CORROSION STUDIES OF URANIUM-NITROGEN SYSTEM

NITROGEN CONTENT OF AUSTENITIC STAINLESS STEEL IN STRESS CORROSION EURAEC-1216

NITROGEN CONTENT EFFECT ON STRESS CORROSION IN AUSTENITIC STAINLESS STEELS EURAEC-1424

RELATIONSHIP OF NITROGEN CONTENT OF AUSTENITIC STAINLESS STEELS TO STRESS CORROSION EURAEC-1579

NITROGEN COMPOUND
COMPATIBILITY TEST OF NITROGEN TETROXIDE AND
TITANIUM ALLOY, STUDYING CORROSIVE ATTACK AND IMPACT SENSITIVITY

CORROSION RESISTANCE OF CONSOLIDATED ZIRCALOY 2 POWDER CONTAINING OXYGEN AND NITROGEN N65-36540 KAPL-3060

CHLORIDEBENZYL QUINOLINE TO INCREASE CORROSION RESISTANCE OF IRON AND STEEL IN ACIDS N66-10787 FTD-11-65-770/164

NON-NEWTONIAN FLUID
VISCOELASTIC NON- NEWTONIAN LUBRICANT FLOW
EQUATIONS WITH SQUEEZE FILM SOLUTIONS A65-22795 ASLE PAPER 64-LC-10

NON- NEWTONIAN LUBRICANT FLOW IN SLIDER BEARING, USING CONSTITUTIVE EQUATION CONTAINING STRESS

NONL INEAR ITIES ASLE PAPER 64-LC-17

NONFLAMMABLE MATERIAL

NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS

NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS -TETRAMERIC ARYL-1,1-DI-H-POLYFLUOROALKYL PHOSPHONITRILATES N65-15846 AD-608144

NONLINEAR EQUATION

NONLINEAR SOLUTION FOR FLOW INTERACTION BETWEEN SELF-ACTING FOIL BEARING LUBRICANT AND EXTERNAL PRESSURE

NONMETAL

FRICTION AND WEAR BETWEEN UNLUBRICATED METAL AND NONMETAL SURFACES PM-239

NONUNIFORM MAGNETIC FIELD

M HD PARALLEL PLATE SLIDER BEARING UNDER
NONUNIFORM MAGNETIC FIELD
ASME PAPER 64-WA/LUB-2 A65-33851

NOZZIE WALL
THROAT EROSION RATES OF CARBON CHOKES IN ROCKET
MOTOR NOZZLE PREDICTED, USING MATHEMATICAL
APPROACH COMBINED WITH EXPERIMENTAL RESULT
A65-30 ALAA PAPER 65-351

NUCLEAR MAGNETIC RESONANCE
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPIC ANALYSIS
UF MIXED PENTAERYTHRITOL, DIPENTAERYTHRITOL, AND TRIMETHYLOLPROPANE ESTERS

NUCLEAR POWER CONVERSION
SYSTEM FOR NUCLEAR AUXILIARY POWER- 2 /SNAP-2
POWER CONVERSION SYSTEM - SELECTION OF MATERIALS
WITH MINIMUM FORMATION OF CORROSION PRODUCTS
N65-365

CORROSION, MASS TRANSFER, AND CORROSION PRODUCT

REMOVAL FOR NUCLEAR TO ELECTRIC POWER CONVERSION SYSTEM USING MERCURY AS WORKING FLUTO VAA-SR-6321

N66-32126

NUCLEAR RADIATION

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON MEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4 A66-13398

GRAPHITE LUBRICANT PHYSICAL AND CHEMICAL COMBINATIONS WITH OTHER MATERIALS FOR IMPROVED HIGH TEMPERATURE FRICTION AND WEAR. DISCUSSING NUCLEAR IRRADIATION FOR GRAPHITE LATTICE MODIFICATION A66-31933

NUCLEAR REACTOR MATERIAL
HIGH TEMPERATURE GAS CORROSION OF ADVANCED TEST
REACTOR / ATR/ STRUCTURAL MATERIALS N65-35021

COMPARATIVE CORROSION EXPERIMENTS OF ZIRCONIUM ALLOY FOR JACKETING MATERIAL IN WATER COOLED EURAEC-1115 N66-22187

CORROSION RESISTANCE OF HIGH TEMPERATURE ALLOYS FOR NUCLEAR APPLICATIONS

ULTRAHIGH-VACUUM FRICTION STUDIES OF SNAP REACTOR MATERIALS

NAA-SR-9644

NUCLEATION

DISLOCATION INFLUENCE ON NUCLEATION AND PROPAGATION OF STRESS CORROSION CRACKS

A65-31684

N66-27101

N66-27134

NUMERICAL ANALYSIS

INTERACTION BETWEEN SELF-ACTING AND EXTERNALLY PRESSURIZED LUBRICANT FLOW IN FOIL BEARING

NUMERICAL SOLUTION TO STRESSES IN LUBRICATED ROLLER BEARINGS WITH ARBITRARY DISTRIBUTED NORMAL AND TANGENTIAL LOADS MTI-65TR61 1866-19381

NYLON

FRICTION AND LUBRICATION OF POLYMERS

A66-26304

ALUMINUM POWDER, TALCUM, GRAPHITE, AND MOLYBDENUM DISULFIDE ADDITIONS TO POLYCAPROLACTUM COATINGS FOR IMPROVED ADMESION AND FRICTION PROPERTIES OF METAL JOINTS FTD-TT-65-986/16264 N66-18514

0

OCEANOGRAPHY

CATHODE PROTECTION, METALLIC AND STRESS CORROSION RESEARCH, AND DEEP OCEAN TECHNOLOGY N65-27111

DIL

SPECTROMETRIC OIL ANALYSIS METHOD FOR MONITORING TURBOJET AIRCRAFT ENGINES AND OIL LUBRICATED AIRCRAFT MECHANISMS UA-20-64 N65-22928

STATISTICAL STUDY OF SPECTROMETRIC DIL ANALYSIS METHOD FOR AIRCRAFT ENGINE MONITORING SYSTEM N65-22936

SYNTHETIC DILS FOR TURBINE ENGINES AND AIRCRAFT FTD-TT-64-117/162

FRICTION REDUCTION IN PISTON TYPE HYDRAULIC SERVO VALVES - FINE FILTRATION OF DIL AND PISTON SEALING LAND TAPERING

RAE-TN-GW-312

N65-29643

EFFECTS OF SURFACE LUBRICATION BY HEAVY LAYER OF P-38 SYNTHETIC OIL FOR SLIP-RING ASSEMBLIES N65~30545

COMPARISON OF VARIOUS POLYORGANOSILOXANE LIQUIDS FOR USE AS BASES IN HIGH TEMPERATURE CONSISTENT OILS FTD-TT-65-322/16264

SURFACE CHEMICAL METHODS OF DISPLACING WATER OR UIL AND SALVAGING FLOODED EQUIPMENT NRL-6291 N65-33771

LIGHT OIL ANALYSIS FROM FLUIDIZED COAL CARBONIZATION USING GAS CHROMATOGRAPHY BM-R [-6709 N66-16581

ICING OF DIL AND GREASE LUBRICANTS USED IN AIRCRAFT ORDNANCE

NRL-6329 N66-16738

OILS, LUBRICANTS, AND COOLANTS FOR DIESEL ENGINE, AIRCRAFT ENGINE, AND ROCKET ENGINE FTD-MT-64-382 N66-19816

OIL UXIDATION EFFECT ON RUNNING-IN PROCESS OF RING-SOCKET PAIR IN INTERNAL COMBUSTION ENGINE FFD-TT-65-1039/16264 N66-23581

EFFICIENCY EVALUATION OF CARBON REMOVERS FOR USE IN CLOGGED DIL PUMPS C66-155 N66-28339

SYNTHESIS OF ALKYL, CYCLOALKYL, AND DICYCLOALKYL SULFIDES TO PROVIDE REFERENCE COMPOUNDS NECESSARY IN SEARCH FOR SIMILAR CLASSES OF SULFUR COMPOUNDS IN CRUDE OIL BM-RI-6796 N66-28345

OIL ADDITIVE

CHEMICAL ADSORPTION AND P-32 IMPURITIES
ASSOCIATED WITH TRICRESYL PHOSPHATE AS ANTIWEAR
ADDITIVE FOR STUDY OF BEARING SURFACE ASLE PAPER 64-LC-2 A65-18052

DETERGENT ACTION OF OIL ADDITIVES, INVESTIGATING SORPTION OF CHARGED PARTICLES ON CARBONACEOUS PRODUCTS OF FUEL COMBUSTION AND OIL OXIDATION ASLE PAPER 64-LC-9 A65-180

VOLATILE CORROSION INHIBITORS FOR IMPROVING PRESERVATIVE CHARACTERISTICS OF STANDARD OPERATING DILS RIA-64-3577 N65-21177

ANTIOXIDATION, ANTICORROSION, AND DETERGENT ADDITIVES FOR LUBRICATING OILS OBTAINED BY TREATING PRODUCTS OF OXIDATION OF PARAFFIN WITH PHOSPHORUS PENTASULFIDE FTD-TT-64-1087/1 N65-22440

HIGH PERFORMANCE ROCKET AND RAMJET COMBUSTORS, INTENSIFICATION OF COMBUSTION PROCESSES, AND DEVELOPMENT OF FUEL ADDITIVES N65-2 N65-23434

ADMIXTURE SYNTHESIS AND APPLICATION TO LUBRICATING OILS FOR QUALITY IMPROVEMENT FTD-TT-64-860/162

MECHANICAL AND PHYSICAL PROPERTIES OF OILS THICKENED BY VISCOUS POLYMER ADDITIVES FID-TT-64-1274/182 N65-28191

SYNTHESIS, PRODUCTION, AND EFFECTIVENESS OF ANTIOXIDANT AND MULTIFUNCTIONAL ADDITIVES TO NATURAL AND SYNTHETIC FUEL OILS - COLLECTION OF ARTICLES FTD-MT-64-213

MULTIFUNCTIONAL AND ANTIOXIDANT ADDITIVES SYNTHESIZED FROM DIESTERDITHIOPHOSPHORIC ACID -CHARACTERISTICS OF ALKYLPHENOLS AND DISULFIDES OBTAINED AS INTERMEDIATE PRODUCTS

N66-11081

SYNTHESIS OF SULFUROUS ANTIWEAR OIL ADDITIVES ON ETHYLENE SULFIDE AND FATTY ACID BASES

N66-11083

ORGAND-PHOSPHORUS AND ORGANO-CHLORINE COMPOUNDS FOR USE AS OIL ADDITIVES TO REDUCE WEAR DUE TO

ORGANO-PHOSPHORUS ANTIOXIDANT LUBRICATING OIL ADDITIVES OBTAINED FROM REACTION OF PHOSPHORUS PENTASULFIDES AND TERPENES IN PRESENCE OF SULFURIC ACID

SYNTHESIS OF THREE ANTIOXIDANT ADDITIVES OF SHIELDED PHENOLS N66-11088

ELECTROKINETIC PROCESSES AND MECHANISM OF DISPERSION ACTION IN MOTOR OIL ADDITIVES DETERMINED BY RADIOACTIVE TRACERS

N66-11113

DETERMINING ANTIOXIDATION EFFECTIVENESS OF MOTOR N66-11114 OIL ADDITIVES

NEW METHOD OF EVALUATING EFFECTIVENESS OF ANTIABRASIVE PROPERTIES OF FUEL AND OIL N66-11115 ADDITIVES

EFFECT OF LUBRICATING MATERIALS AND ADDITIVES ON N66-11116 PITTING FORMATION

EFFECT OF OIL ADDITIVES ON CORROSIONAL WEAR OF N66-11117 LEAD ALLOY BEARINGS

DETERMINATION OF WORKING PROPERTIES OF INHIBITED INSULATING TRANSFORMER CILS N66-111 N66-11118

CALCULATING NECESSARY CONCENTRATION OF NEUTRALIZING ADDITIVES IN MOTOR DILS WHEN USING FUELS WITH LARGE SULFUR CONTENTS

N66-11119

TESTING MOTOR OILS FROM SULFUROUS CRUDES WITH N66-11121 DIFFERENT ADDITIVES

TESTING LUBRICATING DILS WITH ANTICORRUSIVE N66-11122 ADDITIVES ON DIESEL ENGINES

TESTING OIL ADDITIVES ON DIESEL LOCOMOTIVE WHILE OPERATING ON SULFUR BEARING FUEL

N66-11123

DETERGENT AND ANTIHEAR ADDITIVES FOR IMPROVING OPERATIONAL PROPERTIES OF DIESEL FUELS AND N66-11124 LUBRICATING DILS

USE OF LUBRICATING OIL ADDITIVES FROM SULFUR BEARING CRUDE OILS IN DIESEL LOCOMOTIVE ENGINES N66-11125

EFFECT OF MOTOR OIL ADDITIVES ON PITTING OF N66-11126 HYDRAULIC LIFTERS

TESTING AUTOMOBILE TRANSMISSION DIL WITH DIFFERENT ADDITIVES FOR ANTIWEAR, ANTIABRASSIVE, ANTICORROSIVE, STABILITY, AND FOAM PROPERTIES N66-11127

EFFECTIVENESS OF ANTIWEAR ADDITIVE DURING PROLONGED OPERATION OF HIGH SPEED AND FORCED SHIP DIESEL ENGINES ON SULFUR BEARING FUELS AND N66-11128

EFFECT OF VISCOSITY ON ANTIWEAR PROPERTIES OF OIL N66-11129

OIL ADDITIVE TO SUPPRESS VANADIUM FUEL CORROSION - TETRAETHOXYSILANE FTD-TT-65-505/164

OIL ADDITIVE ACTION ON WEAR RESISTANCE AND ANTIFRICTION PROPERTIES OF POLYSILOXANE N66-13717

THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS OF ANTIOXIDANT ADDITIVES IN LUBRICATING OILS -N66-13718

SILICONE OIL STABILITY AND OXIDATION RESISTANCE ENHANCED BY CYCLOPENTADIENYL TRICARBONYL MANGANESE

FTD-TT-65-520/184

N66-13754

TECHNIQUE FOR EVALUATING THERMAL STABILITY OF ANTIWEAR ADDITIVES IN LUBRICATING OILS NA6-14567 FTD-TT-65-867/164

FRICTION MACHINE USED FOR EVALUATING EFFECTIVENESS OF ACTION OF ANTI-SCORING ADMIXTURES TO DILS AND **FUELS**

FTD-TT-65-1491/16264

POLYMER ADDITIVE EFFECTS ON OIL VISCOSITY AND ANTIOXIDANT ADDITIVE SYNTHESIS N66-30272

EFFECTS OF HIGH-POLYMER ADDITIVES AND CHEMICAL COMPOSITION OF OILS ON PETROLEUM VISCOSITY

BISPHENOL SYNTHESIS FOR ANTIOXIDANT ADDITIVE TO N66-30274 UILS AND GASOLINES

EFFECT OF FINELY DIVIDED MATERIALS ON POLYDIMETHYL SILICONE OIL - FILLER REINFORCEMENT IN SILICONE LIQUID POLYMERS RAE-TR-66061

OLEFIN

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM OILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE APPLICATION A66-12259 ASLE PREPRINT 65-LC-1

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM DILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE APPLICATION A66-24986 ASLE PREPRINT 65-LC-1

ORDNANCE

ICING OF DIL AND GREASE LUBRICANTS USED IN AIRCRAFT DRONANCE N66-16738

FACTORS AFFECTING ICING RESISTANCE OF LUBRICANTS N66-27009 FOR AIRCRAFT ORDNANCE

ORGANIC COMPOUND

LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR BELOW AND ABOVE FILM MELTING POINT 465-18054 ASLE PAPER 64-LC-6

SYNTHESIS OF ORGANIC COMPOUNDS AS ADDITIVES TO LUBRICATING OILS N65-19037 FTD-TT-64-880/1

COMPARISON OF VARIOUS POLYORGANOSILOXANE LIQUIDS FOR USE AS BASES IN HIGH TEMPERATURE CONSISTENT OILS N65-31637 FTD-TT-65-322/18284

DIFFERENTIAL THERMAL ANALYSIS FOR STUDY OF THERMAL DECOMPOSITION OF ORGANIC LUBRICANT SYSTEM

ORGANIC FLUORINE COMPOUND

HIGH HEAT CAPABILITY AND FRICTIONAL PROPERTIES MAKE TEFLON-LUBRICATED PHENOLIC RESIN COMPOUNDS A65-25642 DESIRABLE FOR BEARINGS

ORGANIC LIQUID

ORGANIC SILOXANE POLYMER LIQUIDS AS COMPONENTS OF HIGH TEMPERATURE LUBRICATING OILS N65-35941 FTD-TT-65-322/1&2&4

ORGANIC PHOSPHORUS COMPOUND

ORGANO-PHOSPHORUS AND ORGANO-CHLORINE COMPOUNDS FOR USE AS OIL ADDITIVES TO REDUCE WEAR DUE TO N66-11084 FRICTION

ORGAND-PHOSPHORUS ANTIOXIDANT LUBRICATING OIL ADDITIVES OBTAINED FROM REACTION OF PHOSPHORUS PENTASULFIDES AND TERPENES IN PRESENCE OF SULFURIC ACID

THERMAL DECOMPOSITION OF ORGANIC PHOSPHORUS COMPOUND ADDITIVES FOR REDUCTION OF FRICTION

SUBJECT INDEX OXYGEN

COFFEIGIENT

N66-11104

RADIOACTIVE TRACER INVESTIGATION OF REACTION MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH COPPER FILMS IN HYDROCARBON LUBRICATING OIL MEDIUM - FRICTION REDUCING ADDITIVES

N66-11106

EFFECTS OF ORGANIC ADDITIVES CONTAINING SULFUR, CHLORINE, AND PHOSPHGROUS ON POLYSILOXANE LUBRICANTS FSTC-381-T65-553 N66-20010

ORGANIC SILICON COMPOUND

BEST LUBRICANT CHARACTERISTICS OF ESTERS, SILICONES AND FLUORINATED HYDROCARBONS COMBINED IN NEW SYNTHETIC LUBRICANT A65-33627

PLASTIC ORIFICE FOR FLOW CONTROL DEVICE IN GAS LUBRICATED BEARINGS - COMPUTER PROGRAMMING NASA-CR-64587 N65-31884

OSCILLATION FREQUENCY

GEAR TOOTH PITTING DUE TO LUBRICANT FILM CAVITATION, NOTING EFFECTS OF VIBRATION AND INCREASED VISCOSITY OF FLUID A6 A65-17527

OXIDATION

HYDROGEN PEROXIDE VAPOR DECOMPOSITION ON METAL SURFACES AND ROLE IN ATMOSPHERIC CORROSION INVESTIGATED BY PHOTOGRAPHIC AND OPTICAL POLARIZATION METHODS A65-20347

LIFE EXPECTANCY OF MOLYBDENUM DISULFIDE LUBRICANT FILM VARIES WITH PRESENCE OF OXYGEN AND ADDITION OF GRAPHITE ASLE PAPER 64-LC-30 A65-22793

OXIDATIVE AND DEPOSIT FORMING PROPERTIES OF HIGH TEMPERATURE LUBRICANTS ASD-TDR-62-222, PT. III N65-14144

PHASE, THERMODYNAMIC, OXIDATION, AND CORROSION STUDIES OF URANIUM-NITROGEN SYSTEM N65-21714

EFFECT OF CORROSIVE ENVIRONMENTS ON VARIOUS METALS AND ANTICORROSION TECHNIQUES TO PROTECT METAL A66-13374

USE OF INTERNAL FRICTION METHODS TO DETERMINE THE PHYSICAL SITUATION OF OXYGEN IN NIOBIUM-ZIRCONIUM ALLOYS AND ITS EFFECTS ON CORROSION CNLM-6344 N66-13857

LIQUID ZIRCONIUM VISCOSITY, BINARY ALLOY OXIDATION, SYNTHESIS AND PROPERTIES OF ZIRCONIUM BORIOE ALLOYS WITH MOLYBDENUM DISILICIDE, AND ZIRCONIUM CORROSION IN ALKALI METAL CHLORIDE JPRS-32341 N66-17779

OIL OXIDATION EFFECT ON RUNNING-IN PROCESS OF RING-SOCKET PAIR IN INTERNAL COMBUSTION ENGINE FTD-TT-65-1039/18284 N66-2 N66-23581

CORROSION AND OXIDATION FILM FORMATION ON ZIRCONIUM AND ZIRCALOY 2 IN AIR AND WATER EURAEC-1457 N66-30236

EVALUATION OF AGEABLE BETA TITANIUM ALLOYS BY TENSILE STRENGTH, CREEP STABILITY, OXIDATION, AND STRESS CORROSION TESTS WAL-TR-405/2-9 N66-31169

OXIDATION RESISTANCE

CORROSION RESISTANCE OF BERYLLIUM AND CORROSION PREVENTION VIA DIFFERENT COATINGS

A65-32402

ANTIOXIDATION, ANTICORROSION, AND DETERGENT ADDITIVES FOR LUBRICATING OILS OBTAINED BY TREATING PRODUCTS OF OXIDATION OF PARAFFIN WITH PHOSPHORUS PENTASULFIDE FTD-TT-64-1087/1 N65-22440

CORROSION AND OXIDATION INHIBITING SYSTEM STABILITY IN BRAKE FLUIDS AFTER EXTENDED STORAGE CCL-176 N65-22484 DIFFUSED ALUMINUM COATING FOR HIGH TEMPERATURE APPLICATION A66-12371

OXIDATION CHARACTERISTICS OF TITANIUM ALLOYS TI-679 AND TI-8 AL-1 MO-1 V DETERMINED WITH WEIGHT-GAIN TECHNIQUES A66-A66-33426

CHEMICAL KINETIC MECHANISMS IN OXIDATION RESISTANT ADDITIVES TO LUBRICATING OILS

REACTION MECHANISMS OF OXIDATION RESISTANT ADDITIVES IN OXIDATION PROCESS IN LUBRICATING OILS - HYDROGEN PEROXIDE FORMATION

DETERMINING ANTIOXIDATION EFFECTIVENESS OF MOTOR OIL ADDITIVES N66-11114

SILICONE OIL STABILITY AND OXIDATION RESISTANCE ENHANCED BY CYCLOPENTADIENYL TRICARBONYL MANGANESE FTD-TT-65-520/1&4 N66-13754

OXIDATION RESISTANCE AND DEPOSIT FORMATION OF HIGH TEMPERATURE LUBRICATING OIL AFAPL-TR-65-85 N66-19474

HIGH TEMPERATURE OXIDATION RESISTANCE OF ALUMINUM COMPLEX SOAP GREASE RIA-65-3264 N66-20013

CORROSION RESISTANCE AND PLASTICITY OF STAINLESS STEELS WITH ADDITIONS OF RARE EARTH METALS AND

OXIDE AND CARBIDE CORROSION PRODUCTS IN MATRIX AND SURFACE OF STEEL PLATE BY ELECTRON DIFFRACTION

OXIDE FILM

PATTERN-CONFORMING CRACKING OF OXIDE FILM ON ALUMINUM DURING HIGH TEMPERATURE OXIDATION MAY BE CAUSE OF DECREASE IN CORROSION RESISTANCE

MECHANISMS OF CORROSION PROCESSES ON ALUMINUM - CORROSION WEIGHT LOSSES, OXIDE FILM THICKNESS DETERMINATION AND ELECTROCHEMICAL MEASUREMENTS ARL/MET-54 N65-22059

SURFACE HYDRIDE CORROSION FILM EFFECT ON ELECTROLYTIC CORROSION AND OXIDATION OF TITANIUM A66-20841

CORROSION AND OXIDATION FILM FORMATION ON ZIRCONIUM AND ZIRCALOY 2 IN AIR AND WATER EURAEC-1457 N66-30236

HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELL DEVELOPMENT AND TESTS - MATERIAL CORROSION STUDIES, CYCLE CONTROLLER ASSEMBLY, AND PARTS **FABRICATION** NASA-CR-57665 N65-20807

OXYGEN EFFECTS ON CORROSION OF NIOBIUM BY LIQUID POTASSIUM ORNL-3751 N65-28141

VACUUM FRICTION MACHINE INVESTIGATIONS FOR FRICTION REDUCTION BY LUBRICATING DILS WITH DXYGEN AND OTHER GAS ADDITIVES N6 N66-11105

PREVENTION OF WATER VAPOR CORROSION OF URANIUM BY OXYGEN AND PROTECTIVE COATINGS AWRE-0-42/65 N66-13178

USE OF INTERNAL FRICTION METHODS TO DETERMINE THE PHYSICAL SITUATION OF OXYGEN IN NIOBIUM-ZIRCONIUM ALLOYS AND ITS EFFECTS ON CORROSION N66-13857 CNLM-6344

COMBUSTION AND DETONATION PHYSICS FOR MIXTURES OF LUBRICATING DILS AND DXYGEN FTD-TT-65-1106/18284

ENDURANCE AND CORROSION RESISTANCE TESTS OF CATALYST FOR RECOMBINATION OF RADIOLYTIC OXYGEN AND HYDROGEN CEND-525

N66-20315

DXYGEN COMPOUND CORROSION RESISTANCE OF CONSOLIDATED ZIRCALOY 2 POWDER CONTAINING OXYGEN AND NITROGEN KAPL-3060

N65-36540

OXYGEN PRODUCTION

AMMONIA USED TO SUPPRESS DXYGEN PRODUCTION AND CORROSION IN BOILING WATER REACTOR N66-28337 AFCL-2562

PACKAGING

TRANSPARENT PLASTIC PACKAGING FILMS FOR PREVENTION OF CORROSION FROM WATER VAPOR LEAKAGE RIA-65-1588

N66-14309

CATHODIC POLARIZATION OF SPENT ZINC PAINT COATINGS FOR INCREASED PROTECTION AGAINST SEA WATER CORROSION

NA6-19189

CORROSION RESISTANT ZINC PAINT EFFECTS ON MECHANICAL PROPERTIES OF STEEL WELD JOINTS

N66-20026

CORROSION RESISTANT SYNTHETIC PAINTS FOR SHIP HULL S DNI-TRANS-2108

N66-25851

PROTECTIVE CONVERSION COATING DEVELOPED TO INCREASE CORROSION RESISTANCE IN WHITE PRIMER, AND TO WITHSTAND TESTING IN SALT SPRAY ATMOSPHERE N66-32137 NASA-CR-76638

PALLADIUM

MECHANISM BY WHICH PALLADIUM ADDITIONS INCREASE TITANIUM CORROSION-RESISTANCE STUDIED, USING A65-34980 RADIOCHEMISTRY

TEST METHOD FOR STORAGE DEGRADATION OF VOLATILE CORROSION PREVENTING PAPER RIA-65-3105 N66-215 N66-21317

M HD PARALLEL PLATE SLIDER BEARING UNDER NONUNIFORM MAGNETIC FIELD ASME PAPER 64-WA/LUB-2 A65-33851

PASSIVITY
ANDDIC PASSIVATION OF STAINLESS STEEL BY
ELECTROCHEMICAL OXIDATION OF METAL SURFACE -CORROSION RESISTANCE RIA-65-1190 N65-36739

TEMPERATURE EFFECT ON CHROMIUM-NICKEL STAINLESS
STEEL CORROSION IN PASSIVITY RANGES
FTD-TT-65-1223/1626364 N66-276 N66-27891

PERFORMANCE CHARACTERISTICS

DRY FILM LUBRICANT DEVELOPMENT AND PERFORMANCE COMPARISON WITH LIQUID LUBRICANTS

WEAR CHARACTERISTICS AND PHYSICAL PROPERTIES OF LUBRICATING GREASES RIA-TR-65-2812

PERFORMANCE CHARACTERISTICS OF POTASSIUM CORROSION TEST LOOP NASA-CR-54912

MEASURING PERFORMANCE CHARACTERISTICS OF LIQUID METAL LUBRICATED TURBOMACHINE BEARING UNDER STEADY STATE AND DYNAMIC LOAD CONDITIONS N66-31686

S NAP-8 CORROSION PROGRAM - HYDROGEN SOLUBILITY IN SODIUM-POTASSIUM, PERMEABILITY OF HYDROGEN AND DEUTERUM THROUGH STAINLESS STEEL, AND PHASE EQUIL IBRIA

NASA-CR-63196

N65-25409

PETROLEUM

THERMAL STABILITY AND CORROSION OF SULFUR ORGANIC COMPOUNDS IN PETROLEUM FUEL N65-1919:

POLYSILOXANES AS ANTIFRICTION AND ANTIWEAR ADMIXTURES TO PETROLEUM GREASES FTD-TT-65-316/16264

EFFECTS OF HIGH-POLYMER ADDITIVES AND CHEMICAL COMPOSITION OF DILS ON PETROLEUM VISCOSITY N66-30273

COMPARISON OF POTENTIOMETRIC AND INDICATOR TITRATIONS FOR ACID-ALKALINE PROPERTIES CF OILS WITH ADDITIONS A65-14877

PHASE COMERENCE

PHASE RELATIONS OF GADOLINIUM ALLOYS STUDIED FOR MECHANICAL AND CORROSION PROPERTIES

SYNTHESIS OF THREE ANTIOXIDANT ADDITIVES OF N66-11088 SHIELDED PHENOLS

BISPHENOL SYNTHESIS FOR ANTIOXIDANT ADDITIVE TO N66-30274 DILS AND GASOLINES

PHENOL RESIN

HIGH HEAT CAPABILITY AND FRICTIONAL PROPERTIES
MAKE TEFLON-LUBRICATED PHENOLIC RESIN COMPOUN TEFLON-LUBRICATED PHENOLIC RESIN COMPOUNDS DESIRABLE FOR BEARINGS

PHENOL RESIN BONDED, WOVEN GLASS AND TEFLON FIBER LUBRICANT FOR J-2 ROCKET ENGINE GIMBAL SYSTEM NASA-TM-X-53379

PHENOL RESIN AND POLYVINYL BUTYRAL PROTECTIVE PRIMER WITH HIGH CORROSION RESISTANCE FOR STEELS AND LIGHT ALLOYS ONI-TRANS-2060 N66-23394

SPHATE
EFFECT OF ULTRASONIC CLEANING ON CORROSION
RESISTANCE OF PHOSPHATE-COATED STEEL PANELS SA-TR16-1122

OPTIMUM CONDITIONS FOR SYNTHESIZING CHROMIUM PHOSPHATE FOR USE AS ANTICORROSION PIGMENT IN SEALERS N65-30048 FTD-TT-65-55/1&2

DIALKYLDITHIOPHOSPHATES WITH SECONDARY HYDROCARBON RADICALS AS ANTIOXIDANT ADDITIVES N66-11087 FOR LUBRICATING DILS

RINSE SOLUTION CONTAINING ORGANIC ACIDS FOR IMPROVED SALT SPRAY RESISTANCE OF PHOSPHATE COATINGS FOR METAL SURFACES N66-21419 RIA-66-67

CORROSION PROTECTION BY COLD PHOSPHATIZATION METHOD OF COATING IRON AND STEEL N66-27803 FSTC-HT-23-24-66

PHOSPHORUS COMPOUND

ANTIOXIDATION, ANTICORROSION, AND DETERGENT
ADDITIVES FOR LUBRICATING OILS OBTAINED BY
IREATING PRODUCTS OF OXIDATION OF PARAFFIN WITH
PHOSPHORUS PENTASULFIDE
FTD-TT-64-1087/1
N65-224

FIRE RESISTANT LUBRICANT FOR TURBINES USING PHOSPHOROUS COMPOUNDS AS BASE FTD-TT-64-1291/1 N6 N65-28723

MULTIFUNCTIONAL AND ANTIOXIDANT ADDITIVES
SYNTHESIZED FROM DIESTERDITHIOPHOSPHORIC ACID —
CHARACTERISTICS OF ALKYLPHENOLS AND DISULFIDES
OBTAINED AS INTERMEDIATE PRODUCTS

N66-11081

PHOSPHORUS 32

CHEMICAL ADSORPTION AND P-32 IMPURITIES
ASSOCIATED WITH TRICRESYL PHOSPHATE AS ANTIWEAR
ADDITIVE FOR STUDY OF BEARING SURFACE

PLATING SUBJECT INDEX

ASLE PAPER 64-LC-2

A65-18052

PHOTODECOMPOSITION

HYDROGEN PEROXIDE VAPOR DECOMPOSITION ON METAL SURFACES AND ROLE IN ATMOSPHERIC CORROSION INVESTIGATED BY PHOTOGRAPHIC AND OPTICAL POLARIZATION METHODS A65-20347

PHOTOGRAMMETRY

LOW TEMPERATURE CHARACTERISTICS OF LUBRICATING OILS, PHOTOGRAMMETRIC CHECKING OF WIND TUNNEL MODELS, MECHANICS, AERODYNAMICS, HYDRODYNAMICS, AND THERMODYNAMICS N65-20570 DMF/NAF-1964/3/

PHYSICAL PROPERTY

HIGH ALLOY STEEL CASTINGS, DISCUSSING PHYSICAL AND MECHANICAL PROPERTIES OF CORROSION- AND HEAT-RESISTANT 8 PERCENT NICKEL AND/OR CHROMIUM A65-34961

MECHANICAL AND PHYSICAL PROPERTIES OF OILS THICKENED BY VISCOUS POLYMER ADDITIVES FTD-TT-64-1274/162 N65-28191

SUPER CHROMIUM STEEL SURVEY, INCLUDING APPLICATIONS IN GAS TURBINES AND AEROSPACE INDUSTRIES, PHYSICAL AND MECHANICAL PROPERTIES, THERMAL STABILITY, CORROSION RESISTANCE, ETC

GREASE LUBRICANTS FOR AEROSPACE APPLICATION: DETERMINING PHYSICAL PROPERTIES AND TESTING THEM AT 400 DEGREES F AND UNDER HIGH VACUUM ASLE PAPER 66AM 3C2 A66-3040 A66-30409

DETERMINATION OF WORKING PROPERTIES OF INHIBITED INSULATING TRANSFORMER DILS N66-11118

WEAR CHARACTERISTICS AND PHYSICAL PROPERTIES OF LUBRICATING GREASES RIA-TR-65-2812 N66-19769

PIGMENT

OPTIMUM CONDITIONS FOR SYNTHESIZING CHROMIUM PHOSPHATE FOR USE AS ANTICORROSION PIGMENT IN SEALERS FTD-TT-65-55/1&2 N65-30048

PIPE

CORROSION OF CAST IRON PIPES AS ELECTROBIOCHEMICAL PROCESS IN ANAEROBIC SOIL FD3-3957/T-166-/

TESTING MOTOR OILS FROM SULFUROUS CRUDES WITH N66-11121 DIFFERENT ADDITIVES

PISTON SHAPE CHANGED, BREATHING AND LUBRICATION IMPROVED TO INCREASE LIFESPAN OF INTERNAL COMBUSTION AIRCRAFT ENGINES FTD-TT-65-723/18284 N66-12

WEAR RESISTANCE TESTING ON PINS COATED WITH REFRACTORY METALS BY PLASMA-ARC PROCESS -SA-TR18-1096 N66-11528

PLASTIC

OPERATING CONDITION AND GAP SIZE EFFECTS ON FRICTION COEFFICIENT FOR POLYMER PLASTIC BEARINGS - MATERIAL TESTING N66-12106 FTD-TT-65-737/18284

PLASTIC COATING

WEAR DURABILITY AND ABRASION RESISTANCE OF POLYTETRAFLUOROETHYLENE COATINGS ON ELASTOMERIC VULCANIZATES NRL-6298

ALUMINUM POWDER, TALCUM, GRAPHITE, AND MOLYBDENUM DISULFIDE ADDITIONS TO POLYCAPROLACTUM COATINGS FOR IMPROVED ADHESION AND FRICTION PROPERTIES OF METAL JOINTS FTD-TT-65-986/18284 N66-18514

MECHANICAL AND FRICTION PROPERTIES OF PLASTIC COATINGS, AND WATERPROOFED GLASS FIBER STRENGTH DEPENDENCE ON BINDERS FTD-TT-65-319/16264

N66-28854

PLASTIC DEFORMATION

PRESSURE EXPRESSIONS DERIVED FOR FLOW OF NONLINEARLY VISCOPLASTIC LUBRICANT BETWEEN PLATES

BASIC MECHANISMS OF ULTRASONIC MACHINING PROCESS ARE MICROCHIP REMOVAL AND MATERIAL DISPLACEMENT BY PLASTIC DEFORMATION AND PARTICLE REMOVAL BY FRACTURE ASME PAPER 64-PROD-

FRICTION AND WEAR OF SLIDING MATERIALS PREDICTED BY ADHESION-PLASTIC DEFORMATION THEORY

GEOMETRICAL AND MECHANICAL FACTORS AFFECTING RATE OF MEAR BY ELASTIC AND PLASTIC DEFORMATION AND MICROCUTTING ASME PAPER 64-WA/LUB-5

MECHANISM OF PLASTIC DEFORMATION IN CRYSTALLINE BODIES, DISCUSSING STATIC AND DYNAMIC FRICTIONAL FURCES IN RELATION TO DISLOCATION STRUCTURE OF BODIES IN CONTACT A66-25887

PLASTIC FILM TRANSPARENT PLASTIC PACKAGING FILMS FOR PREVENTION OF CORROSION FROM WATER VAPOR

LEAKAGE

RIA-65-1588

PLASTIC FLOW

BRITTLE AND PLASTIC BEHAVIOR OF HOT-PRESSED PULYCRYSTALLINE BE D NOTING STRESS CORROSION, FRACTOGRAPHY AND X-RAY ROCKING CURVES

A66-14933

PLASTIC MATERIAL

DEGRADATION OF FLUOROCARBON TELOMERS, PTFE,
PCFE, POLYIMIDE, EPOXY COMPOSITIONS IN
EVAPORATION AND SLIDING FRICTION EXPERIMENTS AT LP AND HIGH TEMPERATURES

CORROSION COSTS, PREVENTION, TESTING METHODS, RESISTANT PLASTICS, AND PROTECTION OF REINFORCED CONCRETE AND STEEL FTD-TT-64-730/1626364 N65-16293

EFFECT OF TEMPERATURE ON FRICTION AND WEAR OF FILLED FLUORINATED PLASTIC MATERIALS FTD-TT-64-1176/182 NAS-29121

WEAR RESISTANCE OF SLEEVE BEARINGS MADE FROM POLYMERPOLYFORMALDEHYDE /PFA/ FTD-TT-65-329/18284 NA5-33005

HEAT AND WEAR RESISTANT PLASTIC MATERIALS WITH HIGH FRICTION COEFFICIENTS FTD-MT-64-483

CORROSION RESISTANT POLYMERIC MATERIALS FOR USE AS PROTECTIVE COATINGS ON IRON AND STAINLESS STEEL SURFACES N66-25284 JPRS-35452

EVALUATION OF FUNGUS-PROOF, TACK-FREE, NONCORROSIVE, AND WEATHER-RESISTANT PRESSURE-SENSITIVE PLASTIC OR PAPER TAPES N66-27871 RIA-66-774

CORROSION RESISTANCE AND PLASTICITY OF STAINLESS STEELS WITH ADDITIONS OF RARE EARTH METALS AND N65-18737 OXIDES

CORROSION RESISTANT AND EMBRITTLEMENT CHARACTERISTICS OF TITANIUM-CADMIUM PLATING N65-22093 A600

CORROSION PROTECTION OF REACTOR PARTS BY ION PLATED COATING OF ALUMINUM N66~15554 SC-DR-65-530

N66-27404

PLUTONIUM COMPOSITION EFFECT ON PLUTONIUM METAL CORROSION STUDIED BY SPECTROGRAPHIC ANALYSIS, METALLOGRAPHY, AND ELECTRON MICROSCOPIC EXAMINATIONS

RFP-511

CORROSION OF UNALLOYED AND ALLGYED PLUTONIUM IN MONOBROMOBENZENE AND FREON 113 FLUOROCARBON RFP-744 N66-31065

PLUTONIUM ALLOY THEORY, TESTING, AND ANALYSIS OF LIQUID METAL CORROSION - MERCURY AND PLUTONIUM LIQUID ALLOYS NASA-TM-X-54722

CORROSION OF SOME URANIUM-PLUTONIUM-IRON ALLOYS N66-14170 AMRE-0-18/65

PLUTONIUM RECYCLE TEST REACTOR /PRTR/ ZIRCALOY CORROSION IN SIMULATED PLUTONIUM RECYCLE TEST REACTOR FUEL ELEMENT SURFACE CREVICES

N65-31877 POLARIZATION CHART POLARIZATION DURING ELECTROCHEMICAL PHASE ANALYSIS

OF POWDERED MATERIALS CONTAINING TUNGSTEN AND TITANIUM CARBIDE A65-17805

POLARIZATION CURVES OF STRESS CORROSION CRACKING IN MARTENSITIC HIGH STRENGTH STEELS REPT.-132-07 N65-34370

POLYAMI DE INFLUENCE OF THERMAL AFTERTREATMENT ON PROPERTIES OF POLYAMIDE COATING IN CORROSION PREVENTION N65-28277

PLASTIC RESEARCH - SILICONE FLUIDS TO DECREASE ADHESION OF PLASTIC TO SOLID SURFACES, AND LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES OF **POLYAMIDES** FTD-TT-65-909/16264

LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES OF CERTAIN POLYAMIDES N66-22761

FRICTION REDUCTION AND MECHANICAL STRENGTH
DEPENDENCE ON METHOD OF APPLYING POLYAMIDE AND
POLYETHYLENE COATINGS TO MACHINE PARTS

N66-28856

POLYESTER QUANTITATIVE CHEMICAL ANALYSIS, USING GAS CHROMATOGRAPHY, FOR ACYL COMPONENTS OF NEOPENTYL POLYOL ESTER AIRCRAFT ENGINE LUBRICANT

N66-22779 NRL-6338 **POLYETHYLENE**

FRICTION AND LUBRICATION OF POLYMERS

FRICTION REDUCTION EFFECTS ON TURBULENT FLOWS IN DISTILLED WATER BY DILUTE ADDITIVE OF HIGH MOLECULAR WEIGHT POLYETHYLENE OXIDE TR-1 N66-10777

FRICTION REDUCTION AND MECHANICAL STRENGTH DEPENDENCE ON METHOD OF APPLYING POLYAMIDE AND POLYETHYLENE COATINGS TO MACHINE PARTS

N66-28856

POLYMER HIGH HEAT CAPABILITY AND FRICTIONAL PROPERTIES TEFLON-LUBRICATED PHENOLIC RESIN COMPOUNDS DESTRABLE FOR BEARINGS A65-25642

POLYMERS IN ANTICORROSIVE TECHNOLOGY FTD-MT-63-54 N65-18284

REDUCTION OF POLYMERIC FRICTION BY MINOR CONCENTRATIONS OF PARTIALLY FLUORINATED COMPOUNDS NRL-6227 N65-26290

DEGRADATION OF POLYMER COMPOSITIONS IN VACUUM IN EVAPORATION AND SLIDING FRICTION EXPERIMENTS

NASA-TM-X-54549

NA5-35203

ORGANIC SILOXANE POLYMER LIQUIDS AS COMPONENTS OF HIGH TEMPERATURE LUBRICATING DILS FTD-TT-65-322/16264

FRICTIONAL AND VISCOELASTIC PROPERTIES OF PLASTICS AND RUBBER SHOW RELATIONSHIP TO SLIDING SPEED AND **TEMPERATURE** ASME PAPER 65-1UB-15

OPERATING CONDITION AND GAP SIZE EFFECTS ON FRICTION COEFFICIENT FOR POLYMER PLASTIC BEARINGS - MATERIAL TESTING FTD-TT-65-737/1&2&4 N66-12106

FRICTION AND WEAR CHARACTERISTICS OF POLYMIDE AND FILLED POLYMIDE COMPOSITIONS IN VACUUM NASA-TN-D-3261 N66-16588

CORROSION RESISTANT PULYMERIC MATERIALS FOR USE AS PROTECTIVE COATINGS ON IRON AND STAINLESS STEEL JPRS-35452

POLYMER ADDITIVE EFFECTS ON DIL VISCOSITY AND ANTIOXIDANT ADDITIVE SYNTHESIS N66-30272 FTD-MT-64-512

EFFECTS OF HIGH-POLYMER ADDITIVES AND CHEMICAL COMPOSITION OF DILS ON PETROLEUM VISCOSITY

EFFECT OF FINELY DIVIDED MATERIALS ON POLYDIMETHYL SILICONE DIL - FILLER REINFORCEMENT IN SILICONE LIQUID POLYMERS RAE-TR-66061

POLYMER CHEMISTRY MECHANICAL AND PHYSICAL PROPERTIES OF DILS
THICKENED BY VISCOUS POLYMER ADDITIVES
FTD-IT-64-1274/162 N65-28191

POLYMER PHYSICS
DEGRADATION OF FLUOROCARBON TELOMERS, PCFE, POLYIMIDE, EPOXY COMPOSITIONS IN EVAPORATION AND SLIDING FRICTION EXPERIMENTS AT LP AND HIGH TEMPERATURES A65-18 A65-18793

POLYPHENYL ETHER FRICTION AND WEAR OF FIVE BEARING-RETAINER MATERIALS, AND THERMAL STABILITY AND LIQUID COMPATIBILITY OF POLYPHENYL ETHER LUBRICANTS SNAP SPACE POWER GENERATOR NASA-TN-D-2663 N65-17328

RULLING CONTACT LUBRICATION CHARACTERISTICS OF POLYPHENYL ETHERS AND MINERAL DILS AT REDUCED **PRESSURES** NASA-TN-D-3130

POLYPHENYL ETHER, POLYSILOXANE, SEBACATE, AND HIGH VISCOSITY MINERAL OIL AS IMPREGNATED LUBRICANTS IN BALL-BEARING RETAINERS AT .000010 TORR NAS A-TN-D-3259

POLYTETRAFLUOROETHYLENE MGLYBDENUM SULFIDE AND TEFLON AS SOLID FILM LUBRICATING MATERIALS FOR SPACECRAFT APPLICATIONS CONSIDERING LOW FRICTION COEFFICIENT, WEAR RATE. A65-23318

KINETICS OF POLYTETRAFLUOROETHYLENE /PTFE/ SLIDING ON PTFE, OBSERVED BY CONSTANT FORCE OF FRICTION AND MEASURING SLIDE VELOCITY ML-TDR-64-303

WEAR DURABILITY AND ABRASION RESISTANCE OF POLYTETRAFLUOROETHYLENE COATINGS ON ELASTOMERIC VULCANIZATES NRL-6298 N65-36319

EFFECT OF CRYSTALLINE STATE AND STRUCTURAL ORIENTATION OF POLYMER ON ENDURANCE OF COUPLINGS WITH POLYTETRAFLUOROETHYLENE COMPONENTS, ANALYZING DRY FRICTION AND WEAR ON INTERFACES

A66-25912

SLIDING CHARACTERISTICS OF POLYTETRAFLUOROETHYLENE

A66-26304

/ PTFE/ DRY LUBRICANT, EXAMINING EFFECTS OF TIME, TEMPERATURE AND ENVIRONMENT A66-3057

STARTING FRICTION AND KINETIC FRICTION OF PTFE FABRIC-LINED SPHERICAL BEARINGS AND DEFLECTION AND PERMANENT SET UNDER STATIC LOADING

A66-31932

FRICTION REDUCING AND CHEMICALLY STABLE PLASTICS BASED ON POLYTETRAFLUOROETHYLENE FTD-TT-65-857/16264 N66-19245

POLYURETHANE

AIRCRAFT FUEL TANK COATING CORROSION RESISTANCE, DISCUSSING POLYURETHANE AND EPOXY MATERIAL CHARACTERISTICS AND APPLICATION

A66-17491

N65-28354

N66-13015

POLYURETHANE FOAM

SLIDING FRICTION AND COMPRESSION TESTING OF RIGID POLYURETHANE FOAMS A66-2530

POROUS MATERIAL

NASA-CR-54345

PARTIAL POROUS METAL BEARINGS PERFORMANCE DURING STRADY STATE OPERATION WITH FULL FILM OF LUBRICANT, DETERMINING PRESSURE DISTRIBUTION ASME PAPER 65-WA/LUB-3 466-15526

POTASSIUM

DESIGN AND TESTING OF POTASSIUM CORROSION TEST LOOP FACILITY NASA-CR-54269 N65-16745

STAINLESS STEEL CORROSION REACTIONS AND MECHANISMS IN SODIUM-POTASSIUM SERVICE IDO-14651 N65-19660

MATERIALS FOR POTASSIUM LUBRICATED JOURNAL **BEARINGS**

NASA-CR-54264 N65-19849

PROTYPE CORROSION TEST LOOP FOR EVALUATION OF REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS - SIMULATION OF PROJECTED SPACE ELECTRIC POWER SYSTEMS

INFLUENCE OF STRESS ON CORROSION BEHAVIOR OF REFRACTORY ALLOY IN POTASSIUM, AND CORROSION MASS TRANSFER EFFECTS IN STAINLESS STEEL-NIOBIUM ALLOY-POTASSIUM SYSTEM NASA-CR-54390

TEST PROGRAM TO EVALUATE MATERIALS SUITABLE FOR POTASSIUM LUBRICATED JOURNAL BEARING AND SHAFT APPLICATIONS IN SPACE SYSTEM TURBOGENERATORS OPERATING AT HIGH TEMPERATURES

ELECTROCHEMICAL CORROSION OF CAST IRON IN SODIUM

AND POTASSIUM SOLUTIONS N65-31073

LIQUID POTASSIUM METAL LUBRICATED BEARINGS FOR SUPPORT OF ROTOR WITH SPACE POWER SYSTEM WEIGHT DISTRIBUTION R-5086-7 N65-33491

POTASSIUM CORROSION TEST LOOP FOR EVALUATING REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS SIMULATING SPACE ELECTRIC POWER SYSTEMS NASA-CR-54735 N66-12126

POTASSIUM CORROSION TEST LOOP DEVELOPMENT - HELIUM ANALYSIS SYSTEM TO MEASURE IMPURITIES IN VACUUM PURGED. INERT GAS WELDING CHAMBER NASA-CR-54168

STRESS CORROSION REFLUX CAPSULE TESTS OF NIOBIUM ALLDY IN POTASSIUM NASA-CR-54844 N66-14754

PERFORMANCE CHARACTERISTICS OF POTASSIUM CORROSION TEST LOOP NASA-CR-54912 N66-24697

CORROSION RESISTANCE OF NIOBIUM AND TANTALUM TUBING ALLOYS TO REFLUXING POTASSIUM

NASA-TN-D-3429

N66-25004

CORROSION STUDIES OF REFRACTORY METAL ALLOYS IN BOILING POTASSIUM AND LIQUID NA K CNLM-6246

POTASSIUM CHLORIDE

ZIRCONIUM CORROSION IN MOLTEN EQUIMOLAR MIXTURE OF POTASSIUM AND SODIUM CHLORIDES N66-17783

STATIC AND ISOTHERMAL CORROSION TESTS OF HASTELLOY N, INCONEL 600, AND HYMU-80 IN URANIUM CHLORIDE-POTASSIUM CHLORIDE EUTECTIC LA-3476-MS N66-30771

POTENT LOMETRY

POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR METALLIC INGOTS PREPARED AS ROTATING DISK ELECTRODES - CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-DXYGEN FUEL CELLS NASA-CR-68891

POTENTIOSTATIC POLARIZATION STUDIES OF IRON AND STAINLESS STEEL ALLOYS IN ELECTROLYTE SYSTEMS FOR CORROSION RESISTANCE PREDICTION

POWDER METALLURGY

FILMS ON SLIDING SURFACES INVESTIGATING EFFECTS ON SEIZURE, PRESSURE WELDING, SINTERING, FRICTION AND BOUNDARY LAYER LUBRICATION A65-15683

POWDERED ALUMINUM

ALLWINUM ALLOY POWDER EXTRUSIONS EVALUATED FOR CORROSION RESISTANCE TO HIGH TEMPERATURE WATER FLOW, CONSIDERING RODS AND TUBINGS

A65-22133

POWDERED METAL
LOAD EFFECTS ON KINETIC FRICTION COEFFICIENT OF
MOLYBDENUM DISULFIDE POWDERS
ASLE PAPER 64-LC-21
A65-22 A65-22794

INTERACTION OF CO WITH POWDERED AND SOLID NIOBIUM, EMPHASIZING DXYCARBIDE FORMATION, CHEMICAL STRENGTH, ACTIVATION ENERGIES AND DIFFUSION COEFFICIENTS A65-28341

POWDER METAL BEARINGS MANUFACTURE NOTING SHAPES, SIZES, TOLERANCES, MATERIALS, DESIGN, INSTALLATION. ETC

POWER TRANSMISSION

WAVEGUIDE INSERTION LOSS DUE TO CORROSION BY ACIDIFIED HYDROGEN SULFIDE AND SALT SPRAY TESTED FOR VARIOUS COATINGS A65-218 A65-21893

PRECIPITATION HARDENING

SINTERING METHOD TO PROVIDE DESIRED PRECIPITATION HARDENABLE HIGH TEMPERATURE BEARING MATERIAL WITH PREFERRED LATTICE STRUCTURE SAE PAPER 650796 A65-34836

HEAT TREATMENT CYCLE EFFECT ON MECHANICAL PROPERTIES OF CORROSION RESISTANT PRECIPITATION HARDENED STEEL AM 355 IN TERMS OF METALLOGRAPHIC STRUCTURE A66-11304

PRESSURE

HYDRODYNAMIC BEARING LUBRICATION OF ROTATING CYLINDER WITH REFERENCE TO SUB-CAVITY PRESSURE AND CAVITATION REGIONS UDC-621.89.032 N65-35473

PRESSURE DISTRIBUTION
PRESSURE EXPRESSIONS DERIVED FOR FLOW OF
NONLINEARLY VISCOPLASTIC LUBRICANT BETWEEN PLATES

INVERSE PROBLEMS IN HYDRODYNAMIC LUBRICATION IN WHICH FILM PRESSURE DISTRIBUTION IS ASSUMED AND PROFILE TO BE DETERMINED IS ANALYZED IN CONJUNCTION WITH DESIGN DIRECTIVES

A65-23502

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS

ASLE PREPRINT 65AM 3A1

A65-24252

APPLICABILITY OF ELASTICITY THEORY EQUATIONS FOR CYLINDERS IN DRY CONTACT TO PRESSURE DISTRIBUTION AT ROLLER AND BALL BEARING CONTACT POINTS IN PRESENCE OF LUBRICATING FILM A65-26533 A65-26533

HYDRODYNAMIC LUBRICATION OF TWO LIGHTLY LOADED ROTATING CIRCULAR CYLINDERS, WITH REFERENCE TO SUBCAVITY PRESSURE AND NUMBER OF STREAMERS IN A65-27984 CAVITATION REGIONS

PRESSURE DISTRIBUTION OF COUNTERFORMEL CYLINDERS
MEASURED TO DETERMINE HYDRODYNAMIC LOAD ASLE PAPER 64-LC-12

PARTIAL POROUS METAL BEARINGS PERFORMANCE DURING STEADY STATE OPERATION WITH FULL FILM OF LUBRICANT, DETERMINING PRESSURE DISTRIBUTION A66-15526 ASME PAPER 65-WA/LUB-3

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS A66-18289 ASLE PREPRINT 65AM 3A1

PRESSURE DISTRIBUTION OF VISCOUS ELECTRICALLY CONDUCTING FLUID IN LUBRICATING LAYER OF CYLINDRICAL BEARING A66-2

TEST RIG FOR GAS-LUBRICATED JOURNAL BEARINGS MEASURING FRICTIONAL TORQUE, GAS FILM PRESSURE DISTRIBUTION, STATIC AND DYNAMIC ECCENTRICITY A66-24929

PRESSURE DROP

VACUUM EFFECTS ON LUBRICANTS AND BEARING MATERIALS DUE TO REDUCED AMBIENT PRESSURE AND LOW CONCENTRATION OF OXIDIZING GASES

A66-24383

CIRCULAR CHANNEL PRESSURE DROP, FLOW QUALITY, AND CORROSION FILM THICKNESS MEASUREMENTS N66-18864 EURAEC-1288

PRESSURE AND ELASTIC DISTORTION EFFECT ON THIN FILM LUBRICATION OIL THICKNESS A65-2: A65-23504

CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR CORROSION MECHANISM ANALYSIS ASLE PREPRINT 65-LC-11

CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR CORROSION MECHANISM ANALYSIS
ASLE PREPRINT 65-LC-11
A66-

NONLINEAR SOLUTION FOR FLOW INTERACTION BETWEEN SELF-ACTING FOIL BEARING LUBRICANT AND EXTERNAL PRESSURE

PRESSURE MEASUREMENT

RR-65-12

PRESSURE MEASUREMENT PRESSURE, TEMPERATURE AND FILM THICKNESS BETWEEN THO CIRCULAR DISKS CORRELATED WITH THEORETICAL SOLUTIONS OF THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF INFINITELY LONG ROLLERS

A65-32767

PRESSURIZED WATER REACTOR
CLOSED LOOP SYSTEM FOR DYNAMIC CORROSION TESTS AT
HIGH TEMPERATURE IN PRESSURIZED WATER REACTOR EUR-1744.F

PRIMER

PHENOL RESIN AND POLYVINYL BUTYRAL PROTECTIVE PRIMER WITH HIGH CORROSION RESISTANCE FOR STEELS AND LIGHT ALLOYS N66-23394 ONI-TRANS-2060

PROTECTIVE CONVERSION COATING DEVELOPED TO INCREASE CORROSION RESISTANCE IN WHITE PRIMER, AND TO WITHSTAND TESTING IN SALT SPRAY ATMOSPHERE N66-32137 NASA-CR-76638

PROCESSING HYDROFLUORINATOR CORROSION RATE DETERMINATION DURING FUEL PROCESSING RUNS WITH ZIRCONIUM-URANIUM ALLOY

N65-18428

PRODUCT DEVELOPMENT

BEARING SELECTION FOR MAXIMUM TOTAL PRODUCT PERFORMANCE A65-28639

ASME PAPER 65-MD-51

AFAPL-TR-65-118

PRODUCTION ENGINEERING CORROSION RESISTANCE, FATIGUE STRENGTH, AND ENGINEERING PROCESSES IN MANUFACTURING OF CLAD STAINLESS STEELS JPRS-32087

PRODUCTION SPECIFICATIONS FOR HOT ROLLED THICK IND-LAYERED CORROSION RESISTANT STEEL SHEETS N66-24265

PROPELLANT OXIDIZER FUEL-WATER AND OXIDIZER-WATER CORROSION IN ALUMINUM CAPILLARIES OF FUEL AND OXIDIZER TANKS N65-35287 DSR-S-11047

PROPELLANT TANK FUEL-WATER AND OXIDIZER-WATER CORROSION IN ALUMINUM CAPILLARIES OF FUEL AND OXIDIZER TANKS N65-35287 DSR-S-11047

METAL CORROSION PREVENTION METHODS FOR CENTAUR LAUNCH VEHICLE LIQUID PROPELLANT TANKS N66-29292 NASA-CR-72000

PROPULSION SYSTEM EFFECT OF AIRCRAFT GAS TURBINE ENGINE LUBRICANTS AND SOLVENTS ON REMOVAL OF CARBONACEOUS DEPOSITS

PROTECTIVE COATING CORROSION PROTECTION FOR REACTOR ROTATING ASSEMBLIES COVERING REQUIREMENTS, COATING TESTS A65-16168 AND MATERIALS

FAILURE OF W C- CO COATED ROD-GLAND BEARING CAUSED BY FRETTING AND PROTECTION MEASURES, EXAMINING HYDRAULIC ACTUATORS AS PRECISION POSITING DEVICES

CORROSION PREVENTION COATING BY ELECTROCHEMICAL OXIDATION / ELOXAL/ METHOD FOR ALUMINUM AIRCRAFT

AIRCRAFT PROTECTION FROM CORROSION COVERING STRESS AND INTEGRAL FUEL TANK CORROSION AND COATING METHODS

HAVEGUIDE INSERTION LOSS DUE TO CORROSION BY ACIDIFIED HYDROGEN SULFIDE AND SALT SPRAY TESTED A65-21893 FOR VARIOUS COATINGS

GOLD PLATING COATED WITH DRY THIN TEFLON LUBRICANT FILM SYSTEM FOR LONG LIFE SLIDING ELECTRIC CONTACT ON MICROWAVE DEVICE A65-24115

AIRCRAFT CORROSION AND PROTECTIVE PAINTS, FINISHES A65-31372 AND ANTICORROSION PROCESSES

ELECTROCHEMICAL AND METALLOGRAPHIC FEATURES
ASSOCIATED WITH CORROSION RESISTANCE OF NICKELCHROMIUM PROTECTIVE COATINGS, NOTING CATHODE A65-32167 POLARIZATION

CORROSION RESISTANCE OF BERYLLIUM AND CORROSION PREVENTION VIA DIFFERENT COATINGS

A65-32402

STEEL CORROSION MECHANISMS - GROWTH AND BREAKDOWN OF PROTECTIVE FILMS IN HIGH TEMPERATURE AQUEOUS SYSTEMS NRL-6082

ZINC USED AS PROTECTIVE COATING FOR STEEL ALLOY
IN STRESS CORROSION CONTROL
RIA-65-152
N65-24 N65-24215

CORROSION RESISTANCE METALS AND COATINGS FOR

PROTECTING CHEMICAL EQUIPMENT

N65-26208

N66-12537

N66-13178

MATERIALS FOR TIME MEASUREMENT INSTRUMENT PARTS MANUFACTURE - GLASS, COATINGS, LUBRICATION, AND CORROSION PROTECTION N65-26 N65-26724

PROTECTIVE COATING EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS - BENDING-DUCTILITY EVALUATION NASA-CR-63784 N65-28201

CORROSION RESISTANCE OF BLACK OXIDE COATINGS ON MILD AND CORROSION RESISTANT STEELS RIA-64-3580 N65-30014

CORROSION OF URANIUM AND URANIUM ALLOYS IN AQUEOUS AND NON-AQUEOUS MEDIA AND PROTECTIVE COATINGS N65-33652

PROTECTIVE COATINGS EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS NASA-CR-67014 N65-33871

DIFFUSED ALUMINUM COATING FOR HIGH TEMPERATURE A00-12371

MEASUREMENT OF SURFACE EMITTANCE OF SURFACE COATINGS FOR SELECTED METALS, PROVIDING LOW-THERMAL EMITTANCE CHARACTERISTICS IN IR SPECTRUM FOR THERMAL AND CORROSION CONTROL AIAA PAPER 66-18

WEAR RESISTANCE TESTING ON PINS COATED WITH REFRACTORY METALS BY PLASMA-ARC PROCESS -CERMETS SA-TR18-1096 N66-11528

HELICOPTER GEAR LUBRICATION AND PROTECTIVE COATINGS QPR-2

PREVENTION OF WATER VAPOR CORROSION OF URANIUM BY OXYGEN AND PROTECTIVE COATINGS AWRE-0-42/65 N66-1

ION PLATING OF ALUMINUM THIN FILMS ON URANIUM FOR CORROSION PREVENTION - PROTECTIVE COATINGS SC-DR-65-519 N66-13189

FLUID MECHANICS, LUBRICATION, CORROSION, MASERS, BIOLOGICAL STRESS, PROTECTIVE COATINGS, NEUTRON ACTIVATION, FRACTOGRAPHY, METABOLISM, GUIDED MISSILE LAUNCHING, AND CATAPULTS AD-623630 N66-14468

CORROSION PROTECTION OF REACTOR PARTS BY ION PLATED COATING OF ALUMINUM SC-DR-65-530 N66-15554

IRON AND STEEL CORROSION PREVENTION BY PROTECTIVE COATINGS AND CATHODIC PROTECTION AD-625900

CATHODIC POLARIZATION OF SPENT ZINC PAINT COATINGS FOR INCREASED PROTECTION AGAINST SEA WATER CORROSION T-424-R N66-19189

CORROSION RESISTANT ZINC PAINT EFFECTS ON MECHANICAL PROPERTIES OF STEEL WELD JOINTS AT-1959/69 N66-20026

ABSTRACTS ON CORROSION OF CONCRETE AND STEEL. PROTECTIVE COATING MATERIALS, MATERIAL TESTING, WATER AND AIR PURIFICATION, PACKAGING, AND BIBLIOGRAPHIC INFORMATION N66-20 N66-20801

SODIUM CHLORIDE CORROSION RESISTANCE OF MAGNESIUM AND ALUMINUM ALLOYS WITH PROTECTIVE COATING OF TEFLON NRL-6353 N66-21 324

RINSE SOLUTION CONTAINING ORGANIC ACIDS FOR IMPROVED SALT SPRAY RESISTANCE OF PHOSPHATE COATINGS FOR METAL SURFACES RIA-66-67 N66-21419

FACTORS INFLUENCING CORROSION PROTECTION PROVIDED

BY SOLID FILM LUBRICANT COATINGS RIA-65-3380

N66-21473

PHENOL RESIN AND POLYVINYL BUTYRAL PROTECTIVE PRIMER WITH HIGH CORROSION RESISTANCE FOR STEELS AND LIGHT ALLDYS ONI-TRANS-2060

PROTECTIVE COATING EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS NASA-CR-74414

CORROSION RESISTANT POLYMERIC MATERIALS FOR USE AS PROTECTIVE COATINGS ON IRON AND STAINLESS STEEL SURFACES JPRS-35452

CORROSION RESISTANT SYNTHETIC PAINTS FOR SHIP ONI-TRANS-2108

CORROSION PROTECTION BY COLD PHOSPHATIZATION METHOD OF COATING IRON AND STEEL FSTC-HT-23-24-66 N66-27803

FRICTION REDUCTION AND MECHANICAL STRENGTH DEPENDENCE ON METHOD OF APPLYING POLYAMIDE AND POLYETHYLENE COATINGS TO MACHINE PARTS

N66-28856

PROTECTIVE CONVERSION COATING DEVELOPED TO INCREASE CORROSION RESISTANCE IN WHITE PRIMER, AND TO WITHSTAND TESTING IN SALT SPRAY ATMOSPHERE NASA-CR-76638 N66-32137

FLUID FILM SHAFT BEARINGS FOR LIQUID METAL PUMP - SNAP-50/SPUR POWERPLANT

EFFICIENCY EVALUATION OF CARBON REMOVERS FOR USE IN CLOGGED OTL PUMPS

C66-155 NA6-28339

PURIFICATION

PURIFICATION OF ALKALI METALS FOR USE IN ADVANCED REFRACTORY ALLOY CORROSION LOOP NASA-CR-54911 N66-22327

PURITY

ALTERNATE IMMERSION STRESS-CORROSION TESTS ON COMMERCIAL AND HIGH PURITY ALUMINUM ALLOYS M65-17-1 N65-28351

Q

QUALITY CONTROL

MATERIAL PROCUREMENT AND QUALITY ASSURANCE FOR ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM NASA-CR-54477

QUANTITATIVE ANALYSIS

QUANTITATIVE CHEMICAL ANALYSIS, USING GAS CHROMATOGRAPHY, FOR ACYL COMPONENTS OF NEOPENTYL POLYOL ESTER AIRCRAFT ENGINE LUBRICANT NRL-6338 N66-22779

QUENCHING

FEFFECT OF TITANIUM ADDITIONS ON RESISTANCE OF FERRITIC AUSTENITIC STEELS TO INTERCRYSTALLINE CORROSION AFTER QUENCHING A65-32944

RADIATION EFFECT

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4 A65-24248

ROTATING MACHINES IN EXTREME ENVIRONMENT DISCUSSING CONDUCTORS, MAGNETIC MATERIALS, INSULATIONS, BEARINGS AND PERFORMANCE

A65-31144

NUCLEAR REACTOR RADIATION EFFECT ON HIGH TEMPERATURE SOLID FILM LUBRICANTS FZK-212 N65-22421

SUBJECT INDEX RADIATION MEASUREMENT

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4 A66-13398

REACTOR MATERIALS AND COMPONENTS, FUEL DEVELOPMENT, RADIOISOTOPE AND RADIATION APPLICATIONS, COATED-PARTICLE FUEL MATERIALS, CORROSION STUDIES, AND GAS COOLED REACTORS N66-11852 RMI-1745

CORROSION TESTS ON IRRADIATED AND UNIRRADIATED TYPE 304 STAINLESS STEEL GEAP-4968 N66-26483

RADIATION EFFECT ON MINERAL OILS USED AS DISPERSION MEDIA FOR PLASTIC LUBRICANTS FTD-TT-65-1731/164 N66-28246

RADIATION MEASUREMENT

METALLIC CORROSION MEASUREMENT BY RADIATION BACKSCATTERING AND RADIATION INDUCED X-RAYS A66-13933

RADIATION RESISTANCE

LUBRICANT RADIATION RESISTANCE DEPENDENT ON LUBRICANT CHEMICAL COMPOSITION AND INTENSITY AND TYPE OF IONIZING RADIATION FTD-TT-65-325/18284 N65-32852

RADIATION RESISTANCE OF AQUEOUS SODIUM NITRITE USED TO INHIBIT STEEL CORROSION UJV-1453/65 N66-3 N66-31045

RADIOACTIVE ISOTOPE

CHEMICAL ADSORPTION AND P-32 IMPURITIES
ASSOCIATED WITH TRICRESYL PHOSPHATE AS ANTIWEAR ADDITIVE FOR STUDY OF BEARING SURFACE A65-18052 ASLE PAPER 64-LC-2

SLIDING WEAR EVOLUTION AND RADIOACTIVE TRACER MEASUREMENT A66-28466

RADIDACTIVE TRACER INVESTIGATION OF REACTION MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH COPPER FILMS IN HYDROCARBON LUBRICATING OIL MEDIUM - FRICTION REDUCING ADDITIVES N66-11106

RADIOACTIVE TRACERS TO DETERMINE WEAR RESISTANCE OF CHROMIUM-NICKEL-IRON ALLOY GRINDING BALLS USED IN FABRICATING CEMENT

CNEA-187 N66-28244

RADIDACTIVE MATERIAL
ELECTROKINETIC PROCESSES AND MECHANISM OF
DISPERSION ACTION IN MOTOR OIL ADDITIVES DETERMINED BY RADIDACTIVE TRACERS

N66-11113

RADIOCHEMISTRY

MECHANISM BY WHICH PALLADIUM ADDITIONS INCREASE TITANIUM CORROSION-RESISTANCE STUDIED, USING RADIOCHEMISTRY A65-34980

ENDURANCE AND CORROSION RESISTANCE TESTS OF CATALYST FOR RECOMBINATION OF RADIOLYTIC DXYGEN AND HYDROGEN CEND-525 N66-20315

RAMJET ENGINE

HIGH PERFORMANCE ROCKET AND RAMJET COMBUSTORS, INTENSIFICATION OF COMBUSTION PROCESSES, AND DEVELOPMENT OF FUEL ADDITIVES N65-23434

RARE EARTH

CORROSION RESISTANCE AND PLASTICITY OF STAINLESS STEELS WITH ADDITIONS OF RARE EARTH METALS AND

CORROSION RESISTANT CONTAINER FOR RARE EARTH-RARE EARTH HALIDE SOLUTION ORNL-P-814 N66-23233

CORROSION ANALYSIS OF ZIRCONIUM ALLOYS EXPOSED TO REACTOR IRRADIATION AECL-2257 N66-24451 REACTOR FUEL

HASTELLOY F AND OTHER CORROSION RESISTANT STRUCTURAL MATERIALS FOR CENTRIFUGE IN REACTOR FUEL RECOVERY PLANT ORNI -3787

CORROSION TESTING OF THORIUM ALLOYS IN DISTILLED WATER AT HIGH TEMPERATURES - INVESTIGATION OF THORIUM-URANIUM ALLOYS AS POSSIBLE REACTOR FUEL ANL-7006

FUEL TANK MATERIAL COMPATIBILITY WITH FAST BREEDER REACTOR FUEL N66-18290 LA-DC-7315

URANIUM INTERMETALLIC FUEL SYSTEM AND ALUMINUM-BERYLLIUM ALLOY CORROSION PROPERTY STUDIES N66-28357 100-17154

REACTOR MATERIAL

ASLE PREPRINT 65AM 6A1

CORROSION PROTECTION FOR REACTOR ROTATING ASSEMBLIES COVERING REQUIREMENTS, COATING TESTS AND MATERIALS

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS CF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR ATAG

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR ASLE PREPRINT 65AM 6A1

S NAP-8 REACTOR OSCILLATING BEARINGS TO PROVIDE LOW FRICTION SELF-LUBRICATION AT 1150 DEGREES 466-30414

S NAP-8 REACTOR MATERIALS DEVELOPMENT PROGRAM -LUBRICANT, COOLANT, CORROSION LOOP, AND STRUCTURAL MATERIALS EVALUATION NASA-CR-54718

CORROSION PROTECTION OF REACTOR PARTS BY ION PLATED COATING OF ALUMINUM N66-15554 SC-08-65-530

REACTOR TECHNOLOGY

ULTRAHIGH TEMPERATURE REACTOR EXPERIMENT FACILITY CONSTRUCTION, COMPONENT DEVELOPMENT,
HELIUM COOLING SYSTEM, SYSTEMS ANALYSES, NEUTRONIC CALCULATIONS, AND GRAPHITE CORROSION N65-36466 LA/MS/-3112

REACTOR MATERIALS AND COMPONENTS, FUEL DEVELOPMENT, RADIOISOTOPE AND RADIATION APPLICATIONS, COATED-PARTICLE FUEL MATERIALS, CORROSION STUDIES, AND GAS COOLED REACTORS N66-11852

SODIUM TECHNOLOGY AS RELATED TO NUCLEAR REACTOR TECHNOLOGY - MATERIALS SCIENCE, CORROSION, PURITY CONTROL, OPERATIONS, HEAT TRANSFER, AND THERMAL CYCLING N66-174

REFRACTORY ALLOY

ALKALI METAL STRESS CORROSION AND MASS TRANSFER EFFECTS ON REFRACTORY METAL AND STAINLESS STEEL ALL DYS

PROTYPE CORROSION TEST LOOP FOR EVALUATION OF REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS - SIMULATION OF PROJECTED SPACE ELECTRIC POWER SYSTEMS NASA-54344

INFLUENCE OF STRESS ON CORROSION BEHAVIOR OF REFRACTORY ALLOY IN POTASSIUM, AND CORROSION MASS TRANSFER EFFECTS IN STAINLESS STEEL-NIOBIUM ALLOY-POTASSIUM SYSTEM NASA-CR-54390

MATERIAL PROCUREMENT AND QUALITY ASSURANCE FOR ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM

NASA-CR-54477

N65-33966

N66-15373

REFRACTORY ALLOY CORROSION, DISCUSSING COLUMBIUM AND TANTALUM BASE TUBING ALLOY RESISTANCE TO REFLUXING POTASSIUM BETWEEN 1800 AND 2400 DEGREES A66-16071

POTASSIUM CORROSION TEST LOOP FOR EVALUATING REFRACTORY ALLOYS IN BOILING AND CONDENSING PUTASSIUM ENVIRONMENTS SIMULATING SPACE ELECTRIC POWER SYSTEMS NASA-CR-54735 N66-12126

CORROSION TEST LOOP FOR EVALUATION OF REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS WHICH SIMULATE PROJECTED SPACE ELECTRIC POWER SYSTEMS NASA-CR-54843

ADVANCED REFRACTORY ALLOY CORROSION LOOP

PURIFICATION OF ALKALI METALS FOR USE IN ADVANCED REFRACTORY ALLOY CORROSTON LOOP

NASA-CR-54911 N66-22327

REFRACTORY MATERIAL

SPONTANEOUS TRANSITION OF SLIDING FRICTION TO ROLLING FRICTION WITH REFRACTORY VANADIUM AND MOLYBDENUM CARBIDES AT HIGH TEMPERATURES NASA-TT-F-G499 N65-29738

FRICTIONAL PROPERTIES OF SILICON NITRIDE AND CARBIDE DURING RECIPROCATING SLIDING BETWEEN HEMISPHERICAL STYLUS AND POLISHED HORIZONTAL 466-30253

INFLUENCE OF STRESS ON CORROSION BEHAVIOR AND MASS TRANSFER EFFECT ON REFRACTORY MATERIALS FOR ADVANCED SPACE POWER SYSTEMS NASA-CR-54476 N66-12264

REFRACTORY METAL

PHYSICAL AND CHEMICAL PROPERTIES OF DICHALCOGENIDES OF GROUP V8 AND VIB METALS FOR USE AS AEROSPACE SOLID LUBRICANTS, PRIMARILY FRICTION AND ANTIWEAR CHARACTERISTICS
ASLE PREPRINT 65AM 5C3
A65-2424

WEAR RESISTANCE TESTING ON PINS COATED WITH REFRACTORY METALS BY PLASMA-ARC PROCESS -CERMETS SA-TR18-1096

CORROSION STUDIES OF REFRACTORY METAL ALLOYS IN BOILING POTASSIUM AND LIQUID NA K CNLM-6246 N66-28939

REGENERATIVE FUEL CELL

HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL CELL DEVELOPMENT AND TESTS - MATERIAL CORROSION STUDIES, CYCLE CONTROLLER ASSEMBLY, AND PARTS FABRICATION NASA-CR-57665

RELIABILITY

TEST RIG FOR RELIABILITY, DESIGN OF SLIDING FRICTION TEST SPECIMEN, AND CALIBRATION TECHNIQUE - HIGH TEMPERATURE BEARING ELEMENTS INVESTIGATION N65-31079

RESIDUAL STRESS

SALT STRESS CORROSION CRACKING OF RESIDUALLY STRESSED TITANIUM ALLOY BRAKE FORMED SHEET FOR SUPERSONIC TRANSPORT N65-20483

NASA-TM-X-1082

RESIN BONDING

RESIN BONDED SOLID FILM LUBRICANT EFFECTIVENESS AND CORROSION PROTECTION STUDY RESTRICTED TO STEEL SURFACES

RESISTANCE

LIFETIME, LOAD-CARRYING ABILITY, AND FRICTION AND WEAR CHARACTERISTICS OF PLAIN SLEEVE BEARINGS FOR AIRCRAFT SUPPORT STRUCTURES AD-628937 N66-24725

RESISTANCE HEATING
OPTIMUM WELDING CONDITION OF RESISTANCE SPOT
WELDING OF TI ALLOY FOR SUPERSONIC AIRCRAFT STRUCTURES A65-33624

REYNOLDS EQUATION

FLUID FILM LUBRICATION THEORY DEVELOPED FROM ASSUMPTION OF LOCAL WEDGE FLOW RATHER THAN LOCAL PARALLEL CHANNEL FLOW

EIGENVALUES AND EIGENVECTORS OBTAINED BY NUMERICAL SOLUTION OF SPECIAL HILL EQUATION IN LUBRICATION THEORY

ASME PAPER 66-LUBS-13

PERFORMANCE OF HYDRODYNAMIC, HYDROSTATIC OR HYBRID BEARINGS DETERMINED BY NUMERICAL SOLUTION OF REYNOLOS LUBRICATION EQUATION FOR INCOMPRESSIBLE FLUID FILMS ASME PAPER 66-LUBS-4

REYNOLDS NUMBER

AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS ASLE PREPRINT 65AM 3A1

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS

ASLE PREPRINT 65AM 3A1 A66-18289

CORROSION OF RHENIUM IN VARIOUS ACIDS AND HYDROXIDES IS ELECTROCHEMICAL IN NATURE AND DETERMINED BY KINETICS OF ANODIC AND CATHODIC PROCESSES INVOLVED A66-21748

EFFECTS OF SURFACE LUBRICATION BY HEAVY LAYER OF P-38 SYNTHETIC DIL FOR SLIP-RING ASSEMBLIES NASA-CR-64251

OIL OXIDATION EFFECT ON RUNNING-IN PROCESS OF RING-SOCKET PAIR IN INTERNAL COMBUSTION ENGINE FTD-TT-65-1039/18284 N66-23581

SUBLIMATION TECHNIQUE TO LUBRICATE SLIP RINGS IN HIGH VACUUM NASA-CR-75119

SYNTHESIS OF ALKYL, CYCLOALKYL, AND DICYCLOALKYL SULFIDES TO PROVIDE REFERENCE COMPOUNDS NECESSARY IN SEARCH FOR SIMILAR CLASSES OF SULFUR COMPOUNDS IN CRUDE CIL BM-RI-6796 N66-28345

ROCKET COMBUSTOR

HIGH PERFORMANCE ROCKET AND RAMJET COMBUSTORS. INTENSIFICATION OF COMBUSTION PROCESSES, AND DEVELOPMENT OF FUEL ADDITIVES N65

ROCKET ENGINE

FEASIBILITY OF LIQUID LUBRICATED HYDROSTATIC JOURNAL AND THRUST BEARINGS FOR LARGE LIQUID ROCKET ENGINE TURBOPUMPS REPT.-7439-Q-1 N65-19446

DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET ASLE PREPRINT 65-LC-16 A66-12253

DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET LUBRICANT ASLE PREPRINT 65-LC-16 A66-30574

THROAT EROSION RATES OF CARBON CHOKES IN ROCKET MOTOR NOZZLE PREDICTED, USING MATHEMATICAL APPROACH COMBINED WITH EXPERIMENTAL RESULT AIAA PAPER 65-351 A65-30199

ROLLER REARING

PROPERTY MEASUREMENTS AND CLASSIFICATION OF SOLID

LUBRICANTS

BALL AND ROLLER BEARING USES AND LUBRICATION

465-16468

A65-15941

HYDROMAGNETIC THEORY FOR SQUEEZE FILMS OF CONDUCTING LUBRICANTS WITH REFERENCE TO ROLLER AND SLIPPER BEARING

ASME PAPER 64-LUBS-12

APPLICABILITY OF ELASTICITY THEORY EQUATIONS FOR CYLINDERS IN DRY CONTACT TO PRESSURE DISTRIBUTION AT ROLLER AND BALL BEARING CONTACT POINTS IN PRESENCE OF LUBRICATING FILM

SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION SPONSORED BY INSTITUTION OF MECHANICAL ENGINEERS AT LEEDS, ENGLAND IN SEPTEMBER 1965 A65-32761

ELASTIC SLIPPING AND FRICTION COUPLINGS BETHEEN N65-24640 ROLLERS OF VARIOUS MATERIALS

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED,
HEAVILY LOADED ROLLING CONTACTS - MEASUREMENT OF
DEFORMATION BY X-RAY TECHNIQUE
ASD-TDR-61-643, PT. V N65-305 N65-30505

MATERIALS FOR USE AS ROLLING-CONTACT BEARING LUBRICANTS IN LIQUID HYDROGEN ENVIRONMENT ASLE PREPRINT 65-LC-9

BOOK ON DESIGN AND UTILIZATION OF ANTIFRICTION A66-26281

SLIDING CONTACTS IN ROLLER BEARINGS - WEAR TESTING MACHINE AND LUBRICANT TESTING N66-14463 AL65L081

NUMERICAL SOLUTION TO STRESSES IN LUBRICATED ROLLER BEARINGS WITH ARBITRARY DISTRIBUTED NORMAL AND TANGENTIAL LOADS N66-19381 MTI-65TR61

BRAYTON CYCLE TURBOMACHINERY ROLLING ELEMENT BEARING SYSTEM N66-14061

ROLLING CONTACT

CYLING LUNIAL CYLING FRICTION MEASUREMENTS INCLUDING ROLLING RATE, LOAD AND SPECIFIC PRESSURE, LUBRICATION, MATERIAL AND RADII OF CURVATURE EFFECTS 465-22965

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL OILS AND ESTERS A65-24250 ASLE PREPRINT 65AM 4A4

SURFACE TEMPERATURES OF FRICTIONAL CONTACTS CONSIDERING TWO ROLLING/SLIDING CONTACTS, HEAT SOURCE MOVING OVER SURFACE AT VARIOUS SPEEDS AND 465-25442 REPEATED CONTACT

WEAR DEBRIS AS FACTOR IN WEAR RATE OF ROLLING ELEMENT SUBJECTED TO TANGENTIAL SURFACE TRACTIONS A65-26571

SMALL-SCALE SLIP PROCESSES FROM APPLIED LOADING AND GEOMETRIC CONFORMITY BETWEEN ROLLING BODIES MEASURING WEAR AND CREEP A65-26572

ELECTRON MICROSCOPE STUDY OF SURFACE TOPOGRAPHY CHANGES IN RUNNING TRACK IN ROLLING CONTACT FATIGUE TESTER ASLE PAPER 64-LC-29

PRESSURE DISTRIBUTION OF COUNTERFORMEL CYLINDERS MEASURED TO DETERMINE HYDRODYNAMIC LOAD ASLE PAPER 64-LC-12

FAILURE POINT OF NONREACTIVE MINERAL OIL PREDICTED BY BLOK CRITICAL TEMPERATURE HYPOTHESIS IN ROLLING AND SLIDING CONTACT A65-31719 ASLE PAPER 64-LC-13

PRESSURE, TEMPERATURE AND FILM THICKNESS BETWEEN TWO CIRCULAR DISKS CORRELATED WITH THEORETICAL

SOLUTIONS OF THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF INFINITELY LONG ROLLERS

AL64T067

A65-32767

INFLUENCE OF LUBRICATION ON ENDURANCE OF ROLLING CONTACTS NA5-14058

ELASTOHYDRODYNAMIC LUBRICANT FILM EFFECTS IN ROLLING BALL TWO-BALL CONTACTS N65-15986

SPONTANEOUS TRANSITION OF SLIDING FRICTION TO ROLLING FRICTION WITH REFRACTORY VANADIUM AND MOLYBDENUM CARBIDES AT HIGH TEMPERATURES NASA-TT-F-9499

LUBRICANT EFFECT ON FATIGUE LIFE OF STATIONARY BALL ON FLAT CONTACT SUBJECTED TO OSCILLATORY NORMAL LOAD ASME PAPER 65-WA/CF-3

CORRELATION EQUATION ESTIMATING PITTING FATIGUE LIFE OF BEARINGS FROM MINIMAL ROLLING CONTACT RIG DATA ASME PAPER 65-WA/CF-5

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL DILS AND ESTERS

ROLLING FRICTION STUDIES OF INTERMETALLIC AND ZIRCONIUM OXIDE FOR CONTROL SURFACE BEARINGS FOR SPACE REENTRY VEHICLE ASLE PAPER 66AM 5D4

ROLLING CONTACT LUBRICATION CHARACTERISTICS OF POLYPHENYL ETHERS AND MINERAL DILS AT REDUCED PRESSURES N66-12142 NASA-TN-0-3130

FRICTION DUE TO BALL MOTION IN ANGULAR CONTACT BALL BEARING NASA-TM-X-52207 N66-28018

ROLLING CONTACT BEARING
LUBRICANT MATERIALS FOR ROLLING CONTACT BEARINGS
OPERATING IN LIQUID HYDROGEN ENVIRONMENT NASA-CR-69569

ROTATING CYLINDER HYDRODYNAMIC LUBRICATION OF TWO LIGHTLY LOADED TO ROTATING CIRCULAR CYLINDERS, WITH REFERENCE TO SUBCAVITY PRESSURE AND NUMBER OF STREAMERS IN

CAVITATION REGIONS

HYDRODYNAMIC BEARING LUBRICATION OF ROTATING CYLINDER WITH REFERENCE TO SUB-CAVITY PRESSURE AND CAVITATION REGIONS UDC-621.89.032

ROTATING DISK POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR PULENTIUSTATIC AND CURRUSIUM RESISTANCE (ESTS METALLIC INGOTS PREPARED AS ROTATING DISK ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS N66-13991 NASA-CR-68891

ROTATING MACHINE ROTATING MACHINES IN EXTREME ENVIRONMENT RUTATING THE THE TOTAL THE TOTAL THE TOTAL STATE THE TOTAL STA

A65-31144

ROTATING SHAFT
OYNAMIC RESPONSE OF OIL SEAL LIP TO SHAFT
ECCENTRICITY, NOTING FOLLOWABLE LIMITS
INDEPENDENCY TO SHAFT SPEED 465-14894

MICROIRREGULARITY LUBRICATION TO IMPROVE RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE SEAL ASME PAPER 65-LUB-11

MICROIRREGULARITY LUBRICATION TO IMPROVE RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE SEAL A66-24550 ASME PAPER 65-LUB-11

OIL CUSHION RESILIENCE IN HYDRODYNAMIC BEARINGS. EXAMINING EFFECT ON DYNAMIC BEHAVIOR OF UNSYMMETRICAL SHAFT WITH ONE DISK

A66-24999

WEAR AND GREASE LUBRICATION EFFECTS IN MATCHED AIRCRAFT SPLINE SPECIMENS SUBJECTED TO OSCILLATORY A66-30572

FLUID FILM SHAFT BEARINGS FOR LIQUID METAL PUMP -SNAP-50/SPUR POWERPLANT

N66-11819

ROTATION

REDUCTION OF FRICTION WITH FORCED ROTATION OF OUTER RACES OF BALL BEARINGS IN SUPPORTS OF INSTRUMENT SHAFTS N65-28269

ROTOR DYNAMICS TESTS WITH OVERHUNG MASS USING HYDROSTATIC WATER BEARINGS

HIGH SPEED ROTORS SUPPORTED IN JOURNAL BEARINGS WITH LOW VISCOSITY LUBRICANT IN JURBULENT FLOW MTI-65TR12 N66-20259

ROTOR GYROSCOPE

ROTORACE GYROS WHICH REDUCE GIMBAL FRICTION BY USE OF SPECIAL BALL BEARINGS IME PAPER 13

GYROSCOPIC ROTOR VIBRATIONS EXCITED BY EFFECT OF LUBRICATION LAYER IN SLIDING BEARINGS AND STABILIZED WITH INTERVENING ELASTODAMPING SUPPORTS, TAKING INTO ACCOUNT MOMENT OF INERTIA OF ROTOR A66-32605

RUPTURE

STRESS CORROSION RUPTURING OF TITANIUM ALLOY -FRACTURE MECHANICS NASA-CR-67710 N66-10876

FILM RUPTURE AND CAVITATION IN JOURNAL BEARINGS WITH LOW KINEMATIC VISCOSITY LUBRICANTS MTI-65TR13 N66-20254

LUBRICANT FILM-VAPOR INTERFACE ANALYSIS AFTER FLOW SEPARATION AND RUPTURE MTI-65TR58 N66-22717

S

SALT

CORROSION RATES OF MAGNESIUM AND MAGNESIUM ALLDYS
IN MAGNESIUM SALT SOLUTIONS OF CHLORIDE,
BROWLIDE, AND PERCHLORATE ECOM-2517

SALT STRESS CORROSION CRACKING OF RESIDUALLY STRESSED TITANIUM ALLOY BRAKE FORMED SHEET FOR SUPERSONIC TRANSPORT NASA-TM-X-1082 N65-20483

ALUMINUM SALTS OF SUBSTITUTED BENZOIC ACIDS FOR USE AS HIGH TEMPERATURE GREASE THICKENERS - BIBLIOGRAPHY WITH ABSTRACTS

SALT STRESS CORROSION OF RESIDUALLY STRESSED TITANIUM-ALUMINUM-MOLYBDENUM-VANADIUM ALLOY SHEET AFTER HIGH TEMPERATURE EXPOSURE NASA~TN-D-3299 N66-19104

RINSE SOLUTION CONTAINING ORGANIC ACIDS FOR IMPROVED SALT SPRAY RESISTANCE OF PHOSPHATE COATINGS FOR METAL SURFACES RIA-66-67

SALT STRESS CORROSION OF TI-8 AL-1 MO ALLOY SHEET AT ELEVATED TEMPERATURES - SURFACE TREATMENT NASA-TM-X-56881 N66-29401

SATURATION

ELASTICITY OF SATURATED VAPORS FROM LUBRICATING DILS AND GREASES FTD-TT-65-1063/16264 N66-18654 SATURN LAUNCH VEHICLE STRESS CORROSION CRACKING SUSCEPTIBILITY OF AM-355 STAINLESS STEEL ALLOY FOR USE IN SATURN LAUNCH VEHICLES

NASA-TM-X-53317 N65-32254

SCREENING TECHNIQUE

SCREENING OF HIGH TEMPERATURE BEARING ELEMENTS PR-3

SEA WATER

SULFUR AND SEA SALT CORROSIVE ATTACK ON TURBINE BLADES AND AERO ENGINES, EMPHASIZING MARINE CONDITIONS ASME PAPER 65-GTP-7

CATHODIC POLARIZATION OF SPENT ZINC PAINT COATINGS FOR INCREASED PROTECTION AGAINST SEA WATER CORROSION N66-19189

DYNAMIC RESPONSE OF OIL SEAL LIP TO SHAFT ECCENTRICITY, NOTING FOLLOWABLE LIMITS INDEPENDENCY TO SHAFT SPEED A65-14894

MICROIRREGULARITY LUBRICATION TO IMPROVE RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE SEAL ASME PAPER 65-LUB-11

MICROIRREGULARITY LUBRICATION TO IMPROVE RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE SEAL ASME PAPER 65-LUB-11

SEAL ING

SCREW TYPE CLEARANCE SEALS AND CONTACT SEALS DETAILING HYDROSTATIC SEAL DESIGN

A65-14886

FOIL BEARING THEORY TO EXPLAIN LUBRICATION CONDITION OF LIP SEAL, TAKING INTO ACCOUNT SURFACE ROUGHNESS EFFECT AND VISCOELASTIC PROPERTY OF MATERIAL

FRICTION REDUCTION IN PISTON TYPE HYDRAULIC SERVO VALVES - FINE FILTRATION OF OIL AND PISTON SEALING LAND TAPERING RAE-TN-GW-312

SELF-LUBRICATING MATERIAL

PROPERTIES, CHARACTERISTICS AND PERFORMANCE OF LUBRICANTS AND SELF-LUBRICATING MATERIALS USED IN SPACECRAFT SYSTEMS INCLUDING OILS, GREASES, PLASTICS, CERMETS, MOLYBDENUM SULFIDE, ETC A65-22744

HIGH HEAT CAPABILITY AND FRICTIONAL PROPERTIES MAKE TEFLON-LUBRICATED PHENOLIC RESIN COMPOUNDS DESIRABLE FOR BEARINGS A65-25642

ADAPTABILITY OF FABROID LOW FRICTION, SELF-LUBRICATING BEARING MATERIAL FOR OUTER SPACE ENVIRONMENT APPLICATION N65-17697

SELF-ACTING FOIL BEARING INFINITE WIDTH RR-65-14 N66-21481

CORRELATIONS BETWEEN SENSITIZATION AND STRESS CORROSION CRACKING OF 300 SERIES STAINLESS STEELS CEND-3256-250 N66-27561

SEPARATION

FORCED CIRCULATION, CROLDY 9 M MERCURY LOOP DESIGNED TO INVESTIGATE CORROSION PRODUCT SEPARATION TECHNIQUES NASA-CR-217 N65-21161

FORCED CIRCULATION, HAYNES ALLOY 25, MERCURY LOOP TO STUDY CORROSION PRODUCT SEPARATION NASA-CR-241

EFFECT OF FRICTION ON DYNAMICS OF SERVO SYSTEMS WITH RANDOM SELECTION OF MECHANICAL

RESISTANCE MAGNITUDE

N65-31656

SHAFT
GRAPHICAL METHOD FOR OPTIMIZING BEARING SPAN WITH
RESPECT TO REDUCING SHAFT BENDING AND BEARING
DEFLECTION TO MINIMUM
A65-25644

SHEAR CREEP

SMALL-SCALE SLIP PROCESSES FROM APPLIED LOADING
AND GEOMETRIC CONFORMITY BETWEEN ROLLING BODIES,
MEASURING WEAR AND CREEP

A65-265/2

SHEAR STRENGTH

LAMELLAR SOLID LUBRICATION - CLEAVAGE, STRESS
RELAXATION, AND SHEAR STRENGTH OF GRAPHITE
AFML-TR-65-5
N65-26072

SHEARING STRESS
FLOW OF NONLINEAR VISCOPLASTIC MEDIUM BETWEEN TWO
PLATES N66-26219

CHEET METAL

DEFORMATION THEORY APPLICATIONS, LUBRICATION,
EXTRUSION LIMITATIONS, AND THIN SHEET ROLLING
PROBLEMS IN METAL WORKING
MAD-206-M/3/
N66-21312

SHIP HULL
CATHODIC PROTECTION SYSTEM FOR SHIP HULL —
CORROSION PREVENTION
REPT.—-64-2
N65-17412

CORROSION RESISTANT SYNTHETIC PAINTS FOR SHIP HULLS ONI-TRANS-2108 N66-25851

SHOCK LOAD

EXPLOSIVE DEFORMATION EFFECT ON STRESS-CORROSION
AND MECHANICAL PROPERTIES OF 7075 ALUMINUM ALLOY
A66-2801

SHOT PEENING
SHOT PEENING FOR RESISTANCE TO STRESS CORROSION
CRACKING OF HIGH STRENGTH STEEL AND ALUMINUM
ALLOYS AND TO IMPROVE FATIGUE LIFE OF LANDING
GEARS, WING SPARS, JET ENGINE COMPONENTS AND OTHER
STRUCTURAL PARTS
A66-25771

ILAME
OIL ADDITIVE TO SUPPRESS VANADIUM FUEL CORROSION TETRAETHOXYSILANE
FTD-TT-65-505/1&4
N66-12831

SILICON ALLOY
STRESS CORROSION AND HIGH TEMPERATURE PROPERTIES
OF MAGNESIUM-LITHIUM-SILICON ALLOYS
FA-A64-31
N65-36228

SILICON CARBIDE
FRICTIONAL PROPERTIES OF SILICON NITRIDE AND
CARBIDE DURING RECIPROCATING SLIDING BETWEEN
HEMISPHERICAL STYLUS AND POLISHED HORIZONTAL
SECTION A66-30253

SILICON COMPOUND
COMPARISON OF VARIOUS POLYORGANOSILOXANE LIQUIDS
FOR USE AS BASES IN HIGH TEMPERATURE CONSISTENT

FTD-TT-65-322/16264

CORROSION RESISTANCE TESTS ON HIGH SILICON
ALUMINUM ALLOYS
N66-1293

BNWL-125 N66-12932
SILICON FILM

SLIDING VELOCITY AND TEMPERATURE EFFECT ON LUBRICATING PROPERTIES OF POLYETHYLSILOXANE SOLUTIONS IN PETROLEUM A65-20015

SILICON NITRIDE
FRICTIONAL PROPERTIES OF SILICON NITRIDE AND
CARBIDE DURING RECIPROCATING SLIDING BETWEEN
HEMISPHERICAL STYLUS AND POLISHED HORIZONTAL
SPECIMEN
A66-30253

SILICONE

BEST LUBRICANT CHARACTERISTICS OF ESTERS,
SILICONES AND FLUORINATED HYDROCARBONS COMBINED IN
NEW SYNTHETIC LUBRICANT

A65-33627

STABILIZATION OF SILICONE LUBRICATING FLUIDS AT 300 TO 400 DEG C BY SOLUBLE CERIUM COMPLEXES NRL-6156 N65-Z2145

PHYSICAL PROPERTIES OF NEW CLASS OF LUBRICANTS, METHYL ALKYL SILICONES, ILLUSTRATING EXCEPTIONAL LUBRICATING ABILITY ASLE PREPRINT 65-LC-4

PHYSICAL PROPERTIES OF NEW CLASS OF LUBRICANTS,
METHYL ALKYL SILICONES, ILLUSTRATING EXCEPTIONAL
LUBRICATING ABILITY
ASIE PREPRINT 65-LC-4
A66-2498

SILICONE OIL STABILITY AND OXIDATION RESISTANCE
ENHANCED BY CYCLOPENTADIENYL TRICARBONYL
MANGANESE
FTD-TT-65-520/184
N66-1375

PLASTIC RESEARCH - SILICONE FLUIDS TO DECREASE ADHESION OF PLASTIC TO SOLID SURFACES, AND LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES OF POLYAMIDES
FID-11-65-909/18284

N66-2275

EFFECT OF FINELY DIVIDED MATERIALS ON POLYDIMETHYL SILICONE OIL - FILLER REINFORCEMENT IN SILICONE LIQUID POLYMERS N66-31918

SILOXANE
COMPARISON OF VARIOUS POLYORGANOSILOXANE LIQUIDS
FOR USE AS BASES IN HIGH TEMPERATURE CONSISTENT
UILS
FTO-TT-65-322/1&2&4
N65-316

ORGANIC SILOXANE POLYMER LIQUIDS AS COMPONENTS OF HIGH TEMPERATURE LUBRICATING OILS FID-TT-65-322/18284 N65-35941

POLYSILOXANES AS ANTIFRICTION AND ANTIWEAR
ADMIXTURES TO PETROLEUM GREASES
FTD-TT-65-316/18284 N66-12375

OIL ADDITIVE ACTION ON WEAR RESISTANCE AND ANTIFRICTION PROPERTIES OF POLYSILOXANE N66-13717

EFFECTS OF ORGANIC ADDITIVES CONTAINING SULFUR, CHLORINE, AND PHOSPHOROUS ON POLYSILOXANE LUBRICANTS
FSTC-381-T65-553
N66-2001

SILVER
ELECTRIC WEAR RESISTANCE OF SILVER AND CERMET
CONTACTS
N66-13269

SILVER CHLORIDE
LIQUID METAL EMBRITTLEMENT NOTING STRESS AND
INTERGRANULAR CORROSION, HYDROGEN EMBRITTLEMENT
AND BEHAVIOR OF SILVER CHLORIDE CRYSTAL
A66-11698

SILVER COMPOUND

CHEMICAL STABILITY OF SILVER GRAPHITE, MOLYBDENUM DISULFIDE, ZINC OXIDE, BORON NITRIDE, MUSCOVITE AND PHLOGOPITE MICA SOLID LUBRICANTS

A66-31675

SIMULATION
PROTYPE CORROSION TEST LOOP FOR EVALUATION OF
REFRACTORY ALLOYS IN BOILING AND CONDENSING
POTASSIUM ENVIRONMENTS - SIMULATION OF PROJECTED
SPACE ELECTRIC POWER SYSTEMS
NASA-54344
N65-21626

SINGLE CRYSTAL
ORIENTATION EFFECT ON FRICTION CHARACTERISTICS OF
SINGLE CRYSTAL BERYLLIUM IN VACUUM
NASA-TN-D-3485
N66-29866

SINTERED ALUMINUM POMDER
SEIZING EFFECT AT INTERFACES SAP-SAP AND SAPAL, NOTING OPTIMUM THERMOMECHANICAL CONDITIONS
A66-28196

INDIVIDUAL STRUCTURAL ELEMENTS CONNECTED INTO NONDETACHABLE STRUCTURES, USING SEIZING PHENOMENA, EXPERIMENTING WITH SINTERED ALUMINUM POWDER

N65-31637

ELEMENTS

A66-28197

N65-33871

SINTERING

ACCELERATED COOLING OF FERRITIC-MARTENSITIC STEEL AND FERRITIC STEEL AFTER SINTERING, COMBINED WITH ADDITIONAL HEAT TREATMENT, INCREASES STRENGTH AND CORROSION RESISTANCE A66-16690

FRICTION COEFFICIENTS AND WEAR CHARACTERISTICS FOR X-15 AIRCRAFT SKID LANDING GEAR NASA-TN-D-3331 N66-18172

SKIN

PROTECTIVE COATINGS EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS NASA-CR-67014

SLIDING CONTACT

TRACK CURVE MADE BY PIVOT CENTER POINT OF DYNAMICALLY LOADED CYLINDRICAL SLIDING BEARING OF ARBITRARY CROSS SECTION A65-21245

ELECTRICAL SLIDING CONTACT LUBRICATION BY NIOBIUM DISCLENIDE COMPARED WITH MOLYBDENUM DISCUETED FOR SPACE APPLICATION A65-31094 A65-31094

FAILURE POINT OF NONREACTIVE MINERAL OIL PREDICTED BY BLOK CRITICAL TEMPERATURE HYPOTHESIS IN ROLLING AND SLIDING CONTACT ASLE PAPER 64-LC-13

INERTIA, TURBULENT AND VISCOUS TERMS COMPUTED FOR SLIDER BEARING LUBRICATION, USING MATRIX ALGEBRA METHODS ASLE PAPER 64-LC-16

PRESSURE, TEMPERATURE AND FILM THICKNESS BETWEEN TWO CIRCULAR DISKS CORRELATED WITH THEORETICAL SOLUTIONS OF THERMAL ELASTOHYDRODYNAMIC

LUBRICATION OF INFINITELY LONG ROLLERS A65-32767

SLIDING CONTACTS IN ROLLER BEARINGS - WEAR TESTING

MACHINE AND LUBRICANT TESTING AL65L081

STRUCTUREBORNE AND AIRBORNE VIBRATION STUDIES OF ROLLING ELEMENT AND SLIDING SURFACE BEARINGS F-A2321

SLIDING FRICTION

FILMS ON SLIDING SURFACES INVESTIGATING EFFECTS ON SEIZURE, PRESSURE WELDING, SINTERING, FRICTION AND BOUNDARY LAYER LUBRICATION A65-15683

PROPERTY MEASUREMENTS AND CLASSIFICATION OF SOLID A65-15941

HYDROCARBON BOUNDARY LUBRICATION OF HARD STEEL, RELATING FRICTION AND WEAR TO HYDROCARBON STRUCTURE AND OXYGEN CONCENTRATION ASLE PAPER 64-LC-4 A65-18053

LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR BELOW AND ABOVE FILM MELTING POINT ASLE PAPER 64-LC-6

HEAR MACHINE LUBRICANTS EFFECT ON TRANSITION TEMPERATURE DISCUSSING VISCOSITY, SPEED AND LOAD ASLE PAPER 64-LC-7 A65-18055

FRICTION AND WEAR OF SLIDING MATERIALS PREDICTED BY ADHESION-PLASTIC DEFORMATION THEORY

A65-18331

DEGRADATION OF FLUOROCARBON TELOMERS, PTFE, PCFE, POLYIMIDE, EPOXY COMPOSITIONS IN EVAPORATION AND SLIDING FRICTION EXPERIMENTS AT LP AND HIGH TEMPERATURES A65-18793

SLIDING VELOCITY AND TEMPERATURE EFFECT ON LUBRICATING PROPERTIES OF POLYETHYLSILOXANE SOLUTIONS IN PETROLEUM A65-20015

FRICTION MEASUREMENT AND GASES EVOLVED DURING CLEAVAGE OF LAMELLAR SOLIDS IN ULTRAHIGH VACUUM

ASLE PAPER 64-LC-18

A65-22791

LIFE EXPECTANCY OF MOLYBORNUM DISULFIDE LUBRICANT FILM VARIES WITH PRESENCE OF DXYGEN AND ADDITION OF GRAPHITE ASLE PAPER 64-LC-30 A65-22793

NON- NEWTONIAN LUBRICANT FLOW IN SLIDER BEARING, USING CONSTITUTIVE EQUATION CONTAINING STRESS NONL THEAR ITIES ASLE PAPER 64-LC-17 A65~22797

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA A65~23565

GOLD PLATING COATED WITH DRY THIN TEFLON LUBRICANT FILM SYSTEM FOR LONG LIFE SLIDING ELECTRIC CONTACT ON MICROWAVE DEVICE

A65-24115

A65-24242

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR ASLE PREPRINT 65AM 6A1

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LOADS, SPEEDS AND LUBRICANTS
ASLE PREPRINT 65AM 6A2
A65-2425 A65-24258

NONHOLONOMIC COUPLING ACHIEVED BY MEANS OF VISCOUS FRICTION FORCES, USING CHAPLYGIN SLEDGE A65-26089

VANISHING OF SLIDING IN MECHANICAL SYSTEMS WITH DRY FRICTION A65-27690

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA A65-31530

KINETICS OF POLYTETRAFLUOROETHYLENE /PTFE/ SLIDING ON PTFE, OBSERVED BY CONSTANT FORCE OF FRICTION AND MEASURING SLIDE VELOCITY ML-TDR-64-303 N65-27803

STABILITY OF MOTION OF GYROSCOPE ON HORIZONTAL PLANE UNDER DRY SLIDING FRICTION ACTIVITY

DETERMINATION OF FRICTION IN SLIDE GUIDES, ANTIFRICTION PROPERTIES OF MATERIALS USED FOR STRAP GUIDES, AND FRICTION COEFFICIENT DEPENDING ON DURATION OF CONTACT AND SLIDING SPEED FTD-TT-64-1179/162 N65-28504

SPONTANEOUS TRANSITION OF SLIDING FRICTION TO ROLLING FRICTION WITH REFRACTORY VANADIUM AND MOLYBDENUM CARBIDES AT HIGH TEMPERATURES NASA-TT-F-9499

TEST RIG FOR RELIABILITY, DESIGN OF SLIDING FRICTION TEST SPECIMEN, AND CALIBRATION TECHNIQUE - HIGH TEMPERATURE BEARING ELEMENTS INVESTIGATION PR-2

DEGRADATION OF POLYMER COMPOSITIONS IN VACUUM IN EVAPORATION AND SLIDING FRICTION EXPERIMENTS NASA-TM-X-54549 N65-35203

GRAPHITE CONTENT EFFECT ON ANTIFRICTION PROPERTIES OF GRAPHITIZED NICKEL-BASED COPPER AND IRON ALLOYS A66-10745

SLIDING FRICTION MEASUREMENTS OF SOME LAYER LATTICE COMPOUNDS IN ULTRAHIGH VACUUM ASLE PREPRINT 65-LC-19

FRICTION INDUCED VIBRATION TO DETERMINE EXISTENCE
OF CRITICAL VELOCITY OF DRIVEN SURFACE
ASME PAPER 65-LUB-5
A66-14241

FRICTIONAL AND VISCOELASTIC PROPERTIES OF PLASTICS AND RUBBER SHOW RELATIONSHIP TO SLIDING SPEED AND **TEMPERATURE** ASME PAPER 65-LUB-15

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR

ASLE PREPRINT 65AM 6A1

SLIDING FRICTION AND COMPRESSION TESTING OF RIGID A66-25303 POLYURETHANE FOAMS

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR SURFACE KUUGHNESS EFFECT UN BUUNDARY VARIOUS LOADS, SPEEDS AND LUBRICANTS ASLE PREPRINT 65 AM 6AZ A66-25367

SLIDING WEAR EVOLUTION AND RADIDACTIVE TRACER A66-28466 MEASUREMENT

FRICTIONAL PROPERTIES OF SILICON NITRIDE AND CARBIDE DURING RECIPROCATING SLIDING BETWEEN HEMISPHERICAL STYLUS AND POLISHED HORIZONTAL A66-30253

SLIDING FRICTION MEASUREMENTS OF SOME LAYER LATTICE COMPOUNDS IN ULTRAHIGH VACUUM ASLE PREPRINT 65-LC-19

A66-30569

SLIDING CHARACTERISTICS OF POLYTETRAFLUOROETHYLENE
/ PTFE/ DRY LUBRICANT, EXAMINING EFFECTS OF TIME,
TEMPERATURE AND ENVIRONMENT A66-30570

GYROSCOPIC ROTOR VIBRATIONS EXCITED BY EFFECT OF LUBRICATION LAYER IN SLIDING BEARINGS AND STABILIZED WITH INTERVENING ELASTODAMPING SUPPORTS, TAKING INTO ACCOUNT MOMENT OF INERTIA OF A66-32605

HIGH LOAD, LOW SPEED SLIDING FRICTION TESTS ON FLUID LUBRICANTS AND DRY LUBRICANTS FOR DETERMINING COEFFICIENT OF FRICTION N66-10669 NASA-TH-X-53331

SLIDING FRICTION JOURNAL BEARING FOR TURBOCOMPRESSOR AND OTHER HIGH SPEED MACHINES FTD-TT-65-517/18284 N66-10873

MOLYBDENUM DISULFIDE SOLID LUBRICANT PROPERTIES - COMPRESSION, TENSION, TORSION, COHESION, ADDESION, AND SLIDING FRICTION MEASUREMENTS N66-14469

IN-FLIGHT TEST TO DETERMINE SPACE ENVIRONMENTAL EFFECTS ON FRICTION, WEAR, AND LUBRICATION OF MATERIALS - PROPOSED MODULAR SYSTEM N66-15241 NASA-TH-X-54967

FRICTION AND WEAR BETWEEN UNLUBRICATED METAL AND NONMETAL SURFACES

SURFACE TEMPERATURES AT SLIDING INTERFACES IN VACUA AND METAL ADHESION, AND FRICTION AND WEAR APPARATUS N66-27676 ML-TDR-64-97

ORIENTATION EFFECT ON FRICTION CHARACTERISTICS OF SINGLE CRYSTAL BERYLLIUM IN VACUUM N66-29866 NASA-TN-D-3485

ELASTIC SLIPPING AND FRICTION COUPLINGS BETWEEN
ROLLERS OF VARIOUS MATERIALS
N65-246 N65-24640

SNAP- 2 SYSTEM FOR NUCLEAR AUXILIARY POWER- 2 /SNAP-2 POWER CONVERSION SYSTEM - SELECTION OF MATERIALS WITH MINIMUM FORMATION OF CORROSION PRODUCTS

N65-36569 TRH-FR-5643

S NAP-8 MATERIALS RESEARCH - MERCURY CORROSION CAPSULE TESTS OF FERRITIC ALLOYS FOR MASS TRANSFER, STRESS CORROSION, MODE OF ATTACK, AND MECHANICAL PROPERTIES NASA-CR-62379

S NAP-8 CORROSION PROGRAM - HYDROGEN SOLUBILITY IN SODIUM-POTASSIUM, PERMEABILITY OF HYDROGEN AND DEUTERUM THROUGH STAINLESS STEEL, AND PHASE EQUILIBRIA

NASA-CR-63196

N65-25409

S NAP-8 REACTOR OSCILLATING BEARINGS TO PROVIDE LOW FRICTION SELF-LUBRICATION AT 1150 DEGREES A66-30414

S NAP-8 REACTOR MATERIALS DEVELOPMENT PROGRAM -LUBRICANT, COOLANT, CORROSION LOOP, AND STRUCTURAL MATERIALS EVALUATION NA6-15186 NASA-CR-54718

CORROSION LOOP PROGRAM TO INVESTIGATE STRUCTURAL MATERIALS AND NA K COOLANT IN SNAP-8 PRIMARY COOLANT CIRCUIT NASA-CR-69822

DIFFERENCES IN CORROSION AND MASS TRANSFER RATES IN CORROSION LOOPS FOR SNAP-8 SYSTEM AND EFFECTIVENESS OF COLD TRAPPING IN REDUCING HYDROGEN CONCENTRATION NASA-CR-67272

FORCED FLOW CORROSION-LOOP EXPERIMENTS AND CORROSION-LOOP MATERIAL STUDIES IN SNAP-8 CURROSION PROGRAM N66-30971 NASA-CR-76382

SNAP PROGRAM FRICTION AND WEAR OF FIVE BEARING-RETAINER MATERIALS, AND THERMAL STABILITY AND LIQUID COMPATIBILITY OF POLYPHENYL ETHER LUBRICANTS FOR SNAP SPACE POHER GENERATOR

NASA-TN-D-2663

LIQUID MERCURY AND ALKALI HALIDE METALS LOOP FOR LIQUID METAL LUBRICATED ROTOR BEARINGS -SNAP MTI-64TR72, REV.-2

CORROSION RESISTANCE OF MOLYBDENUM-CHROMIUM STEEL IN MERCURY FORCED CONVECTION CORROSION LOOP FOR NUCLEAR AUXILIARY POWER SYSTEM COMPONENTS NASA-CR-54719

CORRUSION RESISTANCE AND ENVIRONMENT EFFECT ON STEEL ALLOY COMPONENTS OF SNAP-8 N66-24442 NASA-CR-54719

ULTRAHIGH-VACUUM FRICTION STUDIES OF SNAP REACTOR MATERIALS N66-27134 NAA-SR-9644

COLD WELDING OF METAL CONTACTING SURFACES OF SYSTEM FOR NUCLEAR AUXILIARY POWER-19 EJECTION MECHANISMS AND MINIMIZATION WITH LUBRICANT APPLICATION N65-25522

FLUID FILM SHAFT BEARINGS FOR LIQUID METAL PUMP -SNAP-50/SPUR POWERPLANT N66-11819 TIM-916

MND-3169-66

SUBSURFACE TRANSPORTATION TESTS FOR TRAFFICABILITY
OF WHEELED VEHICLES IN DEEP SNOW
1R-160
N66-29932

ALUMINUM COMPLEX SOAPS AS THICKENERS FOR MULTIPURPOSE GREASE N65-18869 RIA-64-3160

CALCIUM SOAPS OF SYNTHETIC FATTY ACID FRACTION AS METAL DRAWING LUBRICANT FTD-TT-64-1197/1

HIGH TEMPERATURE OXIDATION RESISTANCE OF ALUMINUM COMPLEX SOAP GREASE N66-20013 RIA-65-3264

PHYSICAL PROPERTIES OF METAL SOAP OIL SYSTEM **BEHAVIOR** N66-22765 NRL-6361

STAINLESS STEEL CORROSION REACTIONS AND MECHANISMS IN SODIUM-POTASSIUM SERVICE

IDO-14651

N65-19660

N65-31073

ELECTROCHEMICAL CORROSION OF CAST IRON IN SODIUM AND POTASSIUM SOLUTIONS

PROM .- 3549

EFFECT OF SODIUM NITRITE ON CORROSION OF TITANIUM BY HYDROCHLORIC AND SULFURIC ACID

N66-10298

SODIUM TECHNOLOGY AS RELATED TO NUCLEAR REACTOR TECHNOLOGY - MATERIALS SCIENCE, CORROSION, PURITY CONTROL, OPERATIONS, HEAT TRANSFER, AND THERMAL CYCLING N66-17405

STRESS CORROSION EFFECTS ON HEAT RESISTANT ALLOYS
BY SODIUM CONTAINING ADMIXTURES
FTD-TT-65-1050/16264 N66-1853 N66-18539

MASS TRANSFER AND CORROSION RATES OF MATERIALS IN FLOWING SODIUM

SODIUM CHLORIDE

ELECTROCHEMICAL ASPECTS OF CORROSION OF ALUMINUM ALLOYS IN SODIUM CHLORIDE AT ELEVATED TEMPERATURES IN TITANTUM DYNAMIC LOOP FACILITY ORNL-P-1430 N66-11492

ZIRCONIUM CORROSION IN MOLTEN EQUIMOLAR MIXTURE OF POTASSIUM AND SODIUM CHLORIDES N66-17783

SODIUM COOLING

CORROSION LOOP PROGRAM TO INVESTIGATE STRUCTURAL MATERIALS AND NA K COOLANT IN SNAP-8 PRIMARY COOLANT CIRCUIT NASA-CR-69822 N66-16305

SODIUM NITRATE

STEEL PIPE HOT ROLLING LUBRICATION BY GRAPHITE AND SODIUM NITRATE SUSPENSION IN CALCIUM HYDROXIDE SOLUTION FTD-TT-64-1086/1 N65-22403

RADIATION RESISTANCE OF AQUEOUS SODIUM NITRITE USED TO INHIBIT STEEL CORROSION UJV-1453/65 N66-31045

SODIUM SULFITE

HOT CORROSION MECHANICS OF NICKEL AND COBALT IN HIGH TEMPERATURE SULFUR-OXYGEN ENVIRONMENT

ACCELERATED HIGH TEMPERATURE NICKEL OXIDATION BY SODIUM SULFATE N66-28680

HIGH TEMPERATURE CURROSION OF NICKEL AND NICKEL ALLOYS BY SODIUM SULFATE N66-28

HOT CORROSION BEHAVIOR OF NICKEL AND COBALT ALLOYS EXPOSED TO SULFATE INDUCED OXIDATION

N66-28683

SOIL

ADSORPTION AND FRICTION OF MINERALS UNDER HIGH VACUUM AND EXTREME TEMPERATURE CONDITIONS — ENGINEERING BEHAVIOR OF PARTICULATE SYSTEM WITH CLEAN, DRY SURFACES
R64-42 N65-30626

CORROSION OF CAST IRON PIPES AS ELECTROBIOCHEMICAL PROCESS IN ANAEROBIC SOIL FD3-3957/T-166-/ N65-32693

SOLDERING

SOLDER DISSOLUTION OF METAL BEING SOLDERED N65-20203

SOLID LUBRICANT

PROPERTY MEASUREMENTS AND CLASSIFICATION OF SOLID LUBRICANTS A65-15941

EVALUATION OF INORGANIC SOLID FILM LUBRICANTS BEING DEVELOPED FOR SPACE ENVIRONMENTS A65-17481

DEGRADATION OF FLUOROCARBON TELOMERS. PCFE, POLYIMIDE, EPOXY COMPOSITIONS IN EVAPORATION AND SLIDING FRICTION EXPERIMENTS AT LP AND HIGH TEMPERATURES

A65-18 A65-18793 FRICTION COEFFICIENT AT ELEVATED TEMPERATURES DETERMINED BY PLANE-STRAIN COMPRESSION TEST OF SEVERAL LUBRICANTS A65-18794

RESIN BONDED SOLID FILM LUBRICANT EFFECTIVENESS AND CORROSION PROTECTION STUDY RESTRICTED TO STEEL A65-20033

DRY FILM LUBRICATION MATERIALS AND BONDING
INCLUDING GRAPHITE, SELENIDES, PTFE AND PARTICLE,
RESIN OR SALT-BONDING
A65-20150 A65-20150

FRICTION MEASUREMENT AND GASES EVOLVED DURING CLEAVAGE OF LAMELLAR SOLIDS IN ULTRAHIGH VACUUM ASLE PAPER 64-LC-18 A65-22791

LUBRICATION BY CONTINUOUS TRANSFER OF SOLID FILMS, EXAMINING LOAD CARRYING CAPACITY OF GRAPHITE AND MOLYBDENUM DISULFIDE ASLE PAPER 64-LC-19

LIFE EXPECTANCY OF MOLYBDENUM DISULFIDE LUBRICANT FILM VARIES WITH PRESENCE OF DXYGEN AND ADDITION OF GRAPHITE ASLE PAPER 64-1C-30

MOLYBDENUM SULFIDE AND TEFLON AS SOLID FILM LUBRICATING MATERIALS FOR SPACECRAFT APPLICATIONS CONSIDERING LOW FRICTION COEFFICIENT, WEAR RATE,

SPACE ENVIRONMENT SIMULATION TEST EQUIPMENT FOR EVALUATING FLUID LUBRICANTS AND LUBRICATING

HIGH TEMPERATURE LUBRICATION, SUPPLYING GRAPHS OF FRICTION COEFFICIENT A65-23513

GOLD PLATING COATED WITH DRY THIN LUBRICANT FILM SYSTEM FOR LONG LIFE SLIDING ELECTRIC CONTACT ON MICROWAVE DEVICE

A65-24115

PHYSICAL AND CHEMICAL PROPERTIES OF DICHALCOGENIDES OF GROUP VB AND VIB METALS FOR USE AS AEROSPACE SOLID LUBRICANTS, PRIMARILY FRICTION AND ANTINEAR CHARACTERISTICS ASLE PREPRINT 65AM 5C3

A65-24245

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4 A65-24248

CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE **ENVIRONMENT** ASLE PREPRINT 65AM 5C5

HIGH HEAT CAPABILITY AND FRICTIONAL PROPERTIES
MAKE TEFLON-LUBRICATED PHENOLIC RESIN COMPOUNDS
DESIRABLE FOR BEARINGS
A65-256 A65-25642

DRY AND FLUID LUBRICATION EFFECTS ON INSTRUMENT BALL BEARING TORQUES AT HIGH SPEED

A65-26662

DIFFUSION OF CARBON INTO TUNGSTEN AND MOLYBDENUM AT LOW CARBON CONCENTRATIONS AND HIGH TEMPERATURE

PURITY AND GRAIN SIZE OF VARIOUS NATURAL AND SYNTHETIC MOLYBDENUM DISULFIDE INFLUENCING FRICTION AND WEAR OF METAL SURFACES WHEN USED AS LUBRICANT A65-30156

THIN FILM LUBRICANT DEVELOPED FOR GOLD-PLATED ELECTRIC CONTACTS DISCUSSING CHARACTERISTICS, PERFORMANCE AND TESTING A65-: A65-30815

ELECTRICAL SLIDING CONTACT LUBRICATION BY NIOBIUM DISELENIDE COMPARED WITH MOLYBDENUM DISULFIDE FOR SPACE APPLICATION

SINTERING METHOD TO PROVIDE DESIRED PRECIPITATION HARDENABLE HIGH TEMPERATURE BEARING MATERIAL WITH PREFERRED LATTICE STRUCTURE SAE PAPER 650796 A65-34836 MOLYBDENUM DISULPHIDE-GRAPHITE ALLOY AS SOLID LUBRICANT DEMONSTRATING VERY LOW COEFFICIENT OF 465-36165

SOLID FILM LUBRICATED BEARINGS - SOLID LUBRICANTS AND BEARINGS EVALUATION N65-16124 PWA-2354

FRICTION COEFFICIENTS OF INORGANIC SOLID FILM LUBRICANTS FOR USE IN SPACE ENVIRONMENTS N65-17276 NASA-CR-60783

NUCLEAR REACTOR RADIATION EFFECT ON HIGH TEMPERATURE SOLID FILM LUBRICANTS F7K-212

SOLID MOLYBDENUM DISULFIDE LUBRICANT APPLIED TO CUTTING PORTION OF TOOLS AND FRICTIONAL PARTS DE MACHINES N65-22441 FTD-TT-64-1148/1

LAMELLAR SOLID LUBRICATION - CLEAVAGE, STRESS RELAXATION, AND SHEAR STRENGTH OF GRAPHITE N65-26072 AFML-TR-65-5

POWDER LUBRICANT ADAPTATION TO SPACE POWER UNIT REACTOR / SPUR/ GEAR OPERATION UNDER HIGH SPEED AND HIGH TEMPERATURE ENVIRONMENTAL CONDITIONS N65-26564

WEAR AND FRICTION OF HIGH TEMPERATURE SOLID FILM LUBRICANT IN HIGH VACUUM AND IN AIR

N65-29941

N65-22421

SLIDING FRICTION MEASUREMENTS OF SOME LAYER LATTICE COMPOUNDS IN ULTRAHIGH VACUUM ASLE PREPRINT 65-LC-19

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION A66-13398

ASLE PREPRINT 65AM 5C4 CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE ENVIRONMENT

ASLE PREPRINT 65AM 5C5

A66-18284

SOLID AND DRY-FILM LUBRICANTS, TABULATING KINETIC COEFFICIENTS OF FRICTION, NOTING PARTICLE SIZE, VISCOSITY, COSTS, WEAR LIFE, APPLICATION, ETC 466-24099

FOUR-BALL WEAR TESTER TO EVALUATE SOLID LUBRICANT DISPERSIONS INCLUDING MOLYBDENUM DISULFIDE

WEAR LIFE AND CORROSION PROTECTION OF SOLID FILM LUBRICANTS IMPROVED THROUGH SUBSTITUTING OTHER LUBRICATIVE PIGMENTS FOR GRAPHITE A66-30405 ASLE PAPER 66AM 1C3

HEAVY METAL DERIVATIVE SOLID LUBRICANTS, PROPERTIES AND APPLICATION A66-30406 ASLE PAPER 66AM 2B3

LIQUID SOLID FILM LUBRICATION OF HYDRODYNAMIC BEARINGS, INCLUDING EFFECTS OF SOLID PARTICLES IN LIQUID BASE LUBRICANT 466-30412 ASLE PAPER 66AM 5DF

SLIDING FRICTION MEASUREMENTS OF SOME LAYER LATTICE COMPOUNDS IN ULTRAHIGH VACUUM ASLE PREPRINT 65-LC-19 A66-30569

SLIDING CHARACTERISTICS OF POLYTETRAFLUOROETHYLENE
/ PTFE/ DRY LUBRICANT, EXAMINING EFFECTS OF TIME,
TEMPERATURE AND ENVIRONMENT A66-30570

CHEMICAL STABILITY OF SILVER GRAPHITE, MOLYBDENUM DISULFIDE, ZINC OXIDE, BORON NITRIDE, MUSCOVITE AND PHLOGOPITE MICA SULID LUBRICANTS 466-31675

GRAPHITE LUBRICANT PHYSICAL AND CHEMICAL COMBINATIONS WITH OTHER MATERIALS FOR IMPROVED HIGH TEMPERATURE FRICTION AND WEAR, DISCUSSING NUCLEAR IRRADIATION FOR GRAPHITE LATTICE MODIFICATION

HIGH LOAD, LOW SPEED SLIDING FRICTION TESTS ON FLUID LUBRICANTS AND DRY LUBRICANTS FOR CETERMINING COEFFICIENT OF FRICTION N66-10669 NASA-TM-X-53331

MOLYBDENUM DISULFIDE SOLID LUBRICANT PROPERTIES -COMPRESSION, TEMSION, TORSION, COHESION, ADDRESSION, AND SLIDING FRICTION MEASUREMENTS RS-460

FLUORIDE SOLID LUBRICANTS FOR EXTREME TEMPERATURE AND CORROSIVE ENVIRONMENTS NASA-TM-X-52077 N66-1524

ANNOTATED BIBLIOGRAPHY ON SOLID LUBRICANTS - WITH NASA-SP-5037

CONFERENCE ON LUBRICATION TECHNIQUES AND SEAL DESIGN FOR ORBITAL MANNED SPACE LABORATORY DOOR ACTUATOR N66-17440 AD-623336

SOLID LUBRICATION OF MANNED ORBITAL SPACE STATION DOOR ACTIVATOR

DRY FILM LUBRICANT DEVELOPMENT AND PERFORMANCE COMPARISON WITH LIQUID LUBRICANTS

MOLYBDENUM DISULFIDE-BASE SOLID LUBRICANTS WITH LOW FRICTION COEFFICIENTS BETWEEN COUPLED ELEMENTS N66-31864 ATD-66-52

SOLID SOLUTION CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC MG- ZN ALLOYS IN HALIDE SOLUTION A66-26026

LUBRICATION MECHANISMS AND EFFECTS OF CRYSTAL-LATTICE STRUCTURE, HARDNESS AND SURFACE CHARACTERISTICS UPON WEAR AND FRICTION PHENOMENA

PLASTIC RESEARCH - SILICONE FLUIDS TO DECREASE ADHESION OF PLASTIC TO SOLID SURFACES, AND LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES OF POLYAMIDES N66-22759 FTD-TT-65-909/16264

SOLUBILITY SOLDER DISSOLUTION OF METAL BEING SOLDERED N65-20203

S NAP-8 CORROSION PROGRAM - HYDROGEN SOLUBILITY IN SODIUM-POTASSIUM, PERMEABILITY OF HYDROGEN AND DEUTERUM THROUGH STAINLESS STEEL, AND PHASE **EQUILIBRIA** NASA-CR-63196

CORROSION RATES OF MAGNESIUM AND MAGNESIUM ALLOYS
IN MAGNESIUM SALT SOLUTIONS OF CHLORIDE,
BROMIDE, AND PERCHLORATE
ECOM-2517
N65-1916 SOLUTION N65-19161

CORRUSION RESISTANT CONTAINER FOR RARE EARTH-RARE EARTH HALIDE SOLUTION N66-23233 ORNL-P-814

AIRCRAFT LUBRICANT AND SELECTED SOLVENT TESTS FOR REMOVAL OF CARBONACEOUS DEPOSITS ON JET ENGINE BEARING N66-19564 AFAPL-TR-65-118

SPACE CHARGE ANODIC DISSOLUTION OF N-TYPE GE STUDIED, CONSTRUCTING POTENTIAL VS CURRENT DIAGRAM IN BROAD CURRENT DENSITY RANGE

SPACE ENVIRONMENT EVALUATION OF INORGANIC SOLID FILM LUBRICANTS BEING DEVELOPED FOR SPACE ENVIRONMENTS A65-17481

ROTATING MACHINES IN EXTREME ENVIRONMENT

SUBJECT INDEX STABILIZATION

DISCUSSING CONDUCTORS, MAGNETIC MATERIALS, INSULATIONS, BEARINGS AND PERFORMANCE

A65-31144

IN-FLIGHT TEST TO DETERMINE SPACE ENVIRONMENTAL EFFECTS ON FRICTION, WEAR, AND LUBRICATION OF MATERIALS - PROPOSED MODULAR SYSTEM NASA-TM-X-54967 N66-15241

SPACE ENVIRONMENTAL LUBRICATION

PHYSICAL AND CHEMICAL PROPERTIES OF DICHALCOGENIDES OF GROUP VB AND VIB METALS FOR USE AS AEROSPACE SOLID LUBRICANTS, PRIMARILY FRICTION AND ANTIWEAR CHARACTERISTICS ASLE PREPRINT 65AM 5C3

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4

CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE ENVIRONMENT ASLE PREPRINT 65AM 5C5 A65-24249

FRICTION COEFFICIENTS OF INORGANIC SOLID FILM LUBRICANTS FOR USE IN SPACE ENVIRONMENTS NASA-CR-60783 N65-17276

DRY THIN-FILM LUBRICANTS AND SOFT-METAL LUBRICANTS APPLIED TO BEARINGS AND GEARS FOR USE UNDER HEAVY LOADS AND SLOW SPEEDS IN SPACE **ENVIRONMENTS** AEDC-TR-65-1 N65-17429

ADAPTABILITY OF FABROID LOW FRICTION, SELF-LUBRICATING BEARING MATERIAL FOR OUTER SPACE ENVIRONMENT APPLICATION

RR-8-3008 NA5-17A97 DRY COMPOSITE LUBRICATED BEARINGS FOR AEROSPACE

ENVIRONMENTAL CHAMBER AEDC-TR-65-35 N65-19527

SURVEY OF LUBRICATION DEVICES FOR REDUCING FRICTION IN MECHANISMS OPERATING IN SPACE NASA-CR-62281 N65-22556

VARIOUS TECHNIQUES USED TO PROTECT MECHANISMS OPERATING IN SPACE FROM MALFUNCTIONS DUE TO FRICTION NASA-CR-62282 N65-22557

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4

CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE ENVIRONMENT ASLE PREPRINT 65AM 5C5

GREASE LUBRICANTS FOR AEROSPACE APPLICATION, DETERMINING PHYSICAL PROPERTIES AND TESTING THEM AT 400 DEGREES F AND UNDER HIGH VACUUM

EVALUATION OF PERFORMANCE OF VARIOUS LUBRICANTS ON BALL BEARINGS OPERATING IN SIMULATED SPACE ENVIRONMENT N66-32538

SPACE POWER UNIT REACTOR /SPUR/ PONDER LUBRICANT ADAPTATION TO SPACE POWER UNIT REACTOR / SPUR/ GEAR OPERATION UNDER HIGH SPEED AND HIGH TEMPERATURE ENVIRONMENTAL CONDITIONS AFAPL-TR-65-24 N65-26564

FLUID FILM SHAFT BEARINGS FOR LIQUID METAL PUMP - SNAP-50/SPUR POWERPLANT TIM-916 N66-11819

SPACE PROGRAM

ASLE PAPER 66AM 3C2

MECHANICAL PROPERTIES OF FLAT POSITION TIG WELDMENTS, STRESS CORROSION TESTS, AND WELDABILITY OF ALUMINUM ALLOYS FOR MISSILE AND SPACE PROGRAM APPLICATION NASA-CR-62233 N65-21777 SPACE SIMULATOR

LUBRICATION OF BEARINGS AND GEARS FOR HEAVILY LOADED LOW VELOCITY SPACE SIMULATOR AFDC-TR-65-19 N65-19971

SPACECRAFT COMPONENT

NONSTRUCTURAL MATERIALS FOR SPACE UTILIZATION INCLUDING LUBRICANTS, SLIDING ELECTRICAL CONTACTS AND DIELECTRICS A66-28006

SPACECRAFT ELECTRONIC EQUIPMENT
INSULATION RESISTANCE OF SPACECRAFT WIRING AGAINST
ABRASION, RADIATION EFFECTS, DXYGEN ENVIRONMENT, AND EXTRUSION LUBRICANTS NASA-CR-65233

SPACECRAFT MECHANISM LUBRICATION

PROPERTIES, CHARACTERISTICS AND PERFORMANCE OF LUBBICANTS AND SELF-LUBBICATING MATERIALS USED IN SPACECRAFT SYSTEMS INCLUDING OILS, GREASES, PLASTICS, CERMETS, MOLYBDENUM SULFIDE, ETC

MOLYBDENUM SULFIDE AND TEFLON AS SOLID FILM LUBRICATING MATERIALS FOR SPACECRAFT APPLICATIONS CONSIDERING LOW FRICTION COEFFICIENT, WEAR RATE,

LIQUID POTASSIUM METAL LUBRICATED BEARINGS FOR SUPPORT OF ROTOR WITH SPACE POWER SYSTEM WEIGHT DISTRIBUTION R-5086-7

LUBRICANT SELECTION FOR LUNAR MISSIONS AND MANNED SPACECRAFT BASED ON COMPATIBILITY WITH OXYGEN-RICH ENVIRONMENT, PROPELLANT, ANODIC COATINGS AND SLIDING FRICTION BEHAVIOR IN VACUUM ASLE PAPER 66AM 7A2 A66~30415

CONFERENCE ON LUBRICATION TECHNIQUES AND SEAL DESIGN FOR ORBITAL MANNED SPACE LABORATORY DOOR AD-623336

FLUID LUBRICATION OF MANNED ORBITAL SPACE STATION DOOR MECHANISM N66-17441

SPARK IGNITION

SPARK IGNITER THAT SUCCESSFULLY OPERATES AT 50 TO 120 PSIG CHAMBER PRESSURE AND 2300 TO 3000 DEGREES K WITHOUT OBSERVABLE THERMAL SHOCK OR ELECTRODE FROSTON A66-18838

SPECTRAL ANALYSIS

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPIC ANALYSIS OF MIXED PENTAERYTHRITOL, DIPENTAERYTHRITOL, AND TRIMETHYLOLPROPANE ESTERS N66-15016

SPECTROMETRY

SPECTROMETRIC DIL ANALYSIS METHOD FOR MONITORING TURBOJET AIRCRAFT ENGINES AND DIL LUBRICATED AIRCRAFT MECHANISMS 0A-20-64

STATISTICAL STUDY OF SPECTROMETRIC OIL ANALYSIS METHOD FOR AIRCRAFT ENGINE MONITORING SYSTEM **04-37-64** N65-22936

SPIN

A66-30409

MEASURING APPARATUS FOR STUDYING BALL BEARING SPINNING FRICTION NASA-TN-D-2796 N65-23819

SPOT WELDING

OPTIMUM WELDING CONDITION OF RESISTANCE SPOT WELDING OF TI ALLOY FOR SUPERSONIC AIRCRAFT STRUCTURES A65-33624

EFFECT OF HALOGENS ON CORROSION OF TITANIUM BY TO CHLORINE, BROMINE, AND IDDINE, AND EFFECT OF AROMATIC NITRO COMPOUND ON CORROSION OF TITANIUM N66-10297

STABILIZATION

STABILIZATION OF SILICONE LUBRICATING FLUIDS AT 300 TO 400 DEG C BY SOLUBLE CERIUM COMPLEXES

NRL-6156

N65-22149

STACKING FAULT ENERGY
STACKING FAULT ENERGIES IN AUSTENITIC STAINLESS
STEEL DETERMINED BY EXTENDED NODE MEASUREMENTS

CTAIMLESS STEEL

AUSTENITIC STAINLESS STEEL COLD WORKING EFFECTS ON STRESS CORROSION CRACKING IN HIGH TEMPERATURE SODIUM AND MAGNESIUM CLORIDE SOLUTIONS

A65-23936

MACHINING AND MACHINABILITY IMPROVEMENTS OF STAINLESS STEEL ALLOYS PRESENTING COST, AVAILABILITY, LUBRICATION AND CORROSION RESISTANCE DATA A65-26951

POTENTIODYNAMIC CURVES INDICATE THAT CHROMIUM STAINLESS STEEL CORROSION RESISTANCE MINIMUM DCCURS AFTER TEMPERING NEAR 500 DEGREES C A65-26973

TITANIUM/CARBON RATIO AS DETERMINING FACTOR IN SUSCEPTIBILITY TO INTERCRYSTALLINE CORROSION IN STAINLESS STEELS A65-32945

STRESS CORROSION CRACKING FAILURE OF STAINLESS
STEEL AT HIGH TEMPERATURE A65-33134

EFFECTS OF SUBSTITUTING COBALT FOR NICKEL ON ACID CORROSION RESISTANCE OF STAINLESS STEEL MASS-16634 N65-16634

ALKALI METAL STRESS CORROSION AND MASS TRANSFER EFFECTS ON REFRACTORY METAL AND STAINLESS STEEL ALLOYS NASA-CR-54281 N65-1799

CORROSION-EROSION TESTING OF STAINLESS STEEL

OXYGENATED SATURATED STEAM

ACNP-64001 N65-18457

CORROSION RESISTANCE AND PLASTICITY OF STAINLESS
STEELS WITH ADDITIONS OF RARE EARTH METALS AND
OXIDES N65-18737

STAINLESS STEEL CORROSION REACTIONS AND MECHANISMS
IN SODIUM-POTASSIUM SERVICE
IDO-14651 N65-19660

MICROSTRUCTURE AND DISLOCATION SUBSTRUCTURE
RELATION TO STRESS CORROSION CRACKING
SUSCEPTIBILITY IN AUSTENITIC STAINLESS STEEL
DP-957 N65-20710

IMMERSION AND IMPINGEMENT ELECTROPOLISHING METHODS FOR INCREASING CORROSION RESISTANCE OF STAINLESS STEELS AND NICKEL ALLOYS USED IN PROPELLANT DUCTS

SURFACE TREATMENT EFFECT ON STAINLESS AND CARBON STEEL CORROSION IN HIGH TEMPERATURE WATER AND STEAM - AUTOCLAVE TESTS

S NAP-8 CORROSION PROGRAM - HYDROGEN SOLUBILITY IN SODIUM-POTASSIUM, PERMEABILITY OF HYDROGEN AND DEUTERUM THROUGH STAINLESS STEEL, AND PHASE EQUILIBRIA N65-25409

INFLUENCE OF STRESS ON CORROSION BEHAVIOR OF REFRACTORY ALLOY IN POTASSIUM, AND CORROSION MASS TRANSFER EFFECTS IN STAINLESS STEEL-NIOBIUM ALLOY-POTASSIUM SYSTEM NASA-CR-54390 N65-27271

NITROGEN CONTENT OF AUSTENITIC STAINLESS STEEL IN STRESS CORROSION FURAEC-1216 N65-32322

CORROSION RESISTANCE, FATIGUE STRENGTH, AND ENGINEERING PROCESSES IN MANUFACTURING OF CLAD STAINLESS STEELS JPRS-32087 N65-33887

ANODIC PASSIVATION OF STAINLESS STEEL BY

ELECTROCHEMICAL OXIDATION OF METAL SURFACE CORROSION RESISTANCE
RIA-65-1190 N65-36739

CORROSION RATE OF BT-1 TITANIUM AND 9 KH18 N12 M2 T STAINLESS STEEL IN MANGANESE-AMMONIUM SULFATE SOLUTIONS A66-10990

ACCELERATED COOLING OF FERRITIC-MARTENSITIC STEEL AND FERRITIC STEEL AFTER SINTERING, COMBINED WITH ADDITIONAL HEAT TREATMENT, INCREASES STRENGTH AND CORROSION RESISTANCE

A66-16690

ALLOYING ELEMENTS EFFECT ON ANDDIC CORROSION AND PASSIVATION OF STAINLESS STEELS

A66-20837

STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION AND DELAYED FAILURES IN STAINLESS STEEL USED FOR A01-TS A66-33442

SURFACE FINISHING EFFECT ON STRESS CORROSION RESISTANCE OF AUSTENITIC STAINLESS STEELS

A66-334

CORROSION RESISTANT STAINLESS STEEL HITH BETTER
MECHANICAL PROPERTIES FOR TROPICAL CLIMATE
FTD-TT-65-487/1 N66-12509

STRESS CORROSION OF IRRADIATED STAINLESS STEEL AERE-R-5014 STAINLESS STEEL N66-15921

POTENTIOSTATIC POLARIZATION STUDIES OF IRON AND STAINLESS STEEL ALLOYS IN ELECTROLYTE SYSTEMS FOR CORROSION RESISTANCE PREDICTION

FOR CORRUSION RESISTANCE PREDICTION

M-423

MICROSTRUCTURE AND SUBSTRUCTURE DISLOCATION IN

STRESS CORROSION CRACKING OF AUSTENITIC

STAINLESS STEEL
DP-957 N66-18773

CORROSION FILM ON INCONEL AND AISI 304 STAINLESS
STEEL INVESTIGATION WITH SCANNING ELECTRON
MICROSCOPE AND SPINNING SOURCE MASS SPECTROGRAPH
MICROPROBE
WERL-1114-1
N66-18899

EXTENDED EXPOSURE TO HEATED LITHIUM HYDRIDE EFFECT ON TENSILE PROPERTIES OF STAINLESS STEELS NAA-SR-MEMO-10885 N66-18903

NITROGEN CONTENT EFFECT ON STRESS CORROSION IN
AUSTENITIC STAINLESS STEELS
EURAEC-1424 N66-18939

GALVANIC CORROSION OF ALUMINUM ASSEMBLIES BY
STAINLESS STEEL WIRE INSERTS
NASA-TM-X-53404 N66-19762

STATIC CORROSION TESTING OF STAINLESS STEELS IN WATER AND STEAM AT HIGH TEMPERATURE EURAEC-1308 N66-2040

CORROSION RESISTANT POLYMERIC MATERIALS FOR USE AS PROTECTIVE COATINGS ON IRON AND STAINLESS STEEL SURFACES
JPRS-35452

N66-25284

DYNAMIC CORROSION TESTS OF CARBON STAINLESS STEEL
IN PRESSURIZED WATER
EUR-2688.F N66-26057

CORROSION TESTS ON IRRADIATED AND UNIRRADIATED
TYPE 304 STAINLESS STEEL
GEAP-4968 N66-26483

CORRELATIONS BETWEEN SENSITIZATION AND STRESS CORROSION CRACKING OF 300 SERIES STAINLESS STEELS CEND-3256-250 N66-27561

CORROSION OF SURFACE WORK-HARDENED STAINLESS STEELS IN HIGH TEMPERATURE WATER AND STEAM EURAEC-1500 N66-27777

TEMPERATURE EFFECT ON CHROMIUM-NICKEL STAINLESS
STEEL CORROSION IN PASSIVITY RANGES
FTD-TT-65-1223/1626364 N66-27891

RELATIONSHIP OF NITROGEN CONTENT OF AUSTENITIC STAINLESS STEELS TO STRESS CORROSION EURAEC-1579 N66-28987

STRESS CORROSION FAILURE IN STAINLESS STEEL AND ZIRCALOY 4 FUEL ELEMENT CLADDING WCAP-3269-50 N66-30579

PREDICTING INTERGRANULAR CORROSION OF AUSTENITIC STAINLESS STEELS
TR-3
NAA-32514

STATIC DEFORMATION
TEST RIG FOR GAS-LUBRICATED JOURNAL BEARINGS
MEASURING FRICTIONAL TORQUE, GAS FILM PRESSURE
DISTRIBUTION, STATIC AND DYNAMIC ECCENTRICITY
CHANGES, ETC A66-2492

STATIC LOADING
STARTING FRICTION AND KINETIC FRICTION OF PTFE
FABRIC-LINED SPHERICAL BEARINGS AND DEFLECTION AND
PERMANENT SET UNDER STATIC LOADING

A66-31932

STATIC TESTING
STATIC TESTING FUR CHEMICALS EFFECTIVE FOR
INMIBITING ALUMINUM AND STEEL CORROSION
8NWL-29
N65-25472

STATISTICS
STATISTICAL STUDY OF SPECTROMETRIC OIL ANALYSIS
METHOD FOR AIRCRAFT ENGINE MONITORING SYSTEM
0A-37-64
N05-22936

TEADY STATE

MEASURING PERFORMANCE CHARACTERISTICS OF LIQUID

METAL LUBRICATED TURBOMACHINE BEARING UNDER

STEADY STATE AND DYNAMIC LOAD CONDITIONS

N66-31686

NIOBIUM BASE ALLOY FOR USE AS CLADDING OR STRUCTURAL MATERIAL RESISTANT TO CORROSION BY SUPERHEATED STEAM BMI-1700 NA5-19464

INCREASED URANIUM AND URANIUM ALLOY CORROSION
RESISTANCE IN WATER AND STEAM
N65-33653

ZIRCONIUM-BASE ALLOY DEVELOPMENT WITH IMPROVED CORROSION RESISTANCE IN HIGH TEMPERATURE STEAM WAPD-TM-546 N66-25094

CORROSION OF SURFACE WORK-HARDENED STAINLESS
STEELS IN HIGH TEMPERATURE WATER AND STEAM
EURAEC-1500 N66-27777

ALUMINUM STEARATE AND OLEOSTEARATE ADDITIVES FOR ANTIMEAR AND ANTICORROSION IMPROVEMENT OF LUBRICANTS N66-11093

STEEL
CONTACT FRICTION EFFECTS ON FATIGUE PHYSICAL LIMIT
AND CYCLIC STRENGTH OF STEEL
A65-14788

IODINE-ANISOLE AND IODINE-ANISOLE-TURBINE OIL AS BOUNDARY LUBRICANTS FOR CHROME STEEL, NOTING FRICTION REDUCTION AND DECREASE IN WEAR

A65-15681

HARDNESS EFFECTS OF STEEL BRIDGES ON ADHESION TO COLD DRAWN MILD STEEL AS INITIAL STAGE OF FRETTING PROCESS IN INITIATION OF FATIGUE CRACKS

RESIN BONDED SOLID FILM LUBRICANT EFFECTIVENESS AND CORROSION PROTECTION STUDY RESTRICTED TO STEEL SURFACES A65-20033

CARBON STEEL CORROSION RESISTANCE IN WATER
INCREASED BY ZIRCONIUM ADDITION AFFECTING BOTH
ANODIC AND CATHODIC PROCESSES A65-23440

CHROMIUM AND ALUMINUM SURFACE DIFFUSION INTO LOW-CARBON UNALLOYED STEELS FOR IMPROVING CORROSION AND SCALE RESISTANCE A65-27545

BRITTLENESS OF ANNEALED STEELS USING CORROSION

TESTS UNDER TENSION IN PRESENCE OF HYDROGEN
A65-28628

HIGH ALLOY STEEL CASTINGS, DISCUSSING PHYSICAL AND MECHANICAL PROPERTIES OF CORROSION- AND HEAT-RESISTANT 8 PERCENT NICKEL AND/OR CHROMIUM A65-34961

EFFECT OF ULTRASONIC CLEANING ON CORROSION
RESISTANCE OF PHOSPHATE-COATED STEEL PANELS
SA-TR16-1122 N65-14411

STEEL CORROSION MECHANISMS - GROWTH AND BREAKDOWN OF PROTECTIVE FILMS IN HIGH TEMPERATURE AQUEOUS SYSTEMS NRL-6082 N65-1583

FATIGUE LIFE AND CONTACT WEAR IN TOOL STEEL EFFECTED BY DIESTER AND MINERAL OIL LUBRICANTS RS-441 N65-16825

STRESS CORROSION CRACKING OF STEEL IN VARIOUS
MEDIA
FTD-TT-64-643/1&2
N65-17187

EFFECT OF 60-CYCLE ALTERNATING CURRENT ON CORRUSIUM OF STEELS AND OTHER METALS BURIED IN SOIL N65-19465

INFLUENCE OF CAVITATION INTENSITY ON STABILITY OF MATERIALS, EFFECT OF HEAT TREATMENT ON LONG TIME STRENGTH OF STEEL, AND KINETIC AND DIFFUSION REGIONS OF GAS CORROSION OF STEEL

JPRS-29139

N65-19592

TOOL STEEL BEARING LUBRICANT ENDURANCE AT HIGH SPEEDS AND TEMPERATURES NASA-CR-57445 N65-1989

HIGH TEMPERATURE TESTING FOR MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF NICKEL BASE AND CHROMIUM-NICKEL STEEL ALLOYS IN LIQUID SODIUM FTD-TT-64-704/162 N65-21108

STEEL PIPE HOT ROLLING LUBRICATION BY GRAPHITE AND SODIUM NITRATE SUSPENSION IN CALCIUM HYDROXIDE SOLUTION

SURFACE TREATMENT EFFECT ON STAINLESS AND CARBON STEEL CORROSION IN HIGH TEMPERATURE WATER AND STEAM - AUTOCLAVE TESTS EURAEC-1038 N65-23867

ZINC USED AS PROTECTIVE COATING FOR STEEL ALLOY
IN STRESS CORROSION CONTROL
RIA-65-152 N65-24215

STATIC TESTING FOR CHEMICALS EFFECTIVE FOR INHIBITING ALUMINUM AND STEEL CORROSION 8NWL-29 N65-25472

CORROSION RESISTANCE OF BLACK OXIDE COATINGS ON MILD AND CORROSION RESISTANT STEELS RIA-64-3580 N65-30014

FRICTION CORROSION CAUSED BY ALTERNATE PIVOTING OF STEEL BALL ON PLANE OF LIGHT ALLOY A66-27934

CHLORIDEBENZYL QUINDLINE TO INCREASE CORROSION RESISTANCE OF IRON AND STEEL IN ACIDS FTD-TT-65-770/184 N66-10787

MECHANICAL PROPERTIES OF STEELS IN MAGNESIUM CHLORIDE SOLUTIONS EURAEC-1397 N66-17856

IRON AND STEEL CORROSION PREVENTION BY PROTECTIVE COATINGS AND CATHODIC PROTECTION AD-625900 N66-18493

CORROSION RESISTANT ZINC PAINT EFFECTS ON MECHANICAL PROPERTIES OF STEEL WELD JOINTS AT-1959/69 N66-20026

PRODUCTION SPECIFICATIONS FOR HOT ROLLED THICK TWO-LAYERED CORROSION RESISTANT STEEL SHEETS N66-24265

SUBJECT INDEX STEEL STRUCTURE

MASS TRANSFER AND CORROSION RATES OF MATERIALS IN FLOWING SODIUM N66-24268

CORROSION RESISTANCE AND ENVIRONMENT EFFECT ON STEEL ALLOY COMPONENTS OF SNAP-8 NASA-CR-54719 N66-24442

AQUEOUS ENVIRONMENT EFFECTS ON HIGH STRESS LOW-CYCLE FATIGUE OF 18 PERCENT NICKEL MARAGING STEELS N66-27661

NRL-MEMO-1685

RADIATION RESISTANCE OF AQUEOUS SODIUM NITRITE USED TO INHIBIT STEEL CORROSION UJV-1453/65 N66-31045

STEEL STRUCTURE

STRESS CORROSION CRACKING SUSCEPTIBILITY OF AM-355 STAINLESS STEEL ALLOY FOR USE IN SATURN LAUNCH VEHICLES NASA-TM-X-53317 N65-32254

OXIDE AND CARBIDE CORROSIUN PRODUCTS IN MATRIX AND SURFACE OF STEEL PLATE BY ELECTRON DIFFRACTION N66-18080

STOCHASTIC PROCESS

STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COMPONENTS AND SYSTEMS D1-82-0460 N66-25768

STORAGE

RUST-REMOVING CORROSION PREVENTATIVE TO ABSORB RUST FROM STORED STEEL AND IRON SURFACES AND PREVENT DETERIORATION IIIRI-C6032-17 N66-24781

STORAGE STABILITY
CORROSION AND OXIDATION INHIBITING SYSTEM
STABILITY IN BRAKE FLUIDS AFTER EXTENDED STORAGE N65-22484

TEST METHOD FOR STORAGE DEGRADATION OF VOLATILE CORROSION PREVENTING PAPER RIA-65-3105 N66-21317

STRAIN ENERGY

GRAPHICAL METHOD FOR OPTIMIZING BEARING SPAN WITH RESPECT TO REDUCING SHAFT BENDING AND BEARING DEFLECTION TO MINIMUM A65-2564 A65-25644

STRAIN GAUGE

ELECTRIC STRAIN GAUGE FOR HIGH TEMPERATURE OR CORROSIVE ENVIRONMENTS AND ELECTROMAGNETIC FIELDS - TENSOMETER FTD-TT-64-872/1&2 N65-19200

STRAIN RATE

FLOW OF NONLINEAR VISCOPLASTIC MEDIUM BETWEEN TWO **PLATES** N66-26219

STRATOSPHERE

INERTIA OF MOVING BODY UNDER WATER, ATMOSPHERIC CIRCULATION IN STRATOSPHERE, AND CORROSION RESISTANCE OF ALLOYS - TRANSLATION FROM COMMUNIST CHINESE LITERATURE JPRS-33046 N66-13388

STRESS /BIOL/

FLUID MECHANICS, LUBRICATION, CORROSION, MASERS, BIOLOGICAL STRESS, PROTECTIVE COATINGS, NEUTRON ACTIVATION, FRACTOGRAPHY, METABOLISM, GUIDED MISSILE LAUNCHING, AND CATAPULTS

STRESS AND LOAD

NUMERICAL SOLUTION TO STRESSES IN LUBRICATED ROLLER BEARINGS WITH ARBITRARY DISTRIBUTED NORMAL AND TANGENTIAL LOADS MTI-65TR61 N66-19381

STRESS CONCENTRATION

HIGH THERMAL STRESS SALT CORROSION CRACKING OF HIGH STRENGTH STEEL AND TITANIUM ALLOYS IN PRESENCE OF STRESS CONCENTRATORS NASA-CR-57914 N65-21344

STRESS CORROSION

STRESS CORROSION TESTING BY AXIAL COMPRESSION OF

SELF-STRESSED TITANIUM ALLOY SHEET SPECIMEN A65-14622

STACKING FAULT ENERGIES IN AUSTENITIC STAINLESS STEEL DETERMINED BY EXTENDED NODE MEASUREMENTS A65-14713

STRESS CORROSION CRACKING CAUSED BY ELECTROCHEMICAL DISSOLUTION, ALLOYING AND HYDROGEN EMBRITTLEMENT OF STEELS IN SOLUTIONS AND LIQUID METALS

AL- ZN- MG ALLOYS SENSITIVITY AND RESISTANCE TO WELDING AND STRESS CORROSION CRACKING A65-16238

BASIC MECHANISMS OF ULTRASONIC MACHINING PROCESS ARE MICROCHIP REMOVAL AND MATERIAL DISPLACEMENT BY PLASTIC DEFORMATION AND PARTICLE REMOVAL BY FRACTURE

ASME PAPER 64-PROD-4

A65-16986

AIRCRAFT PROTECTION FROM CORROSION COVERING STRESS AND INTEGRAL FUEL TANK CORROSION AND COATING METHODS

CORROSION MECHANISMS WITH EMPHASIS ON PREVENTION, DESTRUCTIVE CATASTROPHIC CORROSION AND INDUSTRIAL **PROBLEMS**

HIGH STRESS CORROSION RESISTANCE OF 7075- 173 ALUMINUM ALLOYS VERIFIED BY SOLUTION POTENTIAL AND ELECTRIC CONDUCTIVITY MEASUREMENTS

STRESS CORROSION THEORY USED IN MODEL FOR PREDICTING EFFECT OF CATION AND ANION IN SOLUTION ON SUSCEPTIBILITY TO STRESS CORROSION CRACKING

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR BENDING THEORY
ASME PAPER 65-AV-3 A65-23464

AUSTENITIC STAINLESS STEEL COLD WORKING EFFECTS ON STRESS CORROSION CRACKING IN HIGH TEMPERATURE SODIUM AND MAGNESIUM CLORIDE SOLUTIONS

STRESS RELIEVING ALPHA-TITANIUM ALLOY WELDMENTS IN VACUUM TO PREVENT CONTAMINATION IN A-5 VIGILANTE WING SECTIONS

DESIGN AND MANUFACTURING TECHNIQUES TO PREVENT STRESS CORROSION RESULTING FROM MATERIAL SUSCEPTIBILITY, SUSTAINED TENSILE SURFACE STRESS AND MILD CORROSIVE ENVIRONMENT A65-28637 ASME PAPER 65-MD-45

DISLOCATION INFLUENCE ON NUCLEATION AND PROPAGATION OF STRESS CORROSION CRACKS

A65-31684

STRESS CORROSION CRACKING FAILURE OF STAINLESS STEEL AT HIGH TEMPERATURE A65-33134

OPTIMUM WELDING CONDITION OF RESISTANCE SPOT WELDING OF TI ALLOY FOR SUPERSONIC AIRCRAFT A65-33624 **STRUCTURES**

CURVES AS QUANTITATIVE CRITERIA OF CORROSION FAILGUE OF METALS A65-36015

STRESS CORROSION OF WROUGHT HIGH-STRENGTH ALUMINUM SALT STRESS CORROSION, AND KINETICS OF HOT SALT STRESS CORROSION, AND KINETICS OF HOT SALT STRESS CORROSION CRACKING OF TITANIUM ALLOY ASD-TR-61-713, PT. III

STRESS CORROSION INFLUENCE ON GLASS FIBER STRENGTH BMPR-3 N65-14228

STRESS CORROSION ON HIGH STRENGTH STEEL ALLOYS ML-TDR-64-3 N65-15136

MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS OR-3

STRESS CORROSION CRACKING OF STEEL IN VARIOUS MEDIA FTD-TT-64-643/182 N65-17187

ALKALI METAL STRESS CORROSION AND MASS TRANSFER EFFECTS ON REFRACTORY METAL AND STAINLESS STEEL ALLOYS NASA-CR-54281

N65-17992

STRESS CORROSION ON GLASS FIBER STRENGTH AT CRYOGENIC TEMPERATURE

N65-19022

STRESS CORROSION CRACKING AND CORROSION FATIGUE OF HIGH STRENGTH STEELS

SALT STRESS CORROSION CRACKING OF RESIDUALLY STRESSED TITANIUM ALLOY BRAKE FORMED SHEET FOR SUPERSONIC TRANSPORT NASA-TM-X-1082 N65-20483

MICROSTRUCTURE AND DISLOCATION SUBSTRUCTURE RELATION TO STRESS CORROSION CRACKING SUSCEPTIBILITY IN AUSTENITIC STAINLESS STEEL 865 -20710

HIGH THERMAL STRESS SALT CORROSION CRACKING OF HIGH STRENGTH STEEL AND TITANIUM ALLOYS IN PRESENCE OF STRESS CONCENTRATORS NASA-CR-57914 N65-21344

MECHANICAL PROPERTIES OF FLAT POSITION TIG WELDMENTS, STRESS CORROSION TESTS, AND WELDABILITY OF ALUMINUM ALLOYS FOR MISSILE AND SPACE PROGRAM APPLICATION N65-21777

S NAP-8 MATERIALS RESEARCH - MERCURY CORROSION CAPSULE TESTS OF FERRITIC ALLOYS FOR MASS TRANSFER, STRESS CORROSION, MODE OF ATTACK, AND MECHANICAL PROPERTIES NASA-CR-62379 N65-22558

HOT SALT STRESS CORROSION CRACKING IN TITANIUM ALLOYS - CHLORIDE CORROSION ROLE DETERMINATION USING CHLORINE ISOTOPES AND RELATION BETWEEN CRACK MORPHOLOGY AND ALLOY STRUCTURE NASA-CR-60194 N65-23708

HEAT TREATMENT VARIATIONS OF ALUMINUM ALLOYS TO STUDY ATMOSPHERIC STRESS CORROSION RAE-MET-PHYS-96 N65-24010

ZINC USED AS PROTECTIVE COATING FOR STEEL ALLOY IN STRESS CORROSION CONTROL RIA-65-152 N65-24215

RELATIVE RESISTANCE OF ALUMINUM ALLOYS, AND EFFECT OF GRAIN STRUCTURE ON SUSCEPTIBILITY TO STRESS CORROSION CRACKING DMIC-MEMO-202 N65-24445

CATHODE PROTECTION, METALLIC AND STRESS CORROSION RESEARCH, AND DEEP OCEAN TECHNOLOGY

INFLUENCE OF STRESS ON CORROSION BEHAVIOR OF REFRACTORY ALLOY IN POTASSIUM, AND CORROSION
MASS TRANSFER EFFECTS IN STAINLESS STEEL-NIOBIUM
ALLOY-POTASSIUM SYSTEM N65-27271

PROTECTIVE COATING EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS - BENDING-DUCTILITY EVALUATION NASA-CR-63784 N65-28201

ALTERNATE IMMERSION STRESS-CORROSION TESTS ON COMMERCIAL AND HIGH PURITY ALUMINUM ALLOYS M65-17-1 N65-28351

CATHODE PROTECTION OF ALUMINUM ALLOY UNDER STRESS CORROSIVE CONDITIONS IN ACID CHLORIDE SOLUTION - METALLURGY AD-615789 N65-29112

STRESS CORROSION PROPERTIES OF 12 PERCENT NICKEL MARAGING STEEL WELDMENTS IN MARINE ENVIRONMENTS 5-23309 N65-30915 STRUCTURAL CHANGES ASSOCIATED WITH STRESS CORROSION AND DELAYED FAILURE IN HIGH STRENGTH STEEL AD-468171

STRESS CORROSION CRACKING SUSCEPTIBILITY OF AM-355 STAINLESS STEEL ALLOY FOR USE IN SATURN LAUNCH VEHICLES

NITROGEN CONTENT OF AUSTENITIC STAINLESS STEEL IN STRESS CORROSION EURAEC-1216

STRUCTURAL CHANGES IN HIGH-STRENGTH STEEL ASSOCIATED WITH STRESS CORROSION AND ITS RELATIONSHIP TO DELAYED FAILURE N65-32351

PROTECTIVE COATINGS EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS NASA-CR-67014 N65-33871

STRESS CORROSION CRACKING EXPERIMENTS WITH IRON-NICKEL-CHROMIUM ALLOYS COO-1319-24 N65-34319

POLARIZATION CURVES OF STRESS CORROSION CRACKING IN MARTENSITIC HIGH STRENGTH STEELS REPT -- 132-07 N65-34370

MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS AD-615789 N65-35437

STRESS CORROSION AND HIGH TEMPERATURE PROPERTIES OF MAGNESIUM-LITHIUM-SILICON ALLOYS FA-A64-31 N65-36228

MECHANISMS OF STRESS-CORROSION CRACKING IN METAL REVIEW OF VARIOUS THEORIES
AROD-5023-1
N65-36246

LIQUID METAL EMBRITTLEMENT NOTING STRESS AND INTERGRANULAR CORROSION, HYDROGEN EMBRITTLEMENT AND BEHAVIOR OF SILVER CHLORIDE CRYSTAL

AIRCRAFT MATERIALS STRESS CORROSION AT HIGH TEMPERATURE DISCUSSING TEST AND RESULTS ON TITANIUM ALLOYS, PRECIPITATION HARDENING STEELS AND SUPERALLOYS A66-12299

STRESS CORROSION CRACKING IN TITANIUM ALLOYS IN PRESENCE OF SALT, HIGH TEMPERATURE AND SUSTAINED STRESS AIAA PAPER 65-764 A66-13059

EFFECT OF CORROSIVE ENVIRONMENTS ON VARIOUS METALS AND ANTICORROSION TECHNIQUES TO PROTECT METAL SURFACES A66-13374

BRITTLE AND PLASTIC BEHAVIOR OF HOT-PRESSED POLYCRYSTALLINE BE O NOTING STRESS CORROSION, FRACTOGRAPHY AND X-RAY ROCKING CURVES

FRACTURE TOUGHNESS AND STRESS CORROSION RESISTANCE OF SEVERAL HEATS OF MARAGING STEEL COMPARED WITH RESULTS FOR LOW-ALLOY AND HOT-WORK DIE STEEL

STRESS-CORROSION CRACKING, RATE OF WEIGHT LOSS AND SURFACE CONDITION OF 70-30 COPPER ZINC ALLOY IN CONCENTRATED AQUEOUS AMMONIA A66-18519

TRANSMISSION ELECTRON MICROSCOPY STRUCTURAL ANALYSIS OF DISLOCATIONS IN STRESS-CORROSION CRACKING OF 7075 ALUMINUM ALLOY

STRESS-CORROSION FAILURE IN METAL ALLOYS, DISCUSSING SURFACE AND ELASTIC ENERGY, ADSORPTION, CRACK PROPAGATION, PITS AND TUNNELING

A66-18761

DEVICE FOR TAKING LONG TIME CORROSION FATIGUE CURVES ON SMALL CROSS SECTION SPECIMENS AT HIGH TEMPERATURES AND PRESSURES A66-20433 POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR BENDING THEORY ASME PAPER 65-AV-3

A66-22470

DIFFUSION OF ELECTROLYTIC HYDROGEN THROUGH MEMBRANES OF IRON CRYSTALS AS FUNCTION OF STRESS, TEMPERATURE AND DISSOLVED HYDROGEN CONCENTRATION A66-23071

STRESS CORROSION ON E GLASS FIBERS EXPOSED TO WATER VAPOR A66-23120

STRESS CORROSION CRACKING TEST EMPLOYING
PRECRACKED BAR STRESSED IN BENDING, NOTING
APPARATUS AND RESULTS ON MARTENSITIC STEEL AND
TITANIUM ALLOY
A66-23647

SHOT PEENING FOR RESISTANCE TO STRESS CORROSION CRACKING OF HIGH STRENGTH STEEL AND ALLUMINUM ALLOYS AND TO IMPOVE FATIGUE LIFE OF LANDING GEARS, WING SPARS, JET ENGINE COMPONENTS AND OTHER STRUCTURAL PARTS A66-25771

STRESS-CORROSION SUSCEPTIBILITY OF HIGH-STRENGTH STEEL AT VARIOUS LEVELS OF TENSILE YIELD STRENGTH AND FRACTURE TOUGHNESS ASME PAPER 66-MET-5 A66-26973

EXPLOSIVE DEFORMATION EFFECT ON STRESS-CORROSION AND MECHANICAL PROPERTIES OF 7075 ALUMINUM ALLOY A66-28010

ELECTRON MICROSCOPE INVESTIGATION OF DISLOCATION EFFECT ON STRESS CORROSION CRACKING IN ALUMINUM ALLDY A66-29418

STRESS CORROSION TESTING TO EVALUATE MATERIALS FOR SPECIFIC APPLICATION A66-29723

ALLOYING ELEMENTS EFFECT ON ALUMINUM CORROSION OVER WIDE P H RANGE IN WATER, ALKALI AND 0.1 N SOLUTIONS OF ANIONS A66-31392

STRESS CORROSION, DELAYED FAILURES, FATIGUE
CORROSION AND RELATION BETWEEN THESE PHENOMENA —
COMMISSARIAT ON ATOMIC ENERGY, METALLURGICAL
COLLOQUIUM, CADARACHE, RHONE, FRANCE, JUNE
1964
A66-33440

STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION AND DELAYED FAILURES IN STAINLESS STEEL USED FOR BOLTS A66-33442

SYNERGISTIC ACTION OF DYNAMIC STRESSES AND FATIGUE CORROSION IN METALS A66-33443

DISLOCATION DISTRIBUTION AND CRACK PROPAGATION DUE TO STRESS CORROSION A66-33444

SURFACE FINISHING EFFECT ON STRESS CORROSION RESISTANCE OF AUSTENITIC STAINLESS STEELS

A66-33445

STRESS CORROSION CRACKING OF VANADIUM, MOLYBDENUM, AND TITANIUM-VANADIUM ALLOY IN HYDROCHLORIC ACID AND SULFURIC ACID SOLUTIONS
MM-RI-6680 N66-10098

STRESS CORROSION RUPTURING OF TITANIUM ALLOY -FRACTURE MECHANICS NASA-CR-67710 N66-10876

NASA-CR-67710 NOC-1UB

STRESS-CORROSION TEST TO DETERMINE CRITICAL FLAW SIZE FOR REDUCTION OF EFFECTIVE FRACTURE TOUGHNESS S-23304 N66-11265

INFLUENCE OF STRESS ON CORROSION BEHAVIOR AND MASS TRANSFER EFFECT ON REFRACTORY MATERIALS FOR ADVANCED SPACE POWER SYSTEMS
NASA-CR-54476
N66-12264

STRESS CORROSION TESTS ON ALUMINUM ALLOYS WITH RESPECT TO STATISTICAL NATURE OF DISTRIBUTION OF FAILURE TIMES NASA-TH-X-53355 N66-140

MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND

TITANIUM ALLOY STRESS CORROSION, CATHODIC
PROTECTION, CORROSION FATIGUE, AND ANTIFOULING
PAINT FOR ALUMINUM ALLOYS
NRL-MEMO-1634
N66-142:

STRESS CORROSION REFLUX CAPSULE TESTS OF NIGBIUM

ALLOY IN POTASSIUM NASA-CR-54844 N66-14754

STRESS CORROSION OF IRRADIATED STAINLESS STEEL AERE-R-5014 N66-15921

HIGH TEMPERATURE STRESS CORROSION OF TITANIUM AND TITANIUM ALLOYS NASA-CR-69851 N66-1619:

SEPARATION OF GASEOUS, LIQUID, AND SOLID REACTION PRODUCTS OF HOT SALT STRESS CORROSION CRACKING OF TITANIUM N66-16194

ELECTROCHEMICAL ASPECTS OF HOT SOLID SALT STRESS CORROSION CRACK FORMATION IN TITANIUM ALLOYS N66-16195

STRESS CORROSION CRACKING IN CHROMIUM-NICKEL-IRON ALLOYS WITH FOURTH ELEMENT ADDED N66-17533

MECHANICAL PROPERTIES OF STEELS IN MAGNESIUM
CHLORIDE SOLUTIONS
FURAFC-1397 N66-17856

STRESS CORROSION EFFECTS ON HEAT RESISTANT ALLOYS
BY SODIUM CONTAINING ADMIXTURES
FTD-TT-65-1050/16264 N66-1853

MICROSTRUCTURE AND SUBSTRUCTURE DISLOCATION IN STRESS CORROSION CRACKING OF AUSTENITIC STAINLESS STEEL 0P-957 N66-18773

NITROGEN CONTENT EFFECT ON STRESS CORROSION IN
AUSTENITIC STAINLESS STEELS
ENDAFC_1424 N66-18939

SALT STRESS CORROSION OF RESIDUALLY STRESSED TITANIUM-AUMINUM-MOLYBDENUM-VANADIUM ALLOY SHEET AFTER HIGH TEMPERATURE EXPOSURE NASA-TN-D-3299 N66-19104

STRESS-CORROSION SUSCEPTIBILITY OF ULTRAHIGH STRENGTH STEEL EVALUATED IN TERMS OF FRACTURE TOUGHNESS N66-19382

ELECTRON MICROSCOPY APPLICATIONS TO FRACTURE MECHANICS FOR DETERMINING CRACK PROPAGATION DIRECTION, AND CHARACTERISTIC DIFFERENCES BETWEEN STRESS CORROSION AND HYDROGEN EMBRITTLEMENT SM-49150 N66-22627

PROTECTIVE COATING EFFECT ON STRESS CORROSION
PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS
NASA-CR-74414 N66-23647

STRESS CORROSION CRACKING OF HIGH STRENGTH
ALUMINUM ALLOYS
NASA-CR-74443 N66-23655

STRESS CORROSION CRACKING MECHANISM IN FACE-CENTERED CUBIC METALS AFOSR-65-2702 N66-24732

EFFECTIVENESS, SAFETY, AND ECONOMICS OF CHEMICAL COMPOUNDS IN DESCALING METAL AND NONMETALLIC SURFACES

STRESS CORROSION CRACKING MECHANISM IN IRON-NICKEL-CHROMIUM ALLOY SYSTEM COD-1319-32 N66-259

CORRELATIONS BETWEEN SENSITIZATION AND STRESS CORROSION CRACKING OF 300 SERIES STAINLESS STEELS CEND-3256-250 N66-27561

AQUEOUS ENVIRONMENT EFFECTS ON HIGH STRESS LOW-

SUBJECT INDEX SUBMERGED BODY

CYCLE FATIGUE OF 18 PERCENT NICKEL MARAGING NRL-MEMO-1685 N66-27661

RELATIONSHIP OF NITROGEN CONTENT OF AUSTENITIC

STAINLESS STEELS TO STRESS CORROSION

SALT STRESS CORROSION OF TI-8 AL-1 MO ALLOY SHEET AT ELEVATED TEMPERATURES - SURFACE TREATMENT EFFECT NASA-TM-X-56881 N66-29401

METALLURGICAL INVESTIGATION OF HYDROGEN PREHEATER TUBE FAILURE - STRESS CORROSION, ZINC CONTAMINATION, CRACK DETECTION, OVERHEATING EFFECTS, AND FAILURE SIMULATION RN-TM-0312 N66-29548

CHEMICAL MILLING EFFECT ON SUSCEPTIBILITY OF HIGH STRENGTH STEELS TO HYDROGEN EMBRITTLEMENT AND STRESS CORROSION CRACKING NAEC-AML-2418 N66-29945

STRESS CURRUSIUM FAILURE IN STAINLESS STEEL AND ZIRCALDY 4 FUEL ELEMENT CLADDING WCAP-3269-50 N66-30579

STRESS CORROSION SUSCEPTIBILITY OF HIGH STRENGTH STEELS

NYO-3257-1 N66-30970

STRESS CORROSION CRACKING MICROTOPOLOGY STUDIES ON THIN FILMS OF IRON-NICKEL-CHROMIUM BASE ALLOYS EXPOSED TO BOILING MAGNESIUM CHLORIDE COO-1319-36

EVALUATION OF AGEABLE BETA TITANIUM ALLOYS BY TENSILE STRENGTH, CREEP STABILITY, OXIDATION, AND STRESS CORROSION TESTS

WAL-TR-405/2-9

TRAPEZOIDAL STRESS WAVEFORMS EFFECT ON LOW CYCLE CORROSION FATIGUE STRENGTH, CLARIFYING MECHANISM OF CORROSION FATIGUE A66-23849

STRESS RELAXATION LAMELLAR SOLID LUBRICATION - CLEAVAGE, STRESS RELAXATION, AND SHEAR STRENGTH OF GRAPHITE AFML-TR-65-5 N65-26072

STRESS-STRAIN DIAGRAM FRICTION COEFFICIENT AT ELEVATED TEMPERATURES DETERMINED BY PLANE-STRAIN COMPRESSION TEST OF SEVERAL LUBRICANTS

STRESS-STRAIN DISTRIBUTION
PRESSURE EXPRESSIONS DERIVED FOR FLOW OF
NONLINEARLY VISCOPLASTIC LUBRICANT BETWEEN PLATES A65-16350

CHARACTERISTICS OF FLEXIBLE CIRCULAR PLATE, CONSIDERING STRESS AND STRAIN IN FRICTION ZONE AT CLAMPED SECTION

TRAPEZOIDAL STRESS WAVEFORMS EFFECT ON LOW CYCLE CORROSION FATIGUE STRENGTH, CLARIFYING MECHANISM OF CORROSION FATIGUE 466-23849

STRUCTURAL DESIGN COMPONENT DESIGN FOR CORROSION RESISTANCE CONSIDERING CONFIGURATION, LOCATION, PROCESSING, FABRICATION AND ASSEMBLY A65-216

GRAPHICAL METHOD FOR OPTIMIZING BEARING SPAN WITH RESPECT TO REDUCING SHAFT BENDING AND BEARING DEFLECTION TO MINIMUM A65-25644 A65-25644

STRUCTURAL DYNAMICS EFFECT OF FRICTION ON DYNAMICS OF SERVO SYSTEMS WITH RANDOM SELECTION OF MECHANICAL RESISTANCE MAGNITUDE N65-31 N65-31656

STRUCTURAL FAILURE
STRESS CORROSION CRACKING FAILURE OF STAINLESS
A65-3: A65-33134 AIRCRAFT CORROSION FAILURES AND SOLUTIONS DISCUSSING HYDRAULIC LINES, ANGLE OF ATTACK INDICATOR, HOT AIR DUCTING, CONTROL CABLE AND BELLOWS A65-35750

STRUCTURAL CHANGES ASSOCIATED WITH STRESS CORROSION AND DELAYED FAILURE IN HIGH STRENGTH STEEL AD-468171

STRESS CORROSION, DELAYED FAILURES, FATIGUE CORROSION AND RELATION BETWEEN THESE PHENOMENA - COMMISSARIAT ON ATOMIC ENERGY, METALLURGICAL COLLOQUIUM, CADARACHE, RHONE, FRANCE, JUNE

STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION AND DELAYED FAILURES IN STAINLESS STEEL USED FOR

STRUCTURAL MATERIAL
TEXTBOOK ON CHARACTERISTICS OF PRINCIPAL METALLIC AND NONMETALLIC MATERIALS USED IN AIRCRAFT STRUCTURES

STRUCTURAL CHANGES DURING FRICTION OF GRAPHITIZED MATERIAL, COMPARING CRYSTAL SIZES AND INTEGRAL LINE INTENSITY OF INITIAL AND WEAR PRODUCT

PHYSICAL METALLURGY, CORROSION, FABRICATION, PONDER PRODUCTION, AND STRUCTURAL APPLICATIONS OF BERYLLIUM AND BERYLLIUM ALLOYS

N65-33871

MECHANISMS OF CORROSION ON SELECTED STRUCTURAL MATERIALS BY LIQUID CESIUM MSAR-64-27

PROTECTIVE COATINGS EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN NASA-CR-67014

HIGH TEMPERATURE GAS CORROSION OF ADVANCED TEST REACTOR / ATR/ STRUCTURAL MATERIALS BNWL-100 N65-35021

SELECTION, MANUFACTURE, CORROSION RESISTANCE, AND PECULIARITIES OF ALUMINUM ALLOYS USED AS STRUCTURAL BUILDING MATERIALS

CORROSION RESISTANCE OF STRUCTURAL ALUMINUM ALLOY BUILDING MATERIALS

S NAP-8 REACTOR MATERIALS DEVELOPMENT PROGRAM -LUBRICANT, COOLANT, CORROSION LOOP, AND STRUCTURAL MATERIALS EVALUATION NASA-CR-54718 N66-15186

STRUCTURAL RIGIDITY
SLIDING FRICTION AND COMPRESSION TESTING OF RIGID POLYURETHANE FOAMS A66-25303

STRUCTURAL STABILITY INDIVIDUAL STRUCTURAL ELEMENTS CONNECTED INTO NONDETACHABLE STRUCTURES, USING SEIZING PHENOMENA, EXPERIMENTING WITH SINTERED ALUMINUM POWDER ELEMENTS

STRUCTURE STRUCTURAL CHANGES IN HIGH-STRENGTH STEEL ASSOCIATED WITH STRESS CORROSION AND ITS RELATIONSHIP TO DELAYED FAILURE QPR-1 N65-32351

SUBLIMATION TECHNIQUE TO LUBRICATE SLIP RINGS IN HIGH VACUUM NASA-CR-75119 N66-26654

SUBMERGED BODY INERTIA OF MOVING BODY UNDER WATER, ATMOSPHERIC CIRCULATION IN STRATOSPHERE, AND CORROSION RESISTANCE OF ALLOYS - TRANSLATION FROM COMMUNIST CHINESE LITERATURE JPRS~33046 N66-13388 SUBSURFACE

SUBSURFACE TRANSPORTATION TESTS FOR TRAFFICABILITY OF WHEELED VEHICLES IN DEEP SNOW

N66-29932 TR-160

INFLUENCE OF NICKEL SULFATE ADDITIONS ON CORROSION PROPERTIES OF TITANIUM ALLOYS IN SULFURIC ACID N66-10295

SUI FUR

SULFUR AND SEA SALT CORROSIVE ATTACK ON TURBINE BLADES AND AERO ENGINES, EMPHASIZING MARINE CONDITIONS ASME PAPER 65-GTP-7

CLASSIFICATION OF SULFUR-CONTAINING LUBRICATING OILS, WITH AND WITHOUT ADDITIVES, FOR USE WITH VARIOUS TYPES OF DIESEL ENGINES

SULFUR COMPOUND

THERMAL STABILITY AND CORROSION OF SULFUR ORGANIC COMPOUNDS IN PETROLEUM FUEL N65-1919

EFFECTIVENESS OF ORGANO-MOLYBDENUM AND ORGANO-SULFUR COMPOUNDS AS ANTIWEAR ADDITIVES TO N66-11085 LUBRICATING OILS

CALCULATING NECESSARY CONCENTRATION OF NEUTRALIZING ADDITIVES IN MOTOR DILS WHEN USING FUELS WITH LARGE SULFUR CONTENTS

N66-11119

TESTING MOTOR OILS FROM SULFURGUS CRUDES WITH DIFFERENT ADDITIVES N66-11121

DATA ON USE OF ANTICORROSIVE ADDITIVES IN RESIDUAL FUELS CONTAINING VANADIUM AND SULFUR N66-11131

EFFECTS OF ORGANIC ADDITIVES CONTAINING SULFUR, CHLORINE, AND PHOSPHOROUS ON POLYSILOXANE LUBRICANTS FSTC-381-T65-553 N66-20010

COBALT CORROSION IN HIGH TEMPERATURE SULFUR-OXYGEN ENVIRONMENT

SULFURIC ACID AUMINUM ADDITIONS EFFECT ON TITANIUM CORROSION RESISTANCE AND ELECTROCHEMICAL CHARACTERISTICS WHEN IMMERSED IN SULFURIC ACID SOLUTIONS

INFLUENCE OF NICKEL SULFATE ADDITIONS ON CORROSION PROPERTIES OF TITANIUM ALLOYS IN SULFURIC ACID N66-10295

EFFECT OF SODIUM NITRITE ON CORROSION OF TITANIUM BY HYDROCHLORIC AND SULFURIC ACID

N66-10298

CORROSION RESISTANCE OF IRON-BASE, NICKEL-BASE, AND COBALT-BASE SUPERALLOYS TO LITHIUM FLUORIDE AT CYCLIC ELEVATED TEMPERATURES NASA-CR-54781

SUPERCONDUCTING MAGNET SUPERCONDUCTIVE MAGNETIC BEARINGS ARE VIRTUALLY
FRICTIONLESS AND CAN OPERATE IN VACUUM
ASME PAPER 64-WA/PID-9
A65-13

A65-13892 SUPERSONIC TRANSPORT

FUELS AND LUBRICANTS WITH THERMALLY STABLE MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET REQUIREMENTS OF SUPERSONIC TRANSPORT A65-27161

SALT STRESS CORROSION CRACKING OF RESIDUALLY STRESSED TITANTUM ALLOY BRAKE FORMED SHEET FOR SUPERSONIC TRANSPORT NASA-TM-X-1082 N65-20 N65-20483

PROTECTIVE COATING EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS - BENDING-DUCTILITY EVALUATION

NASA-CR-63784

N65-28201

PROTECTIVE COATINGS EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS N65-33871 NASA-CR-67014

FUELS AND LUBRICANTS WITH THERMALLY STABLE MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET REQUIREMENTS OF SUPERSONIC TRANSPORT

A66-13221

AIRCRAFT TURBINE LUBRICANT TECHNOLOGY FOR HIGH MACH NUMBER ENGINES ESPECIALLY SST, NOTING STABILITY, AUTOIGNITION, COKING, TOXICITY, ETC. A66-20156 SAE PAPER 660071

PERFORMANCE OF AIRCRAFT GAS TURBINE MAINSHAFT BALL BEARINGS, SEALS, AND LUBRICANTS UNDER SIMULATED SUPERSONIC TRANSPORT ENGINE CONDITIONS NASA-CR-54312 N66-15366

PROTECTIVE COATING EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS NASA-CR-74414

AMMONIA USED TO SUPPRESS OXYGEN PRODUCTION AND CORROSION IN BOILING WATER REACTOR N66-28337 AECL-2562

SURFACE

P-38 SYNTHETIC OIL FOR SLIP-RING ASSEMBLIES NASA-CR-64251

SURFACE CHEMISTRY

CHEMICAL ADSORPTION AND P-32 IMPURITIES ASSOCIATED WITH TRICRESYL PHOSPHATE AS ANTIWEAR ADDITIVE FOR STUDY OF BEARING SURFACE ASLE PAPER 64-LC-2

ADSDRPTION AND FRICTION OF MINERALS UNDER HIGH VACUUM AND EXTREME TEMPERATURE CONDITIONS — ENGINEERING BEHAVIOR OF PARTICULATE SYSTEM WITH CLEAN, DRY SURFACES

SURFACE CHEMICAL METHODS OF DISPLACING WATER OR OIL AND SALVAGING FLOODED EQUIPMENT N65-33 N65-33771

SURFACE COOLING
HEAT TRANSFER FROM CYLINDRICAL SURFACE WITH DENSE N66-20193 RIB NETWORK TO COOLING OIL

SURFACE DIFFUSION EFFECT
CHROMIUM AND ALUMINUM SURFACE DIFFUSION INTO LOWCARBON UNALLOYED STEELS FOR IMPROVING CORROSION A65-27545 AND SCALE RESISTANCE

FRICTION AND WEAR OF SLIDING MATERIALS PREDICTED BY ADMESION-PLASTIC DEFORMATION THEORY A65-18331

SURFACE EROSION CORROSION RESISTANCE OF BERYLLIUM AND CORROSION PREVENTION VIA DIFFERENT COATINGS A65-32402

SURFACE FINISH CRACE PINISH
CONCEPT THAT NONINTERCONNECTED LUBRICANT
RESERVOIRS SURFACE HAS LESS BOUNDARY LAYER
FRICTION THAN SMOOTHER SURFACE WITH APPARENT LAY,
GIVING TORQUE TEST ON SURFACE FINISHES A65-20034

SURFACE TREATMENT EFFECT ON STAINLESS AND CARBON STEEL CORROSION IN HIGH TEMPERATURE WATER AND STEAM - AUTOCLAVE TESTS

EURAEC-1038

SURFACE INTERACTION BOOK ON FRICTION AND WEAR COVERING NATURE OF INTERACTION BETWEEN SOLID SURFACES, GENERAL CONCEPTS AND ENGINEERING AND DESIGN CALCULATIONS A66-13834 SUBJECT INDEX SYNTHESIS

SURFACE LAYER

SURFACE HYDRIDE CORROSION FILM EFFECT ON ELECTROLYTIC CORROSION AND OXIDATION OF TITANIUM A66-20841

SURFACE PROPERTY

FRICTION, LUBRICATION AND WEAR INCLUDING ROLLING, SLIDING AND ADHESION IN METALS AND NONMETALS AND SURFACE TOPOGRAPHY STRUCTURE, USING ELECTRON MICROSCOPY A65-23509

STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER BOUNDARY FRICTION CONDITIONS IN PRESENCE OF SURFACE ACTIVE LUBRICANT ADDITIVES

CHEMICAL MILLING EFFECT ON SUSCEPTIBILITY OF HIGH STRENGTH STEELS TO HYDROGEN EMBRITTLEMENT AND STRESS CORROSION CRACKING NAEC-AML-2418 N66-29945

SURFACE REACTION

REACTION RATE OF URANIUM AND WATER VAPOR AT VARIOUS TEMPERATURES AND ACTIVATION ENERGY DETERMINATIONS - OXIDE MEASUREMENTS FOR URANIUM CORROSION AWRE-0-68/65/

EFFECTIVENESS, SAFETY, AND ECONOMICS OF CHEMICAL COMPOUNDS IN DESCALING METAL AND NONMETALLIC SURFACES SD-22

N66-25289

SURFACE ROUGHNESS

MICROTOPOGRAPHICAL CHANGES OF GROUND STEEL
SURFACES RELATION TO CONTACT AND WEAR UNDER HIGH
PRESSURE LUBRICANTS
ASLE PAPER 64-LC-15
A65-2278 A65-22788

MICROIRREGULARITY LUBRICATION TO IMPROVE RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE

ASME PAPER 65-LUB-11

MICROIRREGULARITY LUBRICATION TO IMPROVE RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE ASME PAPER 65-LUB-11 A66-24550

SURFACE ROUGHNESS EFFECT

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LOADS, SPEEDS AND LUBRICANTS ASLE PREPRINT 65AM 6A2 A65-24258

FOIL BEARING THEORY TO EXPLAIN LUBRICATION CONDITION OF LIP SEAL, TAKING INTO ACCOUNT SURFACE ROUGHNESS EFFECT AND VISCOELASTIC PROPERTY OF

GEOMETRICAL AND MECHANICAL FACTORS AFFECTING RATE OF WEAR BY ELASTIC AND PLASTIC DEFORMATION AND MICROCUTTING ASME PAPER 64-WA/LUB-5 A65-33852

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LOADS, SPEEDS AND LUBRICANTS
ASLE PREPRINT 65 AM 6AZ
A66-25367 A66-25367

SURFACE ROUGHNESS EFFECTS IN HYDROMAGNETICALLY LUBRICATED EXTERNALLY PRESSURIZED BEARINGS AND HYDROMAGNETIC SQUEEZE FILM BETWEEN TWO CIRCULAR PLATES

ASME PAPER 66-LUBS-9

A66-33182

SURFACE TEMPERATURE

SURFACE TEMPERATURES OF FRICTIONAL CONTACTS
CONSIDERING TWO ROLLING/SLIDING CONTACTS, HEAT
SOURCE MOVING DYER SURFACE AT VARIOUS SPEEDS AND REPEATED CONTACT A65-25442

SURFACE TEMPERATURE AND CORROSION IN AIR AND WATER COOLED TURBOCHARGERS OF MARINE DIESEL ENGINE

SURFACE TEMPERATURES AT SLIDING INTERFACES IN VACUA AND METAL ADHESION, AND FRICTION AND WEAR **APPARATUS** ML-TDR-64-97 N66-27676 SURFACE TREATMENT

SALT STRESS CORROSION OF TI-8 AL-1 MO ALLOY SHEET AT ELEVATED TEMPERATURES - SURFACE TREATMENT EFFECT

SUSCEPTIBILITY

STRESS-CORROSION SUSCEPTIBILITY OF ULTRAHIGH STRENGTH STEEL EVALUATED IN TERMS OF FRACTURE TOUGHNESS

R-1782

STRESS CORROSION SUSCEPTIBILITY OF HIGH STRENGTH STEELS NY0-3257-1 N66-30970

WEAR CHARACTERISTICS OF ELECTROPLATED METAL COATING COMBINATIONS FOR USE IN ROTARY SWITCHES SC-DR-65-269 N66-22066

SMITCHING CIRCUIT
WEAR OF ELECTRIC CONTACTS DURING SWITCHING OF LOW
VOLTAGE DIRECT AND ALTERNATING CURRENTS

N66-13268

SYNTHESIS

SYNTHESIS, CHARACTERIZATION, AND ESTER-ESTER INTERCHANGE STUDY OF MIXED ESTER 2-ETHYLHEXYL BENZYL AZELATE FOR USE AS LOW TEMPERATURE INSTRUMENT OILS NRL-6149

ADMIXTURE SYNTHESIS AND APPLICATION TO LUBRICATING OILS FOR QUALITY IMPROVEMENT FTD-TT-64-860/182 N65-24415

OPTIMUM CONDITIONS FOR SYNTHESIZING CHROMIUM PHOSPHATE FOR USE AS ANTICORROSION PIGMENT IN SEALERS FTD-TT-65-55/1&2 N65-30048

SYNTHESIS, PRODUCTION, AND EFFECTIVENESS OF ANTIOXIDANT AND MULTIFUNCTIONAL ADDITIVES TO NATURAL AND SYNTHETIC FUEL OILS - COLLECTION OF ARTICLES FTD-MT-64-213

MULTIFUNCTIONAL AND ANTIOXIDANT ADDITIVES
SYNTHESIZED FROM DIESTERDITHIOPHOSPHORIC ACID—
CHARACTERISTICS OF ALKYLPHENOLS AND DISULFIDES OBTAINED AS INTERMEDIATE PRODUCTS

N66-11081

SYNTHESIS OF SULFONATES OF ALKYL AROMATIC HYDROCARBONS FOR USE AS ADDITIVES TO DIESEL AND MOTOR LUBRICATING DILS N66-11082

SYNTHESIS OF SULFUROUS ANTIWEAR OIL ADDITIVES ON ETHYLENE SULFIDE AND FATTY ACID BASES

N66-11083

SYNTHESIS OF THREE ANTIOXIDANT ADDITIVES OF SHIELDED PHENOLS N66-11088

SYNTHESIS OF CHLORINE AND SULFUR AROMATIC HYDROCARBON ADDITIVES AND ANTIWEAR PROPERTIES OF ADDITIVES TO LUBRICANTS N66-11092

SYNTHESIS, PRODUCTION TECHNOLOGY, AND TEST OF BARIUM ALKYLPHENOLATE, ZINC DIALKYLPHENYLDITHIO PHOSPHATE, AND DIAKYLPHENYLDITHIOPHOSPHORIC ACID FOR MULTICOMPONENT ADDITIVES TO LUBRICANTS N66-11094

SYNTHESIS OF ALKYL, CYCLOALKYL, AND DICYCLOALKYL SULFIDES TO PROVIDE REFERENCE COMPOUNDS NECESSARY IN SEARCH FOR SIMILAR CLASSES OF SULFUR COMPOUNDS IN CRUDE DIL BM-RI-6796 N66-28345

POLYMER ADDITIVE EFFECTS ON OIL VISCOSITY AND ANTIOXIDANT ADDITIVE SYNTHESIS FTD-MT-64-512 N66-30272

BISPHENOL SYNTHESIS FOR ANTIOXIDANT ADDITIVE TO OILS AND GASOLINES N66-30274 SYSTEM FAILURE
RELIABILITY TESTING PROGRAM FOR ESTIMATING
CYCLICAL LIFE FOR EQUIPMENT EXPERIENCING ONLY
WEAROUT FAILURE
A65-26059

SYSTEM LIFE
STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR
COMPONENTS AND SYSTEMS
D1-82-0460
N66-25768

SYSTEMS ANALYSIS

UTRAHIGH TEMPERATURE REACTOR EXPERIMENT FACILITY CONSTRUCTION, COMPONENT DEVELOPMENT,
HELIUM CODLING SYSTEM, SYSTEMS ANALYSES,
NEUTRONIC CALCULATIONS, AND GRAPHITE CORROSION
LA/MS/-3112
N65-36466

T

TANTALUM
EMBRITTLEMENT OF TANTALUM BY ROOM TEMPERATURE
DEFORMATION IN PRESENCE OF HYDROGEN
A66-33441

TANTALUM ALLOY
CORROSION RESISTANCE OF NIOBIUM AND TANTALUM BASE
ALLOYS TO REFLUXING POTASSIUM
NASA-TM-X-32136
N65-34252

CORROSION RESISTANCE OF NIOBIUM AND TANTALUM
TUBING ALLOYS TO REFLUXING POTASSIUM
NASA-TN-D-3429
N66-25004

TECHNOLOGY
CHEMISTRY AND TECHNOLOGY OF FUELS AND LUBRICANTS U.S.S.R.
ETD-11-65-704/162
N66-13716

FLOM
KINETICS OF POLYTETRAFLUOROETHYLENE /PTFE/
SLIDING ON PTFE, OBSERVED BY CONSTANT FORCE OF
FRICTION AND MEASURING SLIDE VELOCITY
ML-TOR-64-303
N65-27803

WEAR DURABILITY AND ABRASION RESISTANCE OF POLYTETRAFLUOROETHYLENE COATINGS ON ELASTOMERIC VULCANIZATES N65-36319

PHENOL RESIN BONDED, WOVEN GLASS AND TEFLON FIBER LUBRICANT FOR J-2 ROCKET ENGINE GIMBAL SYSTEM NASA-TM-X-53379 N66-16158

SODIUM CHLORIDE CORROSION RESISTANCE OF MAGNESIUM AND ALUMINUM ALLOYS WITH PROTECTIVE COATING OF TEFLON NRL-6353 N66-21324

TEMPERATURE EFFECT
SLIDING VELOCITY AND TEMPERATURE EFFECT ON
LUBRICATING PROPERTIES OF POLYETHYLSILOXANE
SOLUTIONS IN PETROLEUM A65-20015

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4

A65-2424

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION FILM WITH THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AN 4A2 A65-24256

ROTATING MACHINES IN EXTREME ENVIRONMENT DISCUSSING CONDUCTORS, MAGNETIC MATERIALS, INSULATIONS, BEARINGS AND PERFORMANCE

FAILURE POINT OF NONREACTIVE MINERAL OIL PREDICTED BY BLOK CRITICAL TEMPERATURE HYPOTHESIS IN ROLLING AND SLIDING CONTACT ASLE PAPER 64-LC-13 A65-31719

MOLYBDENUM DISULPHIDE-GRAPHITE ALLOY AS SOLID LUBRICANT DEMONSTRATING VERY LOW COEFFICIENT OF FRICTION A65-36165

SPEED, LOAD, AND TEMPERATURE EFFECT ON MINIMUM OIL FLOW REQUIREMENTS OF 30 AND 75 MILLIMETER-BORE BALL BEARINGS NASA-TN-D-2908

N65-27392

EFFECT UF TEMPERATURE ON FRICTION AND WEAR OF FILLED FLUORINATED PLASTIC MATERIALS FID-TT-64-1176/162 N65-29

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON MEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4 A66-13398

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION WITH FILM THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2 A66-18291

SIMULATION OF LUBRICATING OIL CIRCULATION IN AVIATION TURBINE ENGINES BY CONSTRUCTED MODEL, NOTING CHANGE OF VISCOSITY, ACID NUMBER AND ELECTRICAL CONDUCTIVITY AT HIGH TEMPERATURES A66-23751

HEAT TREATMENT EFFECT ON STRUCTURE, HARDNESS,
MICROHARDNESS AND CORROSION RESISTANCE OF VT1
TITANIUM AND OT4 TITANIUM MANGANESE-ALUMINUM
ALLOY SHEETS A66-24900

SLIDING CHARACTERISTICS OF POLYTETRAFLUOROETHYLENE / PTFE/ DRY LUBRICANT, EXAMINING EFFECTS OF TIME, TEMPERATURE AND ENVIRONMENT A66-30570

TEMPERATURE EFFECT ON CHROMIUM-NICKEL STAINLESS
STEEL CORROSION IN PASSIVITY RANGES
FTD-TT-65-1223/1&2&3&4 N66-27891

TEMPERATURE GRADIENT
CORROSIVE ATTACK MECHANISMS OF LIQUID CESIUM ON
CONTAINMENT METALS AND TEMPERATURE GRADIENT MASS
TRANSFER COMPARISON
N66-13775

TEMPERATURE PROFILE
MINIATURE SINGLE TUBE HEAT EXCHANGER FOR MEASURING
FUEL THERMAL STABILITY
SAE PAPER 987A
A65-17005

ENSILE STRENGTH

STRESS CORROSION CRACKING FAILURE OF STAINLESS
STEEL AT HIGH TEMPERATURE

A65-33134

GALVANIC CORROSION IN PANEL-TYPE COUPLES OF DISSIMILAR METALS WITH MAGNESIUM EVALUATED FROM TENSILE STRENGTH LOSS A66-19714

STRESS-CORROSION SUSCEPTIBILITY OF HIGH-STRENGTH
STEEL AT VARIOUS LEVELS OF TENSILE YIELD STRENGTH
AND FRACTURE TOUGHNESS
ASME PAPER 66-MET-5
A66-2697

MOLYBDENUM DISULFIDE SOLID LUBRICANT PROPERTIES -COMPRESSION, TENSION, TORSION, COMESION, ADHESION, AND SLIDING FRICTION MEASUREMENTS RS-460 N66-14469

EXTENDED EXPOSURE TO HEATED LITHIUM HYDRIDE EFFECT ON TENSILE PROPERTIES OF STAINLESS STEELS NAA-SR-MEMO-10885 N66-18903

EVALUATION OF AGEABLE BETA TITANIUM ALLOYS BY TENSILE STRENGTH, CREEP STABILITY, OXIDATION, AND STRESS CORROSION TESTS
WAL-TR-405/2-9
N66-31169

TENSILE STRESS
ALUMINUM ALLOY CORROSION AND FRACTURE UNDER
TENSION SHOWING RELATION TO INTERGRANULAR
CORROSION
A65-19790

DESIGN AND MANUFACTURING TECHNIQUES TO PREVENT STRESS CORROSION RESULTING FROM MATERIAL SUSCEPTIBILITY, SUSTAINED TENSILE SURFACE STRESS AND MILD CORROSIVE ENVIRONMENT ASME PAPER 65-MD-45

NSOMETER
ELECTRIC STRAIN GAUGE FOR HIGH TEMPERATURE OR
CORROSIVE ENVIRONMENTS AND ELECTROMAGNETIC
FIELDS — TENSOMETER

A65-31144

FTD-TT-64-872/162

N65-19200

TEST EQUIPMENT

TEST EQUIPMENT DESIGN AND MANUFACTURE FOR RESEARCH ON OPTIMUM SIZING OF PRESSURE LUBRICATED PARALLEL FLAT-FACE THRUST BEARINGS A65-27311

CORROSION TEST LOOP FOR EVALUATION OF REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS WHICH SIMULATE PROJECTED SPACE ELECTRIC POWER SYSTEMS NASA-CR-54843 N66-14785

TEST RIG FOR MEASURING WEAR AND FRICTION FOR MATERIALS TESTED IN WATER UNDER PRESSURE WAPD-288 N66-18857

DESIGN AND TESTING OF POTASSIUM CORROSION TEST LOOP FACILITY NASA-CR-54269 N65-1

N65-16745

TEST METHOD

TECHNIQUES FOR TESTING HIGH TEMPERATURE PERFORMANCE OF GAS TURBINE SEAL LUBRICANTS AFAPL-TR-65-3

TEST METHODS AND MEASURING APPARATUS FOR RAPID APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL OILS, LUBRICATING OILS, AND ADDITIVES - SCALE MODELS AND MICROANALYSIS N66-111

TEST PROGRAM

TEST PROGRAM TO EVALUATE MATERIALS SUITABLE FOR POTASSIUM LUBRICATED JOURNAL BEARING AND SHAFT APPLICATIONS IN SPACE SYSTEM TURBOGENERATORS OPERATING AT HIGH TEMPERATURES

EVALUATION OF AGEABLE BETA TITANIUM ALLOYS BY TENSILE STRENGTH, CREEP STABILITY, OXIDATION, AND STRESS CORROSION TESTS WAL-TR-405/2-9

TEST REACTOR

EQUIPMENT CORROSION IN HEAVY WATER COMPONENTS TEST REACTOR DP-964 N65-29234

THERMAL CONVECTION

LEAD AND LEAD-SALT CORROSION IN THERMAL CONVECTION LOOPS

ORNL-TM-1437

N66-31169

THERMAL CYCLING

SODIUM TECHNOLOGY AS RELATED TO NUCLEAR REACTOR TECHNOLOGY - MATERIALS SCIENCE, CORROSION, PURITY CONTROL, OPERATIONS, HEAT TRANSFER, AND THERMAL CYCLING N66-17405

THERMAL DECOMPOSITION

THERMAL DECOMPOSITION OF ORGANIC PHOSPHORUS COMPOUND ADDITIVES FOR REDUCTION OF FRICTION COEFFICIENT N66-11104

THERMAL EFFECT

THERMAL AFTERTREATMENT AND FLAME SPRAYING CHARACTERISTICS OF POLYAMIDE COATINGS FTD-TT-64-1324/182

INFLUENCE OF THERMAL AFTERTREATMENT ON PROPERTIES OF POLYAMIDE COATING IN CORROSION PREVENTION N65-28277

THERMAL EMISSION

MEASUREMENT OF SURFACE EMITTANCE OF SURFACE COATINGS FOR SELECTED METALS, PROVIDING LOW-THERMAL EMITTANCE CHARACTERISTICS IN IR SPECTRUM FOR THERMAL AND CORROSION CONTROL AIAA PAPER 66-18 A66-15849

TECHNIQUE FOR EVALUATING THERMAL STABILITY OF ANTIMEAR ADDITIVES IN LUBRICATING OILS FTD-TT-65-867/164 N66-14567

THERMAL STRESS
HIGH THERMAL STRESS SALT CORROSION CRACKING OF
HIGH STRENGTH STEEL AND TITANIUM ALLOYS IN

PRESENCE OF STRESS CONCENTRATORS NASA-CR-57914

N65-21344

THERMOCONDUCTIVITY

HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE
ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT
TRANSFER RATE, LIFE TESTS, WORKING LIQUID
SELECTION, ETC.
A66-1

THERMODYNAMICS

PHASE, THERMODYNAMIC, OXIDATION, AND CORROSION STUDIES OF URANIUM-NITROGEN SYSTEM BMI-1692 N65-21714

CIRCULAR CHANNEL PRESSURE DROP, FLOW QUALITY, AND CORROSION FILM THICKNESS MEASUREMENTS FURAFC-1288 N66-18864

THERMOMECHANICS

SEIZING EFFECT AT INTERFACES SAP-SAP AND AL, NOTING OPTIMUM THERMOMECHANICAL CONDITIONS

THERMOSTABILITY

ANTIMEAR ADDITION TESTING FOR THERMAL STABILITY IN LUBRICATING DILS, NOTING FFFECT OF LUBRICANTS AND OTHER ADDITIONS

THERMAL STABILITY AND CORROSION OF SULFUR ORGANIC COMPOUNDS IN PETROLEUM FUEL N65-19191

DIFFERENTIAL THERMAL ANALYSIS FOR STUDY OF THERMAL DECOMPOSITION OF DRGANIC LUBRICANT SYSTEM

A66-31899

THICKENER

ALUMINUM COMPLEX SOAPS AS THICKENERS FOR MULTIPURPOSE GREASE RIA-64-3160 N65-18869

POUR POINT DEPRESSANT, POLYMER THICKENER, CORROSION TEST, AND COMPONENT COMPOUNDING FOR FIRE-RESISTANT HYDRAULIC FLUID N65-27911

ALUMINUM SALTS OF SUBSTITUTED BENZOIC ACIDS FOR USE AS HIGH TEMPERATURE GREASE THICKENERS - BIBLIOGRAPHY WITH ABSTRACTS AFML-TR-64-324 N65-31634

THIN FILM

GEAR TOOTH PITTING DUE TO LUBRICANT FILM
CAVITATION, NOTING EFFECTS OF VIBRATION AND
INCREASED VISCOSITY OF FLUID
A6:

LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR BELOW AND ABOVE FILM MELTING POINT ASLE PAPER 64-LC-6 A65-18054

PRESSURE AND ELASTIC DISTORTION EFFECT ON THIN FILM LUBRICATION OIL THICKNESS A65-2: A65-23504

BOUNDARY LUBRICATION IN DIL SYSTEM DISCUSSED IN TERMS OF FILM STRENGTH COVERING ADSORBED, CHEMISORBED AND CHEMICAL REACTION FILM FORMATION A65-23505

GOLD PLATING COATED WITH DRY THIN TEFLON LUBRICANT FILM SYSTEM FOR LONG LIFE SLIDING ELECTRIC CONTACT ON MICROWAVE DEVICE

A65-24115

THIN FILM LUBRICANT DEVELOPED FOR GOLD-PLATED ELECTRIC CONTACTS DISCUSSING CHARACTERISTICS. PERFORMANCE AND TESTING A65-30815

VACUUM DEPOSITION OF GOLD THIN FILMS ON NICKEL, NICKEL-CHROMIUM, AND NICKEL-RHENIUM SUBSTRATES FOR USE AS LUBRICANTS NASA-TM-X-52125 N65-36 N65-36775

GOLD THIN FILMS OF 1800 ANGSTROMS TO BE USED AS LUBRICANTS WERE VAPOR-DEPOSITED ON NI, NI- CR AND NI- RE SUBSTRATES IN VACUUM

VAPOR DEPOSITED GOLD THIN FILMS TO OBTAIN ADHESION AND DURABILITY BETWEEN FILM AND SUBSTRATE

ESSENTIAL AS LUBRICANTS IN HIGH VACUUM

A66-31979

DIFFERENTIAL EQUATIONS FOR LOAD DEFLECTION CHARACTERISTICS OF THIN ELASTIC LAYERS FOR APPLICATION TO COMPLIANT BEARINGS

N66-11959

ION PLATING OF ALUMINUM THIN FILMS ON URANIUM FOR CORROSION PREVENTION - PROTECTIVE COATINGS SC-DR-65-519

THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS OF ANTIOXIDANT ADDITIVES IN LUBRICATING OILS — N66-13718 U.S.S.R.

THORIUM FABRICATION AND EVALUATION OF THORIUM IRRADIATION SAMPLES MAVING BORDN, URANIUM 233, OR GOLD CORES

THORIUM ALLOY CORROSION TESTING OF THORIUM ALLOYS IN DISTILLED WATER AT HIGH TEMPERATURES - INVESTIGATION OF THORIUM-URANIUM ALLOYS AS POSSIBLE REACTOR FUEL N65-23103

THRUST BEARING THERMAL BOUNDARY CONDITIONS FOR PARALLEL-SURFACE THRUST BEARING

TEST EQUIPMENT DESIGN AND MANUFACTURE FOR RESEARCH ON OPTIMUM SIZING OF PRESSURE LUBRICATED PARALLEL FLAT-FACE THRUST BEARINGS A65-27311

FEASIBILITY OF LIQUID LUBRICATED HYDROSTATIC JOURNAL AND THRUST BEARINGS FOR LARGE LIQUID ROCKET ENGINE TURBOPUMPS REPT .- 7439-Q-1

M HD LUBRICATION FLOW IN THRUST BEARING, NOTING FLUID INERTIA EFFECT ON LOAD CAPACITY AND FLOW RATE

ASME PAPER 66-LUBS-8

SPLIT-INNER-RACE BALL BEARINGS DESIGN FOR USE AS THRUST BEARINGS ON AIRCRAFT GAS TURBINES ASME PAPER 66-LUBS-10

TIME DEPENDENCY

SLIDING CHARACTERISTICS OF POLYTETRAFLUOROETHYLENE
/ PTFE/ DRY LUBRICANT, EXAMINING EFFECTS OF TIME,
TEMPERATURE AND ENVIRONMENT A66-30570

LEVER ESCAPEMENT IMPROVEMENT - MATERIALS AND LUBRICATION FOR TIME MEASUREMENT INSTRUMENTS

MATERIALS FOR TIME MEASUREMENT INSTRUMENT PARTS
MANUFACTURE - GLASS, COATINGS, LUBRICATION, AND
CORROSION PROTECTION
N65-26724

TITAN II ICBM II MISSILE GUIDANCE COMPONENTS - INERTIAL MEASUREMENT UNIT HEAT EXCHANGER, AND MISSILE GUIDANCE COMPUTER CORROSION RESISTANCE TESTING IN OPERATIONAL READINESS ENVIRONMENT N65-26112 FP64-241

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF TITANIUM IN SULFURIC ACID AND HYDROCHLORIC ACID SOLUTIONS DURING SQUARE WAVE AC POLARIZATION

DEFORMATION AND ANNEALING EFFECTS ON CORROSION RESISTANCE OF PURE AND PALLADIUM-ALLOYED TITANIUM IN SULPHURIC AND HYDROCHLORIC ACIDS

MECHANISM BY WHICH PALLADIUM ADDITIONS INCREASE TITANIUM CORROSION-RESISTANCE STUDIED, USING RADIOCHEMISTRY A65-34

ALUMINUM ADDITIONS EFFECT ON TITANIUM CORROSION RESISTANCE AND ELECTROCHEMICAL CHARACTERISTICS WHEN IMMERSED IN SULFURIC ACID SOLUTIONS

A65-34977

CORROSION RATE OF BT-1 TITANIUM AND 9 KH18 N12 M2 T STAINLESS STEEL IN MANGANESE-A66-10990 AMMONIUM SULFATE SOLUTIONS

SURFACE HYDRIDE CORROSION FILM EFFECT ON ELECTROLYTIC CORROSION AND OXIDATION OF TITANIUM

EFFECT OF HALOGENS ON CORROSION OF TITANIUM BY HYDROHALIC ACIDS, CHEMICAL STABILITY OF TITANIUM TO CHLORINE, BROMINE, AND IODINE, AND EFFECT OF AROMATIC NITRO COMPOUND ON CORROSION OF TITANIUM N66-10297

EFFECT OF SODIUM NITRITE ON CORROSIGN OF TITANIUM BY HYDROCHLORIC AND SULFURIC ACID

N66-10298

ELECTROCHEMICAL ASPECTS OF CORROSION OF ALUMINUM ALLOYS IN SODIUM CHLORIDE AT ELEVATED TEMPERATURES IN TITANIUM DYNAMIC LOOP FACILITY ORNL-P-1430

SEPARATION OF GASEOUS, LIQUID, AND SOLID REACTION PRODUCTS OF HOT SALT STRESS CORROSION CRACKING OF TITANIUM N66-16194

OLEIC ACID AND CRYSTALLINE IODINE MIXTURE AS ANTICORROSION LUBRICANT FOR TITANIUM PARTS N66-18656 FTD-TT-65-1193

TITANIUM CORROSION IN AQUEOUS SOLUTIONS

N66-24565

STRESS CORROSION TESTING BY AXIAL COMPRESSION OF SELF-STRESSED TITANIUM ALLOY SHEET SPECIMEN

STRESS RELIEVING ALPHA-TITANIUM ALLCY WELDMENTS IN VACUUM TO PREVENT CONTAMINATION IN A-5 VIGILANTE A65-26487 WING SECTIONS

COMPATIBILITY TEST OF NITROGEN TETROXIDE AND TITANIUM ALLOY, STUDYING CORROSIVE ATTACK AND A65-32404 IMPACT SENSITIVITY

EFFECT OF TITANIUM ADDITIONS ON RESISTANCE OF FERRITIC AUSTENITIC STEELS TO INTERCRYSTALLINE CORROSION AFTER QUENCHING A65-3 A65-32944

OPTIMUM WELDING CONDITION OF RESISTANCE SPOT WELDING OF TI ALLOY FOR SUPERSONIC AIRCRAFT A65-33674 STRUCTURES

STRESS CORROSION OF WROUGHT HIGH-STRENGTH ALUMINUM ALLOYS, SUSCEPTIBILITY OF ALLOY STEEL TO HOT SALT STRESS CORROSION, AND KINETICS OF HOT SALT STRESS CORROSION CRACKING OF TITANIUM ALLOY ASD-TR-61-713, PT. III

CRYSTAL STRUCTURE INFLUENCE ON FRICTION AND WEAR OF TITANIUM AND TITANIUM ALLOYS IN VACUUM NASA-TN-D-2671

SALT STRESS CORROSION CRACKING OF RESIDUALLY STRESSED TITANIUM ALLOY BRAKE FORMED SHEET FOR SUPERSONIC TRANSPORT N65-20483 NASA-TM-X-1082

CORROSION RESISTANT AND EMBRITTLEMENT CHARACTERISTICS OF TITANIUM-CADMIUM PLATING N65-22093

HOT SALT STRESS CORROSION CRACKING IN TITANIUM ALLOYS - CHLORIDE CORROSION ROLE DETERMINATION USING CHLORINE ISOTOPES AND RELATION BETWEEN CRACK MORPHOLOGY AND ALLOY STRUCTURE NASA-CR-60194

STRESS CORROSION CRACKING IN TITANIUM ALLOYS IN PRESENCE OF SALT, HIGH TEMPERATURE AND SUSTAINED

STRESS AIAA PAPER 65-764

CORROSION RESISTANCE OF TITANIUM AND ITS ALLOYS IN SULUTIONS OF ACETIC AND NITRIC ACIDS AS AFFECTED BY ALUMINUM ADDITIONS A66-16608

SUBJECT INDEX TUNGSTER

CORROSION RESISTANCE AND ELECTROCHEMICAL PROPERTIES OF ALLOYS OF NIOBIUM-TITANIUM SYSTEM

CORROSION RESISTANCE, ELECTROCHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM-A66-20839

STRESS CORROSION CRACKING TEST EMPLOYING PRECRACKED BAR STRESSED IN BENDING, NOTING APPARATUS AND RESULTS ON MARTENSITIC STEEL AND TITANIUM ALLOY A66-23647

HEAT TREATMENT EFFECT ON STRUCTURE, HARDNESS, MICRUHARDNESS AND CORROSION RESISTANCE OF VTITANIUM AND OT4 TITANIUM MANGANESE-ALUMINUM ALLDY SHEETS A66-24900

METAL FLOW, FRICTION AND LUBRICANT PERFORMANCE DURING STAMPING OF THIN TITANIUM ALLOY BLANKS A66-28202

OXIDATION CHARACTERISTICS OF TITANIUM ALLOYS TI-679 AND TI-8 AL-1 MO-1 V DETERMINED WITH WEIGHT-GAIN TECHNIQUES A66-466-33426

STRESS CORROSION CRACKING OF VANADIUM, MOLYBDENUM, AND TITANIUM-VANADIUM ALLOY IN HYDROCHLORIC ACID AND SULFURIC ACID SOLUTIONS BM-RI-6680 N66-10098

INFLUENCE OF NICKEL SULFATE ADDITIONS ON CORROSION PROPERTIES OF TITANIUM ALLOYS IN SULFURIC ACID N66-10295

STRESS CORROSION RUPTURING OF TITANIUM ALLOY -FRACTURE MECHANICS NASA-CR-67710

MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND TITANIUM ALLOY STRESS CORROSION, CATHODIC PROTECTION, CORROSION FATIGUE, AND ANTIFOULING PAINT FOR ALUMINUM ALLOYS NRL-MEMO-1634

FRICTION, WEAR, AND ADHESION CHARACTERISTICS OF TITANIUM-ALUMINUM ALLOYS IN VACUUM NASA-TN-D-3235

HIGH TEMPERATURE STRESS CORROSION OF TITANIUM AND TITANIUM ALLOYS NASA-CR-69851

ELECTROCHEMICAL ASPECTS OF HOT SOLID SALT STRESS CORROSION CRACK FORMATION IN TITANIUM ALLOYS

SALT STRESS CORROSION OF RESIDUALLY STRESSED TITANIUM-ALUMINUM-MOLYBDENUM-VANADIUM ALLOY SHEET AFTER HIGH TEMPERATURE EXPOSURE NASA-TN-D-3299 N66-19104

SALT STRESS CORROSION OF TI-8 AL-1 MO ALLOY SHEET AT ELEVATED TEMPERATURES - SURFACE TREATMENT EFFECT N66-29401

EVALUATION OF AGEABLE BETA TITANIUM ALLOYS BY TENSILE STRENGTH, CREEP STABILITY, OXIDATION, AND STRESS CORROSION TESTS WAL-TR-405/2-9

TITANIUM CARBIDE

POLARIZATION DURING ELECTROCHEMICAL PHASE ANALYSIS OF POWDERED MATERIALS CONTAINING TUNGSTEN AND TITANIUM CARBIDE

TITANIUM/CARBON RATIO AS DETERMINING FACTOR IN SUSCEPTIBILITY TO INTERCRYSTALLINE CORROSION IN STAINLESS STEELS A65-32 A65-32945

TOOL

FRICTION AT TOOL-WORK INTERFACE IN HOT METAL DEFORMATION PROCESSING IITRI-B6027-3

N65-14222

N66-31169

N66-10876

N66-14232

TOOL STEEL BEARING LUBRICANT ENDURANCE AT HIGH SPEEDS AND TEMPERATURES NASA-CR-57445 N65-19893 TORQUE

VIBRATION EFFECT ON FRICTION TORQUE IN CYLINDRICAL GUIDE BEARINGS FOR BALANCE-WHEEL SPINDLE FSTC-HT-23-40-66

TORQUE MEASURING APPARATUS
DRY AND FLUID LUBRICATION EFFECTS ON INSTRUMENT
BALL BEARING TORQUES AT HIGH SPEED

A65-26662

RADIOACTIVE TRACER INVESTIGATION OF REACTION
MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH
COPPER FILMS IN HYDROCARBON LUBRICATING OIL
MEDIUM — FRICTION REDUCING ADDITIVES

N66-11106

ELECTROKINETIC PROCESSES AND MECHANISM OF DISPERSION ACTION IN MOTOR OIL ADDITIVES
DETERMINED BY RADIOACTIVE TRACERS

N66-11113

TRANSFORMER

DETERMINATION OF WORKING PROPERTIES OF INHIBITED INSULATING TRANSFORMER DILS N66-11118

TRANSITION POINT

WEAR MACHINE LUBRICANTS EFFECT ON TRANSITION TEMPERATURE DISCUSSING VISCOSITY, SPEED AND LOAD ASLE PAPER 64-LC-7 A65-18055

TRANSMISSION FLUID
TESTING AUTOMOBILE TRANSMISSION OIL WITH DIFFERENT
ADDITIVES FOR ANTIWEAR, ANTIABRASSIVE,
ANTICORROSIVE, STABILITY, AND FOAM PROPERTIES N66-11127

TRANSPORT AIRCRAFT

DESIGN AND MAINTENANCE OF AIR TRANSPORT LANDING GEAR NOTING WEIGHT FACTOR, JOINTS, BUSHINGS AND CORROSION RESISTANCE SAE PAPER 650842

A65-34

TRANSPORT VEHICLE
FIELD TEST OF TRANSPORT VEHICLE COOLING SYSTEM CORRUSION INHIBITOR CCI -190 N66-19466

TRANSPORTATION

SUBSURFACE TRANSPORTATION TESTS FOR TRAFFICABILITY OF WHEELED VEHICLES IN DEEP SNOW TR-160 N66-29932

CORROSION RESISTANT STAINLESS STEEL WITH BETTER MECHANICAL PROPERTIES FOR TROPICAL CLIMATE FTD-TT-65-487/1

TUBE

NICKEL CORROSION TESTS FOR FLUORIDE VOLATILITY PROGRAM - SMALL SCALE LABORATORY TESTS IN TUBE FURNACES AND IN-PLANT EXPOSURE TESTS ANI -6979

METALLURGICAL INVESTIGATION OF HYDROGEN PREHEATER TUBE FAILURE - STRESS CORROSION, ZINC CONTAMINATION, CRACK DETECTION, OVERHEATING EFFECTS, AND FAILURE SIMULATION RN-TM-0312 N66-29548

N66-29548

TUNGSTEM

POLARIZATION DURING ELECTROCHEMICAL PHASE ANALYSIS OF POWDERED MATERIALS CONTAINING TUNGSTEN AND TITANIUM CARBIDE

DIFFUSION OF CARBON INTO TUNGSTEN AND MOLYBDENUM AT LOW CARBON CONCENTRATIONS AND HIGH TEMPERATURE

CHROMIUM STEEL STRENGTH AND CORROSION RESISTANCE IMPROVEMENT BY MOLYBDENUM AND TUNGSTEN ADDITION

GRAIN ORIENTATION INFLUENCE ON FRICTION PROPERTIES OF TUNGSTEN NASA-TN-D-3238 N66-15492

CORROSION PROPERTIES OF MOLYBDENUM, TUNGSTEN. VANADIUM, AND SOME VANADIUM ALLOYS

BM-R I-6715

N66-16451

STEADY STATE AND DYNAMIC LOAD CONDITIONS

N66-31686

TUNGSTEN ALLOY

WEAR AND FRICTION BEHAVIOR OF MOLYBDENUM-TUNGSTEN-CHROMIUM ALLOYS IN HIGH TEMPERATURE SODIUM ENVIRONMENTS A65-22789

ASLE PAPER 64-LC-25

TUNGSTEN INERT GAS /TIG/ WELDING
MECHANICAL PROPERTIES OF FLAT POSITION TIG
WELDMENTS, STRESS CORROSION TESTS, AND
WELDABILITY OF ALUMINUM ALLDYS FOR MISSILE AND SPACE PROGRAM APPLICATION N65-21777 NASA-CR-62233

TUNNEL ING

STRESS-CORROSION FAILURE IN METAL ALLOYS, DISCUSSING SURFACE AND ELASTIC ENERGY, ADSORPTION, CRACK PROPAGATION, PITS AND TUNNELING

TURBINE

HIGH SPEED RELIABILITY OF OIL-LUBRICATED TILTING-PAD POTASSIUM TURBINE BEARING ASME PAPER 65-LUBS-10

FIRE RESISTANT LUBRICANT FOR TURBINES USING PHOSPHOROUS COMPOUNDS AS BASE FTD-TT-64-1291/1 N65-28723

MEANS OF ASSESSING AVIATION TURBINE LUBRICANT QUALITY, CONSIDERING SPECIFICATION, MAINTENANCE, OPERATIONAL FACTOR AND EQUIPMENT STRIP APPROACH A66-20159 SAE PAPER 660074

TURBINE BLADE

SULFUR AND SEA SALT CORROSIVE ATTACK ON TURBINE BLADES AND AERO ENGINES, EMPHASIZING MARINE CONDITIONS A65-23447 ASME PAPER 65-GTP-7

TURBINE ENGINE

SYNTHETIC DILS FOR TURBINE ENGINES AND AIRCRAFT LUBRICATION FTD-TT-64-117/162

AIRCRAFT TURBINE LUBRICANT TECHNOLOGY FOR HIGH MACH NUMBER ENGINES ESPECIALLY SST, NOTING STABLLITY, AUTOIGNITION, COKING, TOXICITY, ETC A66-20156 SAE PAPER 660071

SIMULATION OF LUBRICATING OIL CIRCULATION IN AVIATION TURBINE ENGINES BY CONSTRUCTED MODEL, NOTING CHANGE OF VISCOSITY, ACID NUMBER AND ELECTRICAL CONDUCTIVITY AT HIGH TEMPERATURES A66-23751

HOT CORROSION IN MARINE GAS TURBINE ENGINES N66-15557 MEL-32/65

TURBOCHARGER

SURFACE TEMPERATURE AND CORROSION IN AIR AND WATER COOLED TURBOCHARGERS OF MARINE DISSEL ENGINE TDCK-44575

TEST PROGRAM TO EVALUATE MATERIALS SUITABLE FOR POTASSIUM LUBRICATED JOURNAL BEARING AND SHAFT APPLICATIONS IN SPACE SYSTEM TURBOGENERATORS OPERATING AT HIGH TEMPERATURES NA5-28354 NASA-CR-54345

TURBOJET ENGINE

SPECTROMETRIC OIL ANALYSIS METHOD FOR MONITORING TURBOJET AIRCRAFT ENGINES AND OIL LUBRICATED AIRCRAFT MECHANISMS N65-22928 DA-20-64

SUIDING FRICTION JOURNAL BEARING FOR TURBOCOMPRESSOR AND OTHER HIGH SPEED MACHINES N66-10873 FTD-TT-65-517/16264

BRAYTON CYCLE TURBOMACHINERY ROLLING ELEMENT BEARING SYSTEM NASA-CR-54785 N66-14061

MEASURING PERFORMANCE CHARACTERISTICS OF LIQUID METAL LUBRICATED TURBOMACHINE BEARING UNDER

TUR80PUMP

FEASIBILITY OF LIQUID LUBRICATED HYDROSTATIC JOURNAL AND THRUST BEARINGS FOR LARGE LIQUID ROCKET ENGINE TURBOPUMPS NA 5-19446 REPT.-7439-0-1

THRAULENCE EFFECT

LIQUID METAL LUBRICATED JOURNAL BEARINGS - FILM-INERTIA AND TURBULENCE EFFECT SWR 1-1228-60

TURBULENT FLOW

COMERENT THEORY OF TURBULENT LUBRICATION BASED ON MIXING-LENGTH HYPOTHESIS

INERTIA, TURBULENT AND VISCOUS TERMS COMPUTED FOR SLIDER BEARING LUBRICATION, USING MATRIX ALGEBRA METHODS A65-31720

ASLE PAPER 64-LC-16 TURBULENT FLOW FRICTION REDUCTIONS IN DILUTE

POLYMER SOLUTIONS NAVWEPS-8636

PRANDTL MIXING-LENGTH THEORY USED TO PREDICT PERFORMANCE OF JOURNAL BEARINGS OPERATING IN TURBULENT REGIME ASME PAPER 65-LUB-17

STEADY-STATE AND DYNAMIC CHARACTERISTICS OF FULL CIRCULAR BEARING AND CENTRALLY LOADED ARC BEARING PRESENTED IN DESIGN CHARTS FOR TURBULENT LUBRICATION ANALYSIS A66-33178 ASME PAPER 66-LUBS-4

FRICTION REDUCTION EFFECTS ON TURBULENT FLOWS IN DISTILLED WATER BY DILUTE ADDITIVE OF HIGH MOLECULAR WEIGHT POLYETHYLENE OXIDE N66-10777

TURBULENT FLUID FLOW THEORY AND APPLICATION TO HYBRID BEARINGS LUBRICATION NIO-3363-2

HIGH SPEED ROTORS SUPPORTED IN JOURNAL BEARINGS WITH LOW VISCOSITY LUBRICANT IN TURBULENT FLOW M66-20 N66-20259

THERMODYNAMICS OF TWO-PHASE FLOW, CORROSION AND OXIDATION, EMBRITTLEMENT IN STEELS FOR NUCLEAR REACTOR VESSELS, AND URANIUM OXIDE RESEARCH NA5-14696 EUR-1840.E

TWO-PHASE SYSTEM

LIQUID SOLID FILM LUBRICATION OF HYDRODYNAMIC EARTINGS, INCLUDING EFFECTS OF SOLID PARTICLES IN LIQUIC BASE LUBRICANT ASLE PAPER 66AM 5DE A66-30412 466-30412

U.S.S.R.

CHEMISTRY AND TECHNOLOGY OF FUELS AND LUBRICANTS -U.S.S.R. FTD-TT-65-704/1&2

UIL ADDITIVE ACTION ON WEAR RESISTANCE AND ANTIFRICTION PROPERTIES OF POLYSILOXANE N66-13717 COMPOUNDS - U.S.S.R.

THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS
OF ANTIOXIDANT ADDITIVES IN LUBRICATING OILS -N66-13718

ULTRAHIGH TEMPERATURE REACTOR EXPERIMENT / UHTREX/ P
ULTRAHIGH TEMPERATURE REACTOR EXPERIMENT FACILITY CONSTRUCTION, COMPONENT DEVELOPMENT,
HELIUM COOLING SYSTEM, SYSTEMS ANALYSES, NEUTRONIC CALCULATIONS, AND GRAPHITE CORROSION N65-36466 LA/MS/-3112

ULTRAHIGH VACUUM

FRICTION MEASUREMENT AND GASES EVOLVED DURING CLEAVAGE OF LAMELLAR SOLIDS IN ULTRAHIGH VACUUM A65-22791 ASLE PAPER 64-LC-18

SUBJECT INDEX VACUUM EFFECT

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR ASLE PREPRINT 65AM 6A1

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR ASLE PREPRINT 65AM 6A1

HIGH TEMPERATURE TENSILE TESTS, ALLOY POWDER TREATMENT, DRY LUBRICANT FRICTION, AND WEIGHT LOSS MEASUREMENTS IN ULTRAHIGH VACUUM SYSTEM

ULTRAHIGH-VACUUM FRICTION STUDIES OF SNAP REACTOR MATERIALS NAA-SR-9644

WEAR AND FRICTION OF LUBRICATED AND UNLUBRICATED STAINLESS STEEL BEARINGS IN SLIDING AND ROLLING CONTACT IN ULTRAHIGH VACUUM AND VARIOUS GAS ENVIRONMENTS NASA-CR-65374

N66-27232

ULTRASONIC AGITATION

ULTRASONIC AGITATION OF CORRODENT SOLUTIONS AND HOT FINISHED MILD STEEL TEST COUPONS USED TO EVALUATE EFFECTS OF VARIABLES ON EFFECTIVENESS OF TWO CORROSION INHIBITORS BM-RI-6696

N66-11939

ULTRASONIC GRINDING MACHINE

BASIC MECHANISMS OF ULTRASUNIC MACHINING PROCESS ARE MICROCHIP REMOVAL AND MATERIAL DISPLACEMENT BY PLASTIC DEFORMATION AND PARTICLE REMOVAL BY ASME PAPER 64-PROD-4

ULTRASONIC TESTING
ULTRASONIC INSPECTION OF ANTIFRICTION BEARINGS AD-454013 N65-19727

ULTRASONIC TECHNIQUE FOR DETECTING CORROSION IN AIRCRAFT FUEL TANKS RTD-TDR-63-4193, PT. II N65-30930

ULTRASONIC WAVE

EFFECT OF ULTRASONIC CLEANING ON CORROSION RESISTANCE OF PHOSPHATE-COATED STEEL PANELS SA-TR16-1122 N65-14411

URANIUM

CHEMICAL COOLANTS FOR MACHINING URANIUM IN PRESENCE OF TRACE AMOUNTS OF CHLORIDE -CORROSION PREVENTION N65-18429

PHASE, THERMODYNAMIC, OXIDATION, AND CORROSION STUDIES OF URANIUM-NITROGEN SYSTEM BMI-1692 N65-21714

INCREASED URANIUM AND URANIUM ALLOY CORROSION RESISTANCE IN WATER AND STEAM N65-33653

ATMOSPHERIC CORROSION MECHANISM OF URANIUM AND URANIUM ALLOYS IN RELATION TO TEMPERATURE AND HUMIDITY EFFECTS ON CORROSION RATES

N65-33654

PREVENTION OF WATER VAPOR CORROSION OF URANIUM BY DAYGEN AND PROTECTIVE COATINGS AWRE-0-42/65 N66-1317A

ION PLATING OF ALUMINUM THIN FILMS ON URANIUM FOR CORROSION PREVENTION - PROTECTIVE COATINGS SC-DR-65-519 N66-13189

REACTION RATE OF URANIUM AND WATER VAPOR AT VARIOUS TEMPERATURES AND ACTIVATION ENERGY DETERMINATIONS — OXIDE MEASUREMENTS FOR URANIUM CORROSION AWRE-0-68/65/

N66-18416

URANIUM INTERMETALLIC FUEL SYSTEM AND ALUMINUM-

BERYLLIUM ALLOY CORROSION PROPERTY STUDIES

URANIUM ALLOY

HYDROFLUORINATOR CORROSION RATE DETERMINATION DURING FUEL PROCESSING RUNS WITH ZIRCONIUM-URANIUM ALLOY ORNL-3623

N65-18428

CORROSION TESTING OF THORIUM ALLOYS IN DISTILLED WATER AT HIGH TEMPERATURES - INVESTIGATION OF THORIUM-URANIUM ALLOYS AS POSSIBLE REACTOR FUEL ANL-7006

CORRUSION OF URANIUM AND URANIUM ALLOYS IN AQUEOUS AND NON-AQUEOUS MEDIA AND PROTECTIVE COATINGS JPRS-31728

INCREASED URANIUM AND URANIUM ALLOY CORROSION RESISTANCE IN WATER AND STEAM N65-33653

ATMOSPHERIC CORROSION MECHANISM OF URANIUM AND URANIUM ALLOYS IN RELATION TO TEMPERATURE AND HUMIDITY EFFECTS ON CORROSION RATES

CORROSION OF SOME URANIUM-PLUTONIUM-IRON ALLOYS AWRE-0-18/65 N66-14170

ATMOSPHERIC CORROSION OF URANIUM-CARBON ALLOYS CEA-R-2732 N66-15087

URANIUM COMPOUND

STATIC AND ISOTHERMAL CORROSION TESTS OF HASTELLOY N, INCONEL 600, AND HYMU-80 IN URANIUM CHLORIDE-POTASSIUM CHLORIDE EUTECTIC N66-30771

URANIUM OXIDE

THERMODYNAMICS OF TWO-PHASE FLOW, CORROSION AND OXIDATION, EMBRITTLEMENT IN STEELS FOR NUCLEAR REACTOR VESSELS, AND URANIUM OXIDE RESEARCH EUR-1840.F N65-14696

URANIUM 233

FABRICATION AND EVALUATION OF THORIUM IRRADIATION SAMPLES HAVING BORON, URANIUM 233, OR GOLD CORES BMI-1761

VACUUM

CRYSTAL STRUCTURE INFLUENCE ON FRICTION AND WEAR OF TITANIUM AND TITANIUM ALLOYS IN VACUUM NASA-TN-D-2671 N65-17459

WEAR AND FRICTION OF HIGH TEMPERATURE SOLID FILM LUBRICANT IN HIGH VACUUM AND IN AIR N65-29941

POTASSIUM CORROSION TEST LOOP DEVELOPMENT — HELIUM ANALYSIS SYSTEM TO MEASURE IMPURITIES IN VACUUM PURGED, INERT GAS WELDING CHAMBER NASA-CR-54168

BALL BEARING LIFE TESTS IN VACUUM USING MOLYBDENUM SULFIDE SOLID FILMS WITH HIGH VACUUM OILS AS LUBRICANTS NASA-CR-71695 N66-24604

VACUUM CHAMBER

SURFACE TEMPERATURES AT SLIDING INTERFACES IN VACUA AND METAL ADHESION, AND FRICTION AND WEAR **APPARATUS** ML-TDR-64-97 N66-27676

VACUUM DEPOSITION

VACUUM DEPOSITION OF GOLD THIN FILMS ON NICKEL, NICKEL-CHROMIUM, AND NICKEL-RHENIUM SUBSTRATES FOR USE AS LUBRICANTS NASA-TH-X-52125 N65-36775

GOLD THIN FILMS OF 1800 ANGSTROMS TO BE USED AS LUBRICANTS WERE VAPOR-DEPOSITED ON NI, NI CR AND NI- RE SUBSTRATES IN VACUUM

A66-15937

VACUUM EFFECT

FACTURS DETERMINING METAL CHARACTERISTICS IN SPACE

SUBJECT INDEX

VANADIUM

VACUUM NOTING EVAPORATION, SUBLIMATION, SPUTTERING, LUBRICATION, ETC

A65-26262

TESTING DRY FILM LUBRICANTS EXPOSED TO ULTRAHIGH A65-30030 VACUUM ENVIRONMENT

ROTATING MACHINES IN EXTREME ENVIRONMENT DISCUSSING CONDUCTORS, MAGNETIC MATERIALS, INSULATIONS, BEARINGS AND PERFORMANCE

A65-31144

VACUUM EFFECTS ON LUBRICANTS AND BEARING MATERIALS DUE TO REDUCED AMBIENT PRESSURE AND LOW CONCENTRATION OF OXIDIZING GASES

A66-24383

BALL BEARING LIFE OPERATING IN VACUUM WITH MOLYBDENUM DISULFIDE AND OILS AS LUBRICANT A66-30416 ASLE PAPER 66AM 7A3

VANADIUM

STRESS CORROSION CRACKING OF VANADIUM, MOLYBDENUM, AND TITANIUM-VANADIUM ALLOY IN HYDROCHLORIC ACID AND SULFURIC ACID SOLUTIONS BM-R1-6680

ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO PREVENT ASH DEPOSITS AND VANADIUM CORROSION N66-11130

OIL ADDITIVE TO SUPPRESS VANADIUM FUEL CORROSION -TETRAETHOXYSILANE N66-12831 FTD-TT-65-505/164

ADDITIVE FOR SUPPRESSING VANADIUM CORROSION OF FUELS

FTD-TT-65-505/184

VANADIUM ALLOY STRESS CORROSION CRACKING OF VANADIUM, MOLYBDENUM, AND TITANIUM-VANADIUM ALLOY IN HYDROCHLORIC ACID AND SULFURIC ACID SOLUTIONS N66-10098 BM-R I-6680

CORROSION PROPERTIES OF MOLYBDENUM, TUNGSTEN, VANADIUM, AND SOME VANADIUM ALLOYS N66-16451 BM-R I-6715

SPONTANEOUS TRANSITION OF SLIDING FRICTION TO ROLLING FRICTION WITH REFRACTORY VANADIUM AND MOLYBDENUM CARBIDES AT HIGH TEMPERATURES NASA-TT-F-9499

VANADIUM COMPOUND

DATA ON USE OF ANTICORROSIVE ADDITIVES IN RESIDUAL FUELS CONTAINING VANADIUM AND SULFUR N66-11131

LUBRICANT PROPERTIES OF REACTION PRODUCTS FROM INTERACTION OF VOLATILE COMPOUND GENERATED VAPORS FOR HIGH SPEED BALL BEARING N65-22046 NAEC-AML-2107

ELASTICITY OF SATURATED VAPORS FROM LUBRICATING OILS AND GREASES FTD-TT-65-1063/18284 N66-18654

VAPOR DEPOSITION

VAPOR-DEPOSITED THIN GOLD FILMS AS LUBRICANT IN VACUUM

NASA-TN-D-3040 VAPOR DEPOSITED GOLD THIN FILMS TO OBTAIN ADHESION

AND DURABILITY BETWEEN FILM AND SUBSTRATE ESSENTIAL AS LUBRICANTS IN HIGH VACUUM A66-31979

VAPORIZATION HEAT

THE TERM THE THE TERM THE THE TERM THE

VENTURI TUBE

PITTING CHARACTERISTICS OF EARLY PHASE CAVITATION DAMAGE TO TEST SPECIMENS IN VENTURI A65-26503 ASME PAPER 64-WA/FE-2

VIBRATION

STRUCTUREBORNE AND AIRBORNE VIBRATION STUDIES OF ROLLING ELEMENT AND SLIDING SURFACE BEARINGS N66-31323 F-A2321

VIBRATION DAMPING

FRICTION INDUCED VIBRATION TO DETERMINE EXISTENCE OF CRITICAL VELOCITY OF DRIVEN SURFACE 466-14241 ASME PAPER 65-LUB-5

GYRUSCOPIC ROTOR VIBRATIONS EXCITED BY EFFECT OF LUBRICATION LAYER IN SLIDING BEARINGS AND STABILIZED WITH INTERVENING ELASTODAMPING SUPPORTS, TAKING INTO ACCOUNT MOMENT OF INERTIA OF A66-32605 ROTOR

VIBRATION EFFECT ON FRICTION TORQUE IN CYLINDRICAL VIBRATION EFFECT ON FRICTION TORQUE IN CYLINDRICAL GUIDE BEARINGS FOR BALANCE-WHEEL SPINDLE N66-27598 FSTC-HT-23-40-66

VINYL POLYMER

PHENOL RESIN AND POLYVINYL BUTYRAL PROTECTIVE PRIMER WITH HIGH CORROSION RESISTANCE FOR STEELS AND LIGHT ALLOYS N66-23394 ONI-TRANS-2060

VISCOELASTIC FLOW

VISCOELASTIC NON- NEWTONIAN LUBRICANT FLOW EQUATIONS WITH SQUEEZE FILM SOLUTIONS A65-22795 ASLE PAPER 64-LC-10

ELASTOHYDRODYNAMIC LUBRICATION THEORY, COMPARING DIL-FILM THICKNESS PREDICTED BY DOWSON AND HIGGINSON WITH MEASUREMENTS FROM DISK MACHINE LUBRICATED BY VARIOUS FLUIDS

DENSITY AND VISCOSITY CHANGES OF LUBRICANTS IN CONTACT DUE TO PRESSURE CHANGES IN CONCENTRATED-CONTACT LUBRICATION ASME PAPER 65-LUB-4

VISCOEL ASTICITY

FOIL BEARING THEORY TO EXPLAIN LUBRICATION CONDITION OF LIP SEAL, TAKING INTO ACCOUNT SURFACE RUUGHNESS EFFECT AND VISCOELASTIC PROPERTY OF

VISCOPLASTIC FLOW

PRESSURE EXPRESSIONS DERIVED FOR FLOW OF NONLINEARLY VISCOPLASTIC LUBRICANT BETWEEN PLATES A65-16350

FLOW OF NONLINEAR VISCOPLASTIC MEDIUM BETWEEN TWO N66-26219 PLATES

VISCOSITY

EFFECT OF VISCOSITY ON ANTIWEAR PROPERTIES OF OIL N66-11129 ADDITIVES

FILM RUPTURE AND CAVITATION IN JOURNAL BEARINGS WITH LOW KINEMATIC VISCOSITY LUBRICANTS N66-20254 MTI-65TR13

HIGH SPEED ROTORS SUPPORTED IN JOURNAL BEARINGS WITH LOW VISCOSITY LUBRICANT IN TURBULENT FLOW MTI-65TR12

POLYMER ADDITIVE EFFECTS ON OIL VISCOSITY AND ANTIOXIDANT ADDITIVE SYNTHESIS N66-30272 FTD-MT-64-512

EFFECTS OF HIGH-POLYMER ADDITIVES AND CHEMICAL COMPOSITION OF OILS ON PETROLEUM VISCOSITY

VISCOUS DRAG

NONHOLONOMIC COUPLING ACHIEVED BY MEANS OF VISCOUS FRICTION FORCES, USING CHAPLYGIN SLEDGE A65-26089 THEOREM

INTERACTION BETWEEN SELF-ACTING AND EXTERNALLY PRESSURIZED LUBRICANT FLOW IN FOIL BEARING N66-18519 RR-65-12

PRESSURE DISTRIBUTION OF VISCOUS ELECTRICALLY CONDUCTING FLUID IN LUBRICATING LAYER OF

CYLINDRICAL BEARING

A66-24425

NICKEL CORROSION TESTS FOR FLUORIDE VOLATILITY PROGRAM - SMALL SCALE LABORATORY TESTS IN TUBE FURNACES AND IN-PLANT EXPOSURE TESTS ANL-6979

N65-24709

VULCANIZATE

WEAR DURABILITY AND ABRASION RESISTANCE OF POLYTETRAFLUOROETHYLENE COATINGS ON ELASTOMERIC VULCANIZATES NRL-6298

WALL TEMPERATURE

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK ELECTRODES

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK ELECTRODES A66-31597

CORROSION TESTING OF THORIUM ALLOYS IN DISTILLED WATER AT HIGH TEMPERATURES - INVESTIGATION OF THORIUM-URANIUM ALLOYS AS POSSIBLE REACTOR FUEL N65-23103

CORROSION OF MATERIALS BY ETHYLENE GLYCOL-WATER DMIC-216 N65-29914

INCREASED URANIUM AND URANIUM ALLOY CORROSION RESISTANCE IN WATER AND STEAM N65-33653

SURFACE CHEMICAL METHODS OF DISPLACING WATER OR OIL AND SALVAGING FLOODED EQUIPMENT NRL-6291

N65-33771 FRICTION REDUCTION EFFECTS ON TURBULENT FLOWS IN DISTILLED WATER BY DILUTE ADDITIVE OF HIGH

MOLECULAR WEIGHT POLYETHYLENE OXIDE N66-10777

ROTOR DYNAMICS TESTS WITH OVERHUNG MASS USING HYDROSTATIC WATER BEARINGS TIM-874

CORROSION OF SURFACE WORK-HARDENED STAINLESS STEELS IN HIGH TEMPERATURE WATER AND STEAM EURAEC-1500 N66 N66-27777

WATER COOLED REACTOR

COMPARATIVE CORROSION EXPERIMENTS OF ZIRCONIUM ALLOY FOR JACKETING MATERIAL IN WATER COOLED REACTORS EURAEC-1115

WATER PRESSURE

DYNAMIC CORROSION TESTS OF CARBON STAINLESS STEEL IN PRESSURIZED WATER EUR-2688-F N66-26057

WATER PURIFICATION

ABSTRACTS ON CORROSION OF CONCRETE AND STEEL PROTECTIVE COATING MATERIALS, MATERIAL TESTING, WATER AND AIR PURIFICATION, PACKAGING, AND BIBLIUGRAPHIC INFORMATION

N66-20 N66-20801

WATER VAPOR

STRESS CORROSION ON E GLASS FIBERS EXPOSED TO WATER VAPOR A66-23120

PREVENTION OF WATER VAPOR CORROSION OF URANIUM BY OXYGEN AND PROTECTIVE COATINGS AWRE-0-42/65 N66-13178

TRANSPARENT PLASTIC PACKAGING FILMS FOR PREVENTION OF CORROSION FROM WATER VAPOR LEAKAGE

N66-14309

REACTION RATE OF URANIUM AND WATER VAPOR AT VARIOUS TEMPERATURES AND ACTIVATION ENERGY DETERMINATIONS - OXIDE MEASUREMENTS FOR URANIUM CORROSION AWRE-0-68/65/ N66-18416 WATER VEHICLE

TESTING OF HOT-CORROSION-RESISTANT ALLOYS FOR MARINE GAS TURBINES MEL-131/66

WELDED STRUCTURE

WATERPROOFING

MECHANICAL AND FRICTION PROPERTIES OF PLASTIC COATINGS, AND WATERPROOFED GLASS FIBER STRENGTH DEPENDENCE ON BINDERS FTD-TT-65-319/16264 N66-28854

WAVEGUIDE

MAYEGUIDE INSERTION LOSS DUE TO CORROSION BY ACIDIFIED HYDROGEN SULFIDE AND SALT SPRAY TESTED FOR VARIOUS COATINGS A65-21893

WEAPON SYSTEM

SEMIFLUID GREASE AND DIL BLEND LUBRICANT EVALUATION FOR M61 RAPID FIRE MACHINE GUN IN TERMS OF ANTIWEAR AND EXTREME PRESSURE PROPERTIES A65-17897

CORROSION CONTROL IN AIRCRAFT STRUCTURES, WEAPON SYSTEMS, AND GROUND SUPPORT EQUIPMENT P-3080 N65-22212

WEAR TESTING MACHINE

CHEMICAL ADSORPTION AND P-32 IMPURITIES
ASSOCIATED WITH TRICRESYL PHOSPHATE AS ANTIWEAR
ADDITIVE FOR STUDY OF BEARING SURFACE ASLE PAPER 64-LC-2 A65-18052

WEAR MACHINE LUBRICANTS EFFECT ON TRANSITION TEMPERATURE DISCUSSING VISCOSITY, SPEED AND LOAD ASLE PAPER 64-LC-7 A65-18055

FOUR-BALL WEAR TESTER TO EVALUATE SOLID LUBRICANT DISPERSIONS INCLUDING MOLYBDENUM DISULFIDE

NEW METHOD OF EVALUATING EFFECTIVENESS OF ANTIABRASIVE PROPERTIES OF FUEL AND OIL ADDITIVES N66-11115

SLIDING CONTACTS IN ROLLER BEARINGS - WEAR TESTING MACHINE AND LUBRICANT TESTING AL 651 081

FRICTION MACHINE USED FOR EVALUATING EFFECTIVENESS OF ACTION OF ANTI-SCORING ADMIXTURES TO GILS AND FUELS FTD-TT-65-1491/16264 N66-29690

WEATHERPROOFING

EVALUATION OF FUNGUS-PROOF, TACK-FREE, NONCORROSIVE, AND WEATHER-RESISTANT PRESSURE-SENSITIVE PLASTIC OR PAPER TAPES RIA-66-774 N66-27871

WEDGE FLOW

FLUID FILM LUBRICATION THEORY DEVELOPED FROM ASSUMPTION OF LOCAL WEDGE FLOW RATHER THAN LOCAL PARALLEL CHANNEL FLOW A65-238:

WEIBULL DISTRIBUTION

SERVICE LIFE OF ANTIFRICTION BEARINGS REPRESENTED BY WEIBULL DISTRIBUTION LAW, WITH COMPUTER METHOD FOR PARAMETERS AND DENSITY FUNCTION

A66-16486

MEIGHT

IMPROVED TECHNIQUE OF DETERMINING METAL CORROSION RATE BY WEIGHT LOSS N65-18075

WELDED JOINT

AL- ZN- MG ALLOYS SENSITIVITY AND RESISTANCE TO WELDING AND STRESS CORROSION CRACKING

A65-16238

CORROSION RESISTANT ZINC PAINT EFFECTS ON MECHANICAL PROPERTIES OF STEEL WELD JOINTS AT-1959/69 N66-20026

WELDED STRUCTURE

OPTIMUM WELDING CONDITION OF RESISTANCE SPOT WELDING OF TI ALLOY FOR SUPERSONIC AIRCRAFT STRUCTURES A65-33624 STRESS CORROSION PROPERTIES OF 12 PERCENT NICKEL MARAGING STEEL WELDMENTS IN MARINE ENVIRONMENTS

WELDING CORROSION RESISTANCE AND WELDABILITY OF AUSTENITIC HEAT-RESISTING STEELS FOR STEAM POWER GENERATORS

MECHANICAL PROPERTIES OF FLAT POSITION TIG WELDMENTS, STRESS CORROSION TESTS, AND WELDABILITY OF ALUMINUM ALLOYS FOR MISSILE AND SPACE PROGRAM APPLICATION NASA-CR-62233 N65-21777

COLD WELDING OF METAL CONTACTING SURFACES OF SYSTEM FOR NUCLEAR AUXILIARY POWER-19 EJECTION MECHANISMS AND MINIMIZATION WITH LUBRICANT APPLICATION N65-25522 MND-3169-66

WIND TUNNEL MODEL LOW TEMPERATURE CHARACTERISTICS OF LUBRICATING OILS, PHOTOGRAMMETRIC CHECKING OF WIND TUNNEL MODELS, MECHANICS, AERODYNAMICS, HYDRODYNAMICS, AND THERMODYNAMICS N65-20570 DMF/NAF-1964/3/

MIRE GALVANIC CORROSION OF ALUMINUM ASSEMBLIES BY STAINLESS STEEL WIRE INSERTS
NASA-TM-X-53404 N66-19762

WORK HARDENING CORROSION OF SURFACE WORK-HARDENED STAINLESS STEELS IN HIGH TEMPERATURE WATER AND STEAM EURAEC-1500

DETERMINATION OF WEAR RESISTANCE OF FRICTION COUPLINGS BY MEASUREMENT OF CONSUMPTION OF WORKING MEDIUM FTD-TT-65-69/1&2 NA5-31718

MROUGHT ALLOY LEAD METALLURGY - ARCHITECTURAL AND WROUGHT LEAD APPLICATIONS, CABLE SHEATHING, SOLDERS, JOINING, LEAD COATED STEEL, BATTERY APPLICATIONS, CORROSION CONTROL, AND FUNDAMENTAL RESEARCH N65-23264

X

X- 15 AIRCRAFT FRICTION COEFFICIENTS AND WEAR CHARACTERISTICS FOR X-15 AIRCRAFT SKID LANDING GEAR NASA-TN-D-3331

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED. DEFORMATION BY X-RAY TECHNIQUE
ASD-TDR-61-643, PT. V N65-305 N65-30505

YTTR IUM CORROSION RESISTANCE OF YTTRIUM IS HIGHER AT HIGHER P H BECAUSE OF SLOWER ANODIC PROCESS A66-21747

CORROSION RESISTANT ZINC PAINT EFFECTS ON MECHANICAL PROPERTIES OF STEEL WELD JOINTS N66-20026 AT-1959/69

ZINC ALLOY CORROSION CHARACTERISTICS OF AL- IN- MG ALLOYS 465-30744

CR AND MN EFFECTS ON AGING MECHANISM AND ANTICORROSION PROPERTIES OF AL- ZN- MG ALLOYS A66-12723

CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC MG- ZN ALLOYS IN HALIDE SOLUTION A66-26026 ZINC COMPOUND

JPRS-32341

SYNTHESIS, PRODUCTION TECHNOLOGY, AND TEST OF BARTUM ALKYLPHENOLATE, ZINC DIALKYLPHENYLDITHIO PHOSPHATE, AND DIAKYLPHENYLDITHIOPHGSPHORIC ACID FOR MULTICOMPONENT ADDITIVES TO LUBRICANTS N66-11094

ZINC OXIDE CHEMICAL STABILITY OF SILVER GRAPHITE, MOLYBDENUM DISULFIDE, ZINC OXIDE, BORON NITRIDE, MUSCOVITE AND PHLOGOPITE MICA SOLID LUBRICANTS

ZIRCALOY CORROSION IN SIMULATED PLUTONIUM RECYCLE TEST REACTOR FUEL ELEMENT SURFACE CREVICES N65-31877

STRESS CORROSION FAILURE IN STAINLESS STEEL AND ZIRCALOY 4 FUEL ELEMENT CLADDING NAA-30' WCAP-3269-50 N66-30579

ZIRCONIUM LIQUID ZIRCONIUM VISCOSITY, BINARY ALLOY
OXIDATION, SYNTHESIS AND PROPERTIES OF ZIRCONIUM
BORIDE ALLOYS WITH MOLYBDENUM DISILICIDE, AND
ZIRCONIUM CORROSION IN ALKALI METAL CHLORIDE

ZIRCONIUM CORROSION IN MOLTEN EQUIMOLAR MIXTURE OF POTASSIUM AND SODIUM CHLORIDES

N66-17779

CORROSION AND OXIDATION FILM FORMATION ON ZIRCONIUM AND ZIRCALOY 2 IN AIR AND WATER EURAEC-1457

ZIRCONIUM ALLOY
CARBON STEEL CORROSION RESISTANCE IN WATER
INCREASED BY ZIRCONIUM ADDITION AFFECTING BOTH ANODIC AND CATHODIC PROCESSES A65-23440

ELECTRON PROBE ANALYZER FOR INVESTIGATING ZIRCONIUM ALLOY CORROSION N65-14870 A09-40

HYDROFLUORINATOR CORROSION RATE DETERMINATION DURING FUEL PROCESSING RUNS WITH ZIRCONIUM-URANIUM ALLOY N65-18428 ORNL-3623

ZIRCONIUM HYDRIDE IN ZIRCALOY 2 AND ZIRCONIUM-NIOBIUM ALLOYS - STEAM AND WATER CORROSION TESTS, HYDROGEN PICKUP, MICROGRAPHY, AND HYDROGEN CONTENT EFFECT ON MECHANICAL PROPERTIES N65-24285 EURAEC-1161

CORROSION RESISTANCE OF CONSOLIDATED ZIRCALOY 2 POWDER CONTAINING OXYGEN AND NITROGEN N65-36540 KAPL-3060

USE OF INTERNAL FRICTION METHODS TO DETERMINE THE PHYSICAL SITUATION OF OXYGEN IN NIOBIUM-ZIRCONIUM ALLOYS AND ITS EFFECTS ON CORROSION N66-13857 CNLM-6344

COMPARATIVE CORROSION EXPERIMENTS OF ZIRCONIUM ALLOY FOR JACKETING MATERIAL IN WATER COOLED REACTORS N66-22187 EURAEC-1115

CORROSION AND CORROSION HYDRIDING STUDIES FOR ZIRCONIUM ALLOYS EURATOM-2683-E

CORROSION ANALYSIS OF ZIRCONIUM ALLOYS EXPOSED TO REACTOR IRRADIATION AECL-2257

ZIRCONIUM-BASE ALLOY DEVELOPMENT WITH IMPROVED CORROSION RESISTANCE IN HIGH TEMPERATURE STEAM N66-25094 WAPD-TM-546

ZIRCONIUM HYDRIDE IN ZIRCALDY 2 AND ZIRCONIUM-NIUBIUM ALLOYS - STEAM AND WATER CORROSION TESTS, HYDROGEN PICKUP, MICROGRAPHY, AND HYDROGEN CONTENT EFFECT ON MECHANICAL PROPERTIES ZIRCONIUM HYDRIDE N65-24285 FURAFC-1161

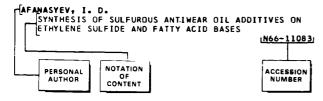
SUBJECT INDEX

ZIRCONIUM OXIDE

ZIRCONIUM OXIDE

ROLLING FRICTION STUDIES OF INTERMETALLIC AND
ZIRCONIUM OXIDE FOR CONTROL SURFACE BEARINGS FOR
SPACE REENTRY VEHICLE
ASLE PAPER 66AM 5D4

A66-30413


Personal Author Index

LUBRICATION. CORROSION AND WEAR / a continuing bibliography

OCTOBER 1966

with indexes

Typical Personal Author Index Listing

A Notation of Content (NOC), rather than the title of the document, is used to provide a more exact description of the subject matter. The accession number is included to assist the user in locating the abstract in the abstract section.

ABELE. G. SUBSURFACE TRANSPORTATION TESTS FOR TRAFFICABILITY OF WHEELED VEHICLES IN DEEP SNOW N66-29932

ATMOSPHERIC CORROSION OF URANIUM-CARBON ALLOYS CEA-R-2732 N66-15087

ACHERMAN, W. L.
CORROSION PROPERTIES OF MOLYBDENUM, TUNGSTEN,
VANADIUM, AND SOME VANADIUM ALLOYS BM-RI-6715 N66-16451

AFANASYEY, NASYEY, 1. D.
SYNTHESIS OF SULFUROUS ANTIWEAR OIL ADDITIVES ON
ETHYLENE SULFIDE AND FATTY ACID BASES

AGARWAL, J. P. ELECTRICALLY CONDUCTING LUBRICANT, USING MOMENTUM INTEGRAL METHOD TO INVESTIGATE EFFECT OF MAGNETIC FIELD ON LOAD CAPACITY OF FULL JOURNAL BEARING 465-32784

AGULOV, I. I.

EFFECT OF CRYSTALLINE STATE AND STRUCTURAL

ORIENTATION OF POLYMER ON ENDURANCE OF COUPLINGS WITH POLYTETRAFLUORGETHYLENE COMPONENTS, ANALYZING DRY FRICTION AND WEAR ON INTERFACES A66-25912

BOOK CONCERNING MOLECULAR PHYSICS OF BOUNDARY FRICTION ON METAL SURFACES A65-16663

HEAT TREATMENT EFFECT ON STRUCTURE, HARDNESS, MICROHARDNESS AND CORROSION RESISTANCE OF VT TITANIUM AND 0T4 TITANIUM MANGANESE-ALUMINUM ALLOY SHEETS A66-24900

ALEKSANDROV, L. N.
DIFFUSION OF CARBON INTO TUNGSTEN AND MOLYBDENUM AT LOW CARBON CONCENTRATIONS AND HIGH TEMPERATURE

ALEKSANDROVA, T. K.
PRODUCTION SPECIFICATIONS FOR HOT ROLLED THICK TWO-LAYERED CORROSION RESISTANT STEEL SHEETS N66-24265 ALEKSEEVA, E. L. CORROSION RESISTANCE, ELECTROCHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM-NIOBIUM SYSTEM A66-20839

ALEKSEYEVA, O. V. OPTIMUM CONDITIONS FOR SYNTHESIZING CHRONIUM PHOSPHATE FOR USE AS ANTICORROSION PIGMENT IN SEALERS FTD-TT-65-55/1&2

ALEXANDER, A. L.
CORROSION OF ALUMINUM AND MAGNESIUM ALLOYS IN
TROPICAL ENVIRONMENTS
N65-N65-19255 NRL-6105

STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION AND DELAYED FAILURES IN STAINLESS STEEL USED FOR 466-33442

MICROIRREGULARITY LUBRICATION TO IMPROVE RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE SEAL ASME PAPER 65-LUB-11

HIGROIRREGULARITY LUBRICATION TO IMPROVE RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE ASME PAPER 65-LUB-11

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED. HEAVILY LOADED ROLLING CONTACTS - MEASUREMENT OF DEFORMATION BY X-RAY TECHNIQUE ASD-TDR-61-643, PT. V N65-3050

LIFETIME, LOAD-CARRYING ABILITY, AND FRICTION AND WEAR CHARACTERISTICS OF PLAIN SLEEVE BEARINGS FOR AIRCRAFT SUPPORT STRUCTURES AD-628937

ALLEN, G. P.
CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE **ENVIRONMENT** ASLE PREPRINT 65AM 5C5

CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE **ENVIRONMENT** ASLE PREPRINT 65AM 5C5

FLUORIDE SOLID LUBRICANTS FOR EXTREME TEMPERATURE AND CORROSIVE ENVIRONMENTS
NASA-TM-X-52077 N66-1524 N66-15243

ALLIO, R. J.
STRESS CORROSION THEORY USED IN MODEL FOR
PREDICTING EFFECT OF CATION AND ANION IN SOLUTION
ON SUSCEPTIBILITY TO STRESS CORROSION CRACKING A65-22351

STRESS CORROSION FAILURE IN STAINLESS STEEL AND ZIRCALOY 4 FUEL ELEMENT CLADDING WCAP-3269-50 N66-30579

ALSANDOR. E. DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET LUBRICANT ASLE PREPRINT 65-LC-16 466-12253 DISENGAGING GEAR LUBRICATION THROUGH HEAT DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET

LUBRICANT ASLE PREPRINT 65-LC-16

A66-30574

ALTOV, V. V.

HEAT EXCHANGE, FRICTION AND MASS EXCHANGE IN
LAMINAR MULTICOMPONENT BOUNDARY LAYER DURING
INJECTION OF EXTRANEOUS GASES

A65-29304

ALTOVSKII, R. M.
CORROSION RESISTANCE OF YTTRIUM IS HIGHER AT
HIGHER P H BECAUSE OF SLOWER ANODIC PROCESS
A66-217

AMATEAU, M. F.
LIFETIME, LOAD-CARRYING ABILITY, AND FRICTION AND
WEAR CHARACTERISTICS OF PLAIN SLEEVE BEARINGS
FOR AIRCRAFT SUPPORT STRUCTURES
AD-628937
N66-24725

ANDELIN. R. L.
FUEL TANK MATERIAL COMPATIBILITY WITH FAST
BREEDER REACTOR FUEL
LA-DC-7315
N66-18290

ANDERSON. E. L.

AIRCRAFT LUBRICANT AND SELECTED SOLVENT TESTS FOR REMOVAL OF CARBONACEOUS DEPOSITS ON JET ENGINE BEARING

AFAPL-TR-65-118

N66-1956

EFFECT OF AIRCRAFT GAS TURBINE ENGINE LUBRICANTS AND SOLVENTS ON REMOVAL OF CARBONACEOUS DEPOSITS AFAPL-TR-65-118 N66-31108

ANDERSON, W. J.

SPEED, LOAD, AND TEMPERATURE EFFECT ON MINIMUM OIL
FLOW REQUIREMENTS OF 30 AND 75 MILLIMETER-BORE
BALL BEARINGS
NASA-TN-D-2908
N65-27392

ROLLING CONTACT LUBRICATION CHARACTERISTICS OF POLYPHENYL ETHERS AND MINERAL OILS AT REDUCED PRESSURES
NASA-TN-D-3130 N66-12142

EFFECT OF STEEL COMPONENT HARDNESS DIFFERENCES ON BEARING FATIGUE AND LOAD CAPACITY NASA-TM-X-52087 N66-27083

FRICTION DUE TO BALL MOTION IN ANGULAR CONTACT
BALL BEARING
NASA-TM-X-52207
N66-28018

ANDREEVA, V. V.
CORROSION RESISTANCE AND ELECTROCHEMICAL
PROPERTIES OF ALLOYS OF NIOBIUM-TITANIUM
SYSTEM
A66-20838

CORROSION RESISTANCE, ELECTROCHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM-NIOBIUM SYSTEM A66-20839

ANFINOV, N. A.

HEAT EXCHANGE, FRICTION AND MASS EXCHANGE IN
LAMINAR MULTICOMPONENT BOUNDARY LAYER DURING
INJECTION OF EXTRANEOUS GASES

A65-29304

ANTONY, K. C.

OXIDATION CHARACTERISTICS OF TITANIUM ALLOYS
TI-679 AND TI-8 AL-1 MO-1 V DETERMINED WITH
WEIGHT-GAIN TECHNIQUES

A66-33426

APPELDOORN. J. K.
LUBRICITY PROPERTIES OF HIGH TEMPERATURE JET FUELS
QPR-1 N66-13426

ARABIAN, R. V.

S NAP-8 MATERIALS RESEARCH - MERCURY CORROSION
CAPSULE TESTS OF FERRITIC ALLOYS FOR MASS
TRANSFER, STRESS CORROSION, MODE OF ATTACK,
AND MECHANICAL PROPERTIES
NASA-CR-62379
N65-22558

ARABYAN, S. G.
DETERMINING REQUIREMENTS FOR QUALITY OF
LUBRICATING OILS FOR TRACTOR DIESEL ENGINES
N66-11120

ARCHARD, J. F.

ELASTOHYDRODYNAMIC LUBRICATION AT POINT CONTACTS,
DERIVING FILM THICKNESS FROM ELECTRICAL CAPACITY
MEASUREMENTS AND NOTING SIDE-LEAKAGE CONCEPT
A65-32762

FILM THICKNESS MEASURING APPARATUS IN
ELASTOHYDRODYNAMIC LUBRICATION EXAMINING FRICTION
COEFFICIENT, VISCOSITY AND SLIDING SPEED DATA
A65-33219

BIBLIOGRAPHY OF IME SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION AT LEEDS, ENGLAND IN SEPTEMBER 1965 A65-33220

ARMANTROUT, C.

PHASE RELATIONS OF GADOLINIUM ALLOYS STUDIED FOR
MECHANICAL AND CORROSION PROPERTIES
N65-26040

ARTEMYEVA, O. A.
LOW-FREEZING-POINT UIL PREPARATION BY EXTRACTING
PARAFFINS FROM PETROLEUM DISTILLATES WITH
CARBANIDE
ETD-TT-65-1509/164
N66-2827

ARMAS, E. B.

STEADY-STATE AND DYNAMIC CHARACTERISTICS OF FULL
CIRCULAR BEARING AND CENTRALLY LOADED ARC BEARING
PRESENTED IN DESIGN CHARTS FOR TURBULENT
LUBRICATION ANALYSIS
ASME PAPER 66-LUBS-4
A66-33178

STATIC AND DYNAMIC LOAD RESPONSE TESTS ON TILTING-PAD AND FLOATING-RING JOURNAL BEARINGS AND FUNDAMENTAL PROCESSES OF LUBRICANT FLOW NASA-CR-54259 N65-16201

LIQUID MERCURY AND ALKALI HALIDE METALS LOOP FOR LIQUID METAL LUBRICATED ROTOR BEARINGS -SNAP MTI-64TR72, REV.-2 N66-1172

HIGH SPEED ROTORS SUPPORTED IN JOURNAL BEARINGS
WITH LOW VISCOSITY LUBRICANT IN TURBULENT FLOW
MTI-65TR12 N66-2025

MEASURING PERFORMANCE CHARACTERISTICS OF LIQUID
METAL LUBRICATED TURBOMACHINE BEARING UNDER
STEADY STATE AND DYNAMIC LOAD CONDITIONS

ATALYAN, A. A.
SYNTHESIS OF CHLORINE AND SULFUR AROMATIC
HYDROCARBON ADDITIVES AND ANTIWEAR PROPERTIES OF
ADDITIVES TO LUBRICANTS
N66-11092

AVDEYEV, D. T.
FRICTION REDUCTION AND MECHANICAL STRENGTH
DEPENDENCE ON METHOD OF APPLYING POLYAMIDE AND
POLYETHYLENE COATINGS TO MACHINE PARTS
N66-28856

AVERBUKH. A. B.
SURFACE HYDRIDE CORROSION FILM EFFECT ON
ELECTROLYTIC CORROSION AND OXIDATION OF TITANIUM
A66-20841

AVETISYAN. A. S.
ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO PREVENT ASH DEPOSITS AND VANADIUM CORROSION N66-11130

OIL ADDITIVE TO SUPPRESS VANADIUM FUEL CORROSION TETRAETHOXYSILANE
FTD-TT-65-505/164
N66-12831

ADDITIVE FOR SUPPRESSING VANADIUM CORROSION OF FUELS N66-29818

AZHOGIN, F. F.
STRESS CORROSION CRACKING OF STEEL IN VARIOUS
MEDIA
FID-TT-64-643/162
N65-17187

I-100

N65-19464

BABA, Y.

AL- ZN- MG ALLOYS SENSITIVITY AND RESISTANCE TO HELDING AND STRESS CORROSION CRACKING

A65-16:

A65-16238

BALL BEARING LIFE OPERATING IN VACUUM WITH MOLYBDENUM DISULFIDE AND DILS AS LUBRICANT ASLE PAPER 66AM 7A3 A66-30416

BABER, B. B.
IMPACT SENSITIVITY TEST METHOD FOR LUBRICANTS IN
CONTACT WITH LIQUID PROPELLANT
AFAPL-TR-65-70
N66-1427

AIRCRAFT LUBRICANT AND SELECTED SOLVENT TESTS FOR REMOVAL OF CARBONACEOUS DEPOSITS ON JET ENGINE BEARING AFAPL-TR-65-118

EFFECT OF AIRCRAFT GAS TURBINE ENGINE LUBRICANTS AND SOLVENTS ON REMOVAL OF CARBONACEOUS DEPOSITS AFAPL-TR-65-118

BACKSTROM, T. E.
CORROSION TEST ON BURIED METAL WITH DIRECT CURRENT

BAGRYANTSEVA, P. P.
ANTIWEAR ADDITION TESTING FOR THERMAL STABILITY IN LUBRICATING DILS, NOTING EFFECT OF LUBRICANTS AND OTHER ADDITIONS A65-14875

TECHNIQUE FOR EVALUATING THERMAL STABILITY OF ANTIMEAR ADDITIVES IN LUBRICATING DILS FTD-TT-65-867/184 N66-14567

BAILEY, D. R.
HELICOPTER GEAR LUBRICATION - GEAR SURFACE
PRECOATING EFFECT ON GEAR PERFORMANCE AND GEAR
PERFORMANCE OF SYNTHETIC TETRAESTER FIVE CENTISTOKE BASE OIL QPR-1 N65-33907

HELICOPTER GEAR LUBRICATION AND PROTECTIVE COATINGS QPR-2 N66-12537

BAILEY, J. A. FRICTION COEFFICIENT AT ELEVATED TEMPERATURES DETERMINED BY PLANE-STRAIN COMPRESSION TEST OF SEVERAL LUBRICANTS A65-1 A65-18794

BAKER, H. R.

STABILIZATION OF SILICONE LUBRICATING FLUIDS AT 300 TO 400 DEG C BY SOLUBLE CERIUM COMPLEXES

MAG 5-22

SURFACE CHEMICAL METHODS OF DISPLACING WATER OR OIL AND SALVAGING FLOODED EQUIPMENT

ICING OF OIL AND GREASE LUBRICANTS USED IN AIRCRAFT ORDNANCE N66-16738

FACTORS AFFECTING ICING RESISTANCE OF LUBRICANTS FOR AIRCRAFT ORDNANCE N66-270 N66-27009

BALAKINA, I. A. PRODUCTION SPECIFICATIONS FOR HOT ROLLED THICK TWO-LAYERED CORROSION RESISTANT STEEL SHEETS N66-24265

BAMBERGER, E. N.
ULTRASONIC INSPECTION OF ANTIFRICTION BEARINGS AD-454013 N65-19727

BARANNIK, V. P.
OLEIC ACID AND CRYSTALLINE IODINE MIXTURE AS
ANTICORROSION LUBRICANT FOR TITANIUM PARTS
N66 N66-18656

BARINKA, L. L.
PITTING CHARACTERISTICS OF EARLY PHASE CAVITATION DAMAGE TO TEST SPECIMENS IN VENTURI ASME PAPER 64-WA/FE-2

BARLOW, E. J.

EQUATIONS FOR SELF-ACTING FOIL BEARINGS - EFFECTS

OF DESCRIPTION STREEMESS OF TAPE AND COMPRESSIBILITY OF BENDING STIFFNESS OF TAPE AND COMPRESSIBILITY
OF LUBRICANT RR-65-1

INTERACTION BETWEEN SELF-ACTING AND EXTERNALLY PRESSURIZED LUBRICANT FLOW IN FOIL BEARING

SELF-ACTING FOIL BEARING INFINITE WIDTH RR-65-14 N66-21481

NONLINEAR SOLUTION FOR FLOW INTERACTION BETWEEN SELF-ACTING FOIL BEARING LUBRICANT AND EXTERNAL PRESSURF

BARRETT, C. A.
CORROSION RESISTANCE OF NIOBIUM AND TANTALUM
TUBING ALLOYS TO REFLUXING POTASSIUM NASA-TN-D-3429 N66-25004

BARSTOW, W.
PHASE RELATIONS OF GADOLINIUM ALLOYS STUDIED FOR
MECHANICAL AND CORROSTON PROPERTIES
NA5-2604 N65-26040

TEST EQUIPMENT DESIGN AND MANUFACTURE FOR RESEARCH UN OPTIMUM SIZING OF PRESSURE LUBRICATED PARALLEL FLAT-FACE THRUST BEARINGS A65-27311

BASHAYEV, V. YE.

DETERGENT AND ANTIWEAR ADDITIVES FOR IMPROVING
OPERATIONAL PROPERTIES OF DIESEL FUELS AND
LUBRICATING OILS
N66-1

BATES, J. F.
STRESS CORROSION CRACKING CAUSED BY
ELECTROCHEMICAL DISSOLUTION, ALLOYING AND HYDROGEN
EMBRITTLEMENT OF STEELS IN SOLUTIONS AND LIQUID METALS A65-15126

BAUER, A. A. NIOBIUM BASE ALLOY FOR USE AS CLADDING OR STRUCTURAL MATERIAL RESISTANT TO CORROSION BY SUPERHEATED STEAM

PHASE, THERMODYNAMIC, OXIDATION, AND CORROSION STUDIES OF URANIUM-NITROGEN SYSTEM BMI-1692 N65-21714

BAYBAROVA, L. L.
CALCIUM SOAPS OF SYNTHETIC FATTY ACID FRACTION AS
METAL DRAWING LUBRICANT FTD-TT-64-1197/1 N65-33475

BAYSINGER, F. R.

MECHANICAL PROPERTIES OF FLAT POSITION TIG
WELDMENTS, STRESS CORROSION TESTS, AND
MELDABILITY OF ALUMINUM ALLOYS FOR MISSILE AND
SPACE PROGRAM APPLICATION
NASA-CR-62233
N65-21

BEACHEM. C. D.
AQUEOUS ENVIRONMENT EFFECTS ON HIGH STRESS LOW-CYCLE FATIGUE OF 18 PERCENT NICKEL MARAGING STEELS NRL-MEMO-1685

BEANE, G. A., IV
LOAD-CARRYING CAPACITY OF GEAR LUBRICANTS FROM
TESTS WITH HIGH TEMPERATURE GEAR MACHINE AND
INDUCTION HEATED GEARS N65-36192

BEARD, A. P.

CORROSION RESISTANCE OF CONSOLIDATED ZIRCALDY 2
POWDER CONTAINING DXYGEN AND NITROGEN N65-36540

BEAUBIEN, S. J.
HELICOPTER GEAR LUBRICATION - GEAR SURFACE
PRECOATING EFFECT ON GEAR PERFORMANCE AND GEAR
PERFORMANCE OF SYNTHETIC TETRAESTER FIVE QPR-1 N65-33907 HELICOPTER GEAR LUBRICATION AND PROTECTIVE OPR-2

N66-12537

CORROSION RESISTANCE OF BERYLLIUM AND CORROSION PREVENTION VIA DIFFERENT COATINGS

A65-32402

BECK. F. H. STRESS CORROSION CRACKING EXPERIMENTS WITH IRON-NICKEL-CHROMIUM ALLOYS cnn-1319-24

STRESS CORROSION CRACKING IN CHROMIUM-NICKEL-IRON ALLDYS WITH FOURTH ELEMENT ADDED N66-17533 COO-1319-27

BECK, W.

DIFFUSION OF ELECTROLYTIC HYDROGEN THROUGH
MEMBRANES OF IRON CRYSTALS AS FUNCTION OF STRESS,
TEMPERATURE AND DISSOLVED HYDROGEN CONCENTRATION A66-23071

CHROMIUM AND ALUMINUM SURFACE DIFFUSION INTO LOW-CARBON UNALLOYED STEELS FOR IMPROVING CORROSION AND SCALE RESISTANCE
A65-2754: BECKER, G.

BEDELL. D. W.
AIRCRAFT TURBINE ENGINE OIL DRAIN PRACTICES. AIRCRAFT TURBINE ENGINE UIL URAIN PRACTICES,
DISCUSSING ENGINE DESIGN AND MATERIALS AND MINIMUM
AND MAXIMUM DRAIN TIME
SAE PAPER 660073
A66-20158

REILE. J. H. COMPOSITE CASTING AS METALLURGICAL BONDING TECHNIQUE, NOTING APPLICATION TO WEIGHT REDUCTION AND INCREASE OF CORROSION RESISTANCE

BELITSKAIA, S. G.
HYDROGEN PEROXIDE VAPOR DECOMPOSITION ON METAL
SURFACES AND ROLE IN ATMOSPHERIC CORROSION
INVESTIGATED BY PHOTOGRAPHIC AND OPTICAL
AA5-2: A65-20347 POLARIZATION METHODS

BELITSKII, M. E. LISKII, TO E C CHEMICAL STABILITY OF SILVER GRAPHITE, MOLYBDENUM DISULFIDE, ZINC OXIDE, BORON NITRIDE, MUSCOVITE AND PHLOGOPITE MICA SOLID LUBRICANTS 466-31675

BELL. J. C. L. J. C.

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED,

HEAVILY LOADED ROLLING CONTACTS - MEASUREMENT OF

DEFORMATION BY X-RAY TECHNIQUE

ASD-TDR-61-643, PT. V N65-3056

BELSKY, C. J.
SLIDING CONTACTS IN ROLLER BEARINGS - WEAR TESTING
MACHINE AND LUBRICANT TESTING
N66-14463 AL65L081

BELTRAN, A. COBALT CORROSION IN HIGH TEMPERATURE SULFUR-OXYGEN ENVIRONMENT

BELTRAN, A. M.
TESTING OF HOT-CORROSION-RESISTANT ALLOYS FOR
MARINE GAS TURBINES MEL-131/66

BELYANCHIKOV, G. P.
TESTING MOTOR OILS FROM SULFUROUS CRUDES WITH
DIFFERENT ADDITIVES
N66-1 N66-11121

BENEDIKTOVA, G. P.
STRESS CORROSION EFFECTS ON HEAT RESISTANT ALLOYS
BY SODIUM CONTAINING ADMIXTURES FTD-TT-65-1050/18284

BRITTLE AND PLASTIC BEHAVIOR OF HOT-PRESSED POLYCRYSTALLINE BE O NOTING STRESS CORROSION, FRACTOGRAPHY AND X-RAY ROCKING CURVES A66-14933 BERENFELD, A. V.
TESTING AUTOMOBILE TRANSMISSION OIL WITH DIFFERENT ADDITIVES FOR ANTIMEAR, ANTIABRASSIVE, ANTICORROSIVE, STABILITY, AND FOAM PROPERTIES N66-11127

BERGE, PH.
SURFACE TREATMENT EFFECT ON STAINLESS AND CARBON
STEEL CORROSION IN HIGH TEMPERATURE WATER AND
STEAM - AUTOCLAVE TESTS
NAS-238 EURAEC-1038

CORROSION-EROSION TESTING OF STAINLESS STEEL
OXYGENATED SATURATED STEAM ACNP-64001

BERGMAN, P. A.
TESTING OF HOT-CORROSION-RESISTANT ALLOYS FOR
MARINE GAS TURBINES
N66-MEL-131/66

HOT CORROSION BEHAVIOR OF NICKEL AND COBALT ALLOYS EXPOSED TO SULFATE INDUCED OXIDATION N66-28683

METALLIC CORROSION MEASUREMENT BY RADIATION BACKSCATTERING AND RADIATION INDUCED X-RAYS A66-13933

BERNIKER, YE. I.
SOLID MOLYBDENUM DISULFIDE LUBRICANT APPLIED TO
CUTTING PORTION OF TOOLS AND FRICTIONAL PARTS OF MACHINES FTD-TT-64-1148/1

BERRY, M. E.
NIOBIUM BASE ALLOY FOR USE AS CLADDING OR
STRUCTURAL MATERIAL RESISTANT TO CORROSION BY SUPERHEATED STEAM BMI-1700

BETHUNE, B.

HARDNESS EFFECTS OF STEEL BRIDGES ON ADHESION TO
COLD DRAWN MILD STEEL AS INITIAL STAGE OF FRETTING
PROCESS IN INITIATION OF FATIGUE CRACKS
A65-18627

BEVEL. J. E. HELICOPTER GEAR LUBRICATION AND PROTECTIVE COATINGS N66-12537 OPR-2

BEZBORODKO, M. D.

EFFECT OF LUBRICATING MATERIALS AND ADDITIVES ON N66-111: N66-11116

BEZOBRAZOV, YU. N.
HEXACHLOROCYCLOPENTADIENE USED AS ANTIWEAR
ADDITIVE TO LUBRICATING OILS
FTO-TT-65-795/18284 N66-19772

CORROSION RESISTANCE OF CONSOLIDATED ZIRCALOY 2 POHDER CONTAINING OXYGEN AND NITROGEN N65-36540 KAPL-3060

BIEBER, H. E. CHEMICAL ADSORPTION AND P-32 IMPURITIES
CHEMICAL ADSORPTION AND P-32 IMPURITIES
ASSOCIATED WITH TRICRESYL PHOSPHATE AS ANTIWEAR
ADDITIVE FOR STUDY OF BEARING SURFACE ASLE PAPER 64-LC-2

RINDER, H. GALVANOSTATIC MEASUREMENTS OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTRULYTES

COULDMETRIC-POTENTIOSTATIC MEASUREMENTS OF ANODIC OXIDATION OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES

RIRNRAUM. Z. W. STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COMPONENTS AND SYSTEMS N66-25768 01-82-0460

ł

BITA. D. PURITY AND GRAIN SIZE OF VARIOUS NATURAL AND SYNTHETIC MOLYBDENUM DISULFIDE INFLUENCING FRICTION AND WEAR OF METAL SURFACES WHEN USED AS A65-30156

BLACKSTONE, W. R.
IMPACT SENSITIVITY TEST METHOD FOR LUBRICANTS IN
CONTACT WITH LIQUID PROPELLANT
N66-1427 N66-14228

ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO PREVENT ASH DEPOSITS AND VANADIUM CORROSION N66-11130

BLAKE, E. S.
POUR POINT DEPRESSANT, POLYMER THICKENER,
CORROSION TEST, AND COMPONENT COMPOUNDING FOR
FIRE-RESISTANT HYDRAULIC FLUID
N65-: N65-27911

BLANCHET, J.

STRUCTURAL STATE, COMPOSITION, P H OF MEDIUM, AND CHIORIDE CONCENTRATION TO DETERMINE PITTING CORROSION OF MAGNESIUM AND ITS ALLOYS CEA-R-2815 N66-26038

BLAND, R. D.

ION PLATING OF ALUMINUM THIN FILMS ON URANIUM FOR CORROSION PREVENTION - PROTECTIVE COATINGS N66-13189

CORROSION PROTECTION OF REACTOR PARTS BY ION PLATED COATING OF ALUMINUM SC-DR-65-530 N66-15554

CORROSION STUDIES OF REFRACTORY METAL ALLOYS IN BOILING POTASSIUM AND LIQUID NA K CNLM-6246 N66-28939

BLOK, H. INVERSE PROBLEMS IN HYDRODYNAMIC LUBRICATION IN WHICH FILM PRESSURE DISTRIBUTION IS ASSUMED AND PROFILE TO BE DETERMINED IS ANALYZED IN CONJUNCTION WITH DESIGN DIRECTIVES

A65-23502

MOLYBDENUM DISULFIDE-BASE SOLID LUBRICANTS WITH LOW FRICTION COEFFICIENTS BETWEEN COUPLED ELEMENTS ATD-66-52

BLOOM, M. C. STEEL CORROSION MECHANISMS - GROWTH AND BREAKDOWN
OF PROTECTIVE FILMS IN HIGH TEMPERATURE AQUEOUS SYSTEMS NRL-6082 N65-15833

BOBER, E. S.
WEAR AND FRICTION OF LUBRICATED AND UNLUBRICATED STAINLESS STEEL BEARINGS IN SLIDING AND ROLLING CONTACT IN ULTRAHIGH VACUUM AND VARIOUS GAS ENVIRONMENTS NASA-CR-65374 N66-27232

BOCKRIS, J. OM. DIFFUSION OF ELECTROLYTIC HYDROGEN THROUGH MEMBRANES OF IRON CRYSTALS AS FUNCTION OF STRESS, TEMPERATURE AND DISSOLVED HYDROGEN CONCENTRATION A66-23071

BOES, D. J. PHYSICAL AND CHEMICAL PROPERTIES OF PHYSICAL AND CHEMICAL PROPERTIES UP DICHALCOGENIDES OF GROUP VB AND VIB METALS FOR USE AS AEROSPACE SOLID LUBRICANTS, PRIMARILY FRICTION AND ANTIHEAR CHARACTERISTICS ASLE PREPRINT 65AM 5C3

A65-2424

WEAR AND FRICTION OF LUBRICATED AND UNLUBRICATED STAINLESS STEEL BEARINGS IN SLIDING AND ROLLING CONTACT IN ULTRAHIGH VACUUM AND VARIOUS GAS ENVIRONMENTS NASA-CR-65374

BOGDANDVA, O. I.
IMPROVING ANTIMEAR PROPERTIES OF LUBRICATING OILS

WITH DERIVATIVES OF 2-MERCAPTOBENZTHIAZOLE FTD-TT-64-1287/1 N65-28624

BOGGS, W. A.

ELIMINATION OF FUEL CONTAMINATION AND CORROSION
OF FUEL TANKS IN AIRCRAFT USING JET TURBINE FUEL

BOHLMANN, E. G.
ELECTROCHEMICAL ASPECTS OF CORROSION OF ALUMINUM
ALLOYS IN SODIUM CHLORIDE AT ELEVATED
TEMPERATURES IN TITANIUM DYNAMIC LOOP FACILITY
N66-114 N66-11492

BOIARINOVA, A. P.
CHROMIUM STEEL STRENGTH AND CORROSION RESISTANCE
IMPROVEMENT BY MOLYBDENUM AND TUNGSTEN ADDITION A66-22747

RUST-REMOVING CORROSION PREVENTATIVE TO ABSORB RUST FROM STORED STEEL AND IRON SURFACES AND PREVENT DETERIORATION IITRI-C6032-17

GRAPHICAL METHOD FOR OPTIMIZING BEARING SPAN WITH RESPECT TO REDUCING SHAFT BENDING AND BEARING DEFLECTION TO MINIMUM A65-2564 A65-25644

BOLOTICH, I. P. HYDROGEN PEROXIDE VAPOR DECOMPOSITION ON METAL SURFACES AND ROLE IN ATMOSPHERIC CORROSION INVESTIGATED BY PHOTOGRAPHIC AND OPTICAL POLARIZATION METHODS A65-20347

BOLSTER, R. N.
ICING OF OIL AND GREASE LUBRICANTS USED IN
AIRCRAFT ORDNANCE N66-16738

PHYSICAL PROPERTIES OF METAL SOAP OIL SYSTEM BEHAVIOR NRL-6361 N66-22765

FACTORS AFFECTING ICING RESISTANCE OF LUBRICANTS FOR AIRCRAFT ORDNANCE N66-27009

SPECTROMETRIC DIL ANALYSIS METHOD FOR MONITORING TURBOJET AIRCRAFT ENGINES AND DIL LUBRICATED AIRCRAFT MECHANISMS 0A-20-64

STATISTICAL STUDY OF SPECTROMETRIC OIL ANALYSIS METHOD FOR AIRCRAFT ENGINE MONITORING SYSTEM

BONIS, L. J.
FACTORS DETERMINING METAL CHARACTERISTICS IN SPACE VACUUM NOTING EVAPORATION, SUBLIMATION, SPUTTERING, LUBRICATION, ETC A65-26262

BOROVAYA. M. S.
DETERMINING ANTIOXIDATION EFFECTIVENESS OF MOTOR OIL ADDITIVES N66-11114

CALCULATING NECESSARY CONCENTRATION OF NEUTRALIZING ADDITIVES IN MOTOR OILS WHEN USING FUELS WITH LARGE SULFUR CONTENTS N66-11119

TESTING MOTOR OILS FROM SULFUROUS CRUDES WITH DIFFERENT ADDITIVES N66-11121

BOSSLER, R. B., JR.

CONCEPT THAT NONINTERCONNECTED LUBRICANT
RESERVOIRS SURFACE HAS LESS BOUNDARY LAYER
FRICTION THAN SMOOTHER SURFACE WITH APPARENT LAY,
GIVING TORQUE TEST ON SURFACE FINISHES

A65-20034

BOTKIN, P. P. FUEL OIL ADDITIVE WITH BARIUM NAPHTHENATE FOR WEAR AND SCALE REDUCTION IN HIGH SPEED DIESEL ENGINE FTD-TT-65-1125/184 N66-19561

BOURGEOIS, W. F. ZIRCONIUM-BASE ALLOY DEVELOPMENT WITH IMPROVED CORROSION RESISTANCE IN HIGH TEMPERATURE STEAM
MAPD-TM-546 N66-25094

BOWEN, H. C.

CORROSION RESISTANCE TESTS ON HIGH SILICON
ALUMINUM ALLOYS
ANHI -125
N6

N66-12932

N65-26290

BOWEN, P. H.

WEAR AND FRICTION OF LUBRICATED AND UNLUBRICATED
STAINLESS STEEL BEARINGS IN SLIDING AND ROLLING
CONTACT IN ULTRAHIGH VACUUM AND VARIOUS GAS
ENVIRONMENTS
NASA-CR-65374

N66-27232

BOWERS, R. C.

REDUCTION OF POLYMERIC FRICTION BY MINOR CONCENTRATIONS OF PARTIALLY FLUORINATED COMPOUNDS
NRI-6227

BOYD, N. K.

RELATIVE RESISTANCE OF ALUMINUM ALLOYS, AND EFFECT
OF GRAIN STRUCTURE ON SUSCEPTIBILITY TO STRESS
CORROSION CRACKING
DMIC-MEMO-202

N65-24445

CORROSION OF MATERIALS BY ETHYLENE GLYCOL-WATER
DMIC-216 N65-29914

STRUCTURAL CHANGES ASSOCIATED WITH STRESS
CORROSION AND DELAYED FAILURE IN HIGH STRENGTH
STEEL
AD-468171
N65-31865

BRADY, E. F.

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC
RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING
CONFIGURATION FOR MINERAL DILS AND ESTERS
ASLE PREPRINT 65AM 4A4

A65-24250

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL DILS AND ESTERS

INFLUENCE OF LUBRICATION ON ENDURANCE OF ROLLING
CONTACTS
AL641057
N65-14058

BRASKI, D. N.
STRESS CORROSION TESTING BY AXIAL COMPRESSION OF
SELF-STRESSED TITANIUM ALLOY SHEET SPECIMEN
A65-1462

SALT STRESS CORROSION OF TI-8 AL-1 MO ALLOY SHEET AT ELEVATED TEMPERATURES - SURFACE TREATMENT EFFECT NASA-TM-X-56881 N66-29401

BRIGGS, E. V.

ULTRASONIC TECHNIQUE FOR DETECTING CORROSION IN

AIRCRAFT FUEL TANKS

RTD-TDR-63-4193, PT. II N65-30930

BRIGGS, J. Z.
SUPER CHROMIUM STEEL SURVEY, INCLUDING
APPLICATIONS IN GAS TURBINES AND AEROSPACE
INDUSTRIES, PHYSICAL AND MECHANICAL PROPERTIES,
THERMAL STABILITY, CORROSION RESISTANCE, ETC
A66-19953

BRIONNE, G.
STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION
AND DELAYED FAILURES IN STAINLESS STEEL USED FOR
BOLTS
A66-33442

BROCKLEY, C. A.
FRICTION INDUCED VIBRATION TO DETERMINE EXISTENCE
OF CRITICAL VELOCITY OF DRIVEN SURFACE
ASME PAPER 65-LUB-5
A66-1424

BROMWELL, L. G.

ADSORPTION AND FRICTION OF MINERALS UNDER HIGH VACUUM AND EXTREME TEMPERATURE CONDITIONS — ENGINEERING BEHAVIOR OF PARTICULATE SYSTEM WITH CLEAN, DRY SURFACES R64-42 N65-30626

BRONSTEIN, H. R.
CURROSION RESISTANT CONTAINER FOR RARE EARTH-RARE
EARTH HALIDE SOLUTION
ORNL-P-814

N66-23233

BROOKES, C. A.
FRICTIONAL PROPERTIES OF SILICON NITRIDE AND
CARBIDE DURING RECIPROCATING SLIDING BETWEEN
HEMISPHERICAL STYLUS AND POLISHED HORIZONTAL
SPECIMEN
A66-30253

BROTHERS, B. G.

SMALL-SCALE SLIP PROCESSES FROM APPLIED LOADING
AND GEOMETRIC CONFORMITY BETWEEN ROLLING BODIES,
MEASURING WEAR AND CREEP
A65-26572

BROWN. B. F.
STRESS CORROSION CRACKING TEST EMPLOYING
PRECRACKED BAR STRESSED IN BENDING. NOTING
APPARATUS AND RESULTS ON MARTENSITIC STEEL AND
TITANIUM ALLOY
A66-23647

STRESS CORROSION CRACKING AND CORROSION FATIGUE
OF HIGH STRENGTH STEELS

N65-19235

CATHODE PROTECTION, METALLIC AND STRESS CORROSION RESEARCH, AND DEEP OCEAN TECHNOLOGY N65-27111

MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND TITANTUM ALLOY STRESS CORROSION, CATHODIC PROTECTION, CORROSION FATIGUE, AND ANTIFOULING PAINT FOR ALUMINUM ALLOYS NCL-MEMO-1634 N66-1423

BROWN, E. D., JR.
PHYSICAL PROPERTIES OF NEW CLASS OF LUBRICANTS,
METHYL ALKYL SILICONES, ILLUSTRATING EXCEPTIONAL
LUBRICATING ABILITY
ASLE PREPRINT 65-LC-4
A66-122

PHYSICAL PROPERTIES OF NEW CLASS OF LUBRICANTS, METHYL ALKYL SILICONES, ILLUSTRATING EXCEPTIONAL LUBRICATING ABILITY
ASLE PREPRINT 65-LC-4
A66-249

BROWN, P.
SOLID FILM LUBRICATED BEARINGS - SOLID LUBRICANTS
AND BEARINGS EVALUATION
PMA-2354
N65-16124

BROWN. R. D.
PUBLICATIONS ON LUBRICATION COVERING FLUID FILM,
METAL WORKING, AUTOMOTIVE, GEAR, BEARING, FRICTION
AND WEAR
ASME PAPER 64-WA/LUB-1
A65-33853

BROWN, R. S.
DIFFUSED ALUMINUM COATING FOR HIGH TEMPERATURE
APPLICATION
A66-12371

BRUCKNER, W. H.

EFFECT OF 60-CYCLE ALTERNATING CURRENT DN
CORROSION OF STEELS AND OTHER METALS BURIED IN
N65-19465

BRUNHOUSE, J. S.
HIGH TEMPERATURE CORROSION RESISTANCE OF
HASTELLOY X SHEET AND TUBING MATERIALS IN AIR
AGN-TM-414

BRUSH, E. G.
CORROSION OF MATERIALS FOR FUEL CLADDING IN
SUPERHEAT REACTOR SYSTEMS
GEAP-4760
N65-31797

BRYANT, P. E. C.
AMMONIA USED TO SUPPRESS DXYGEN PRODUCTION AND
CORROSION IN BOILING WATER REACTOR
AECL-2562
N66-28337

BRYANT, P. J.

LAMELLAR SOLID LUBRICATION - CLEAVAGE, STRESS
RELAXATION, AND SHEAR STRENGTH OF GRAPHITE
N65-26072
AFML-TR-65-5

BUCHHOLD, T.
SUPERCONDUCTIVE MAGNETIC BEARINGS ARE VIRTUALLY
FRICTIONLESS AND CAN OPERATE IN VACUUM

ASME PAPER 64-WA/PID-9

A65-13892

BUCKLEY, D. H.

DEGRADATION OF FLUOROCARBON TELOMERS, PTFE,
PCFE, POLYIMIDE, EPOXY COMPOSITIONS IN
EVAPORATION AND SLIDING FRICTION EXPERIMENTS AT
LP AND HIGH TEMPERATURES
A65-1879

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS
AS RELATED TO CRYSTAL STRUCTURE AND LATTICE
PARAMETERS IN VACUUM
ASLE PREPRINT 65-LC-18
A66-12252

GOLD THIN FILMS OF 1800 ANGSTROMS TO BE USED AS LUBRICANTS WERE VAPOR-DEPOSITED ON NI, NI- CR AND NI- RE SUBSTRATES IN VACUUM

A66-15937

VACUUM EFFECTS ON LUBRICANTS AND BEARING MATERIALS DUE TO REDUCED AMBIENT PRESSURE AND LOW CONCENTRATION OF OXIDIZING GASES

A66-24383

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS AS RELATED TO CAYSTAL STRUCTURE AND LATTICE PARAMETERS IN VACUUM ASLE PREPRINT 65-LC-18
A66-3056

VAPOR DEPOSITED GOLD THIN FILMS TO OBTAIN ADHESION AND DURABILITY BETWEEN FILM AND SUBSTRATE ESSENTIAL AS LUBRICANTS IN HIGH VACUUM

A66-31979

CRYSTAL STRUCTURE INFLUENCE ON FRICTION AND WEAR OF TITANIUM AND TITANIUM ALLOYS IN VACUUM NASA-TN-D-2671 N65-17459

VAPOR-DEPOSITED THIN GOLD FILMS AS LUBRICANT IN VACUUM
NASA-TN-D-3040 N65-34221

DEGRADATION OF POLYMER COMPOSITIONS IN VACUUM IN EVAPORATION AND SLIDING FRICTION EXPERIMENTS NASA-TM-X-54549 N65-35203

EVAPORATION RATES, FRICTION, AND WEAR OF LUBRICATING MATERIALS UNDER VACUUM CONDITIONS NASA-TM-X-52009 N65-35475

VACUUM DEPOSITION OF GOLD THIN FILMS ON NICKEL, NICKEL-CHROMIUM, AND NICKEL-RHENIUM SUBSTRATES FOR USE AS LUBRICANTS
NASA-TH-X-52125
N65-36775

FRICTION, WEAR, AND ADHESION CHARACTERISTICS OF TITANIUM-ALUMINUM ALLOYS IN VACUUM NASA-TIND-3235

GRAIN ORIENTATION INFLUENCE ON FRICTION PROPERTIES
OF TUNGSTEN
NASA-TN-D-3238
N66-15492

FRICTION AND WEAR CHARACTERISTICS OF POLYMIDE AND FILLED POLYMIDE COMPOSITIONS IN VACUUM NASA-TN-D-3261 N66-16588

ORIENTATION EFFECT ON FRICTION CHARACTERISTICS OF SINGLE CRYSTAL BERYLLIUM IN VACUUM NASA-TN-D-3485 N66-29866

BUGL, J.

PHASE, THERMODYNAMIC, OXIDATION, AND CORROSION
STUDIES OF URANIUM-NITROGEN SYSTEM
BMI-1692
N65-21714

BUNGA, L. A.
EFFECTS OF WEAR AND SEIZURE IN METAL FINISHING
N66-26118

BUNTING, K. R.

GREASE LUBRICANTS FOR AEROSPACE APPLICATION,
DETERMINING PHYSICAL PROPERTIES AND TESTING THEM
AT 400 DEGREES F AND UNDER HIGH VACUUM
ASLE PAPER 66AM 3C2

A66-30409

MINIATURE SINGLE TUBE HEAT EXCHANGER FOR MEASURING
FUEL THERMAL STABILITY
SAE PAPER 987A A65-17005

BURMAKIN, N. M.

HEXACHLOROCYCLOPENTADIENE USED AS ANTIWEAR
ADDITIVE TO LUBRICATING OILS
FID-TT-65-795/18284

N66-19772

BURTON, R. A.

LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR BELOW AND ABOVE FILM MELTING POINT

ASLE PAPER 64-LC-6

A65-1805

PUBLICATIONS ON LUBRICATION COVERING FLUID FILM, METAL WORKING, AUTOMOTIVE, GEAR, BEARING, FRICTION AND WEAR

A65-23853

LUBRICANT EFFECT ON FATIGUE LIFE OF STATIONARY
BALL ON FLAT CONTACT SUBJECTED TO OSCILLATORY
NORMAL LOAD
ASME PAPER 65-WA/CF-3
A66-15622

FATIGUE LIFE AND CONTACT WEAR IN TOOL STEEL EFFECTED BY DIESTER AND MINERAL DIL LUBRICANTS RS-441 N65-16825

LIQUIO METAL LUBRICATED JOURNAL BEARINGS - FILM-INERTIA AND TURBULENCE EFFECT SMRI-1228-60 N65-27786

BUTENIN, N. V.

MOTION OF INTEGRATING GYROSCOPE WITH DRY FRICTION
N66-26104

BUTKOV, N. A.

FUEL DIL ADDITIVE WITH BARIUM NAPHTHENATE FOR WEAR
AND SCALE REDUCTION IN HIGH SPEED DIESEL ENGINE
FTD-TT-65-1125/184

N66-19561

BYROY, A. A.

CORROSION RESISTANCE, FATIGUE STRENGTH, AND
ENGINEERING PROCESSES IN MANUFACTURING OF CLAD
STAINLESS STEELS
JPRS-32087
N65-33887

C

CABRAL, U. Q.
BRITTLENESS OF ANNEALED STEELS USING CORROSION
TESTS UNDER TENSION IN PRESENCE OF HYDROGEN
A65-28628

CALHOUN, S. F.

RESIN BONDED SOLID FILM LUBRICANT EFFECTIVENESS
AND CORROSION PROTECTION STUDY RESTRICTED TO STEEL
SURFACES

A65-20033

EFFECT OF GREASE CHARACTERISTICS ON FRETTING
DAMAGE
RIA-64-3575
N65-17908

COMPARISON OF AUTOMOTIVE LUBRICATION GREASES
RIA-64-3578 N65-19419

CAMERON, A.

SURFACE TEMPERATURES OF FRICTIONAL CONTACTS
CONSIDERING TWO ROLLING/SLIDING CONTACTS, HEAT
SOURCE MOVING OVER SURFACE AT VARIOUS SPEEDS AND
REPEATED CONTACT

A65-25442

CAMERON, R.
FRICTION INDUCED VIBRATION TO DETERMINE EXISTENCE
OF CRITICAL VELOCITY OF DRIVEN SURFACE
ASME PAPER 65-LUB-5
A66-14241

CAMPBELL, M.
SOLID LUBRICATION OF MANNED ORBITAL SPACE STATION
DOOR ACTIVATOR N66-17443

CAMPBELL, W. E.

LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF
THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR
BELOW AND ABOVE FILM MELTING POINT
ASLE PAPER 64-LC-6
A65-18054

CAMPION, R. J.

LUBRICITY PROPERTIES OF HIGH TEMPERATURE JET FUELS

QPR-1

N66-13426

CANTINI, G.

MEANS OF ASSESSING AVIATION TURBINE LUBRICANT
QUALITY, CONSIDERING SPECIFICATION, MAINTENANCE,
OPERATIONAL FACTOR AND EQUIPMENT STRIP APPROACH
SAE PAPER 660074

A66-20159

CARLSTON, R. C.
LIQUID METAL EMBRITTLEMENT NOTING STRESS AND
INTERGRANULAR CORROSION, HYDROGEN EMBRITTLEMENT
AND BEHAVIOR OF SILVER CHLORIDE CRYSTAL
A66-11698

CARPER. H. J.
LIQUID METAL LUBRICATED JOURNAL BEARINGS - FILMINERTIA AND TURBULENCE EFFECT
SWRI-1228-60 N65-27786

CARSON, J. A. H.
CATHODIC PROTECTION SYSTEM FOR SHIP HULL CORROSION PREVENTION
REPT.-64-2
N65-17412

CARTER, J. P.
STRESS CORROSION CRACKING OF VANADIUM, MOLYBDENUM,
AND TITANIUM-VANADIUM ALLOY IN HYDROCHLORIC
ACID AND SULFURIC ACID SOLUTIONS
BM-RI-6680
N66-10098

CORROSION PROPERTIES OF MOLYBDENUM, TUNGSTEN, VANADIUM, AND SOME VANADIUM ALLOYS BM-RI-6715 N66-16451

CASTELLI, V.

PERFORMANCE OF HYDRODYNAMIC, HYDROSTATIC OR HYBRID
BEARINGS DETERMINED BY NUMERICAL SOLUTION OF
REYNOLDS LUBRICATION EQUATION FOR INCOMPRESSIBLE
FLUID FILMS
ASME PAPER 66-LUBS-4

A66-33186

DIFFERENTIAL EQUATIONS FOR LOAD DEFLECTION
CHARACTERISTICS OF THIN ELASTIC LAYERS FOR
APPLICATION TO COMPLIANT BEARINGS
REPT.-3
N66-11959

CATO, R. J.
IGNITION TEMPERATURE CHARACTERISTICS OF AIRCRAFT
FUELS AND LUBRICANTS
AFAPL-TR-65-18
N65-258

CERINI. J. P.
PROPERTY MEASUREMENTS AND CLASSIFICATION OF SOLID
LUBRICANTS
A65-15941

CHAMPEIX, L.

MOLTEN SODIUM CORROSION OF AUSTENITIC STEEL

CEA-2371 N65-32983

CHAMPLIN, J. B. F.

ULTRASONIC AGITATION OF CORRODENT SOLUTIONS AND
HOT FINISHED MILD STEEL TEST COUPONS USED TO
EVALUATE EFFECTS OF VARIABLES ON EFFECTIVENESS
OF TWO CORROSION INHIBITORS
BM-RI-6696 N66-11939

CHANG, H.-C.
MULTIFUNCTIONAL AND ANTIOXIDANT ADDITIVES
SYNTHESIZED FROM DIESTERDITHIOPHOSPHORIC ACID CHARACTERISTICS OF ALKYLPHENOLS AND DISULFIDES
OBTAINED AS INTERMEDIATE PRODUCTS
NAG-11081

CHARLOT, L. A.
HIGH TEMPERATURE GAS CORROSION OF ADVANCED TEST
REACTOR / ATR/ STRUCTURAL MATERIALS
N65-35021

CHAMLA, S. S.

M HD INCLINED SLIDER BEARING WITH AZIMUTHAL

MAGNETIC FIELD, NOTING LOAD CAPACITY

A66-29407

CHEN, C.-M.
IMPROVEMENT OF CORROSION RESISTANCE OF ALLOYS
N66-13391

CHENG. H. S.
THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING
AND SLIDING CYLINDERS, NOTING CORRELATION FILM
MITH THICKNESS AND FRICTION EXPERIMENTAL DATA

ASLE PREPRINT 65AM 4A2

A65-24256

प_{र्व} भ

PRESSURE, TEMPERATURE AND FILM THICKNESS BETWEEN TWO CIRCULAR DISKS CORRELATED WITH THEORETICAL SOLUTIONS OF THERMAL ELASTOHYDRODYNAMIC HUBRICATION OF INFINITELY LONG ROLLERS

A65-32767

THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF ROLLING AND SLIDING CYLINDERS, NOTING CORRELATION WITH FILM THICKNESS AND FRICTION EXPERIMENTAL DATA ASLE PREPRINT 65AM 4A2 A66-18291

NUMERICAL SOLUTION TO STRESSES IN LUBRICATED
RULLER BEARINGS WITH ARBITRARY DISTRIBUTED
NORMAL AND TANGENTIAL LOADS
MTI-65TR61
N66-19381

CHERNORUTSKIY, G. S.

EFFECT OF FRICTION ON DYNAMICS OF SERVO SYSTEMS

WITH RANDOM SELECTION OF MECHANICAL

RESISTANCE MAGNITUDE

N65-31656

CHERNOVA, G. P.

ALLOYING ELEMENTS EFFECT ON ANODIC CORROSION AND
PASSIVATION OF STAINLESS STEELS

A66-20837

CHERNYAVSKAYA, L. F.
DIALKYLDITHIOPHOSPHATES WITH SECONDARY
HYDROCARBON RADICALS AS ANTIOXIDANT ADDITIVES
FOR LUBRICATING OILS
N66-11087

CHERTKOV, YA. B.
ADDITIVES FOR FUEL OILS AND LUBRICANTS LITERATURE REVIEW
FTD-TT-65-62/1
N65-30004

CHERVOYA, L. V.

EFFECTS OF HIGH-POLYMER ADDITIVES AND CHEMICAL
COMPOSITION OF OILS ON PETROLEUM VISCOSITY
NAA-30273

CHESSIN, N. SLIDING FRICTION AND COMPRESSION TESTING OF RIGID A66-25303 POLYURETHANE FOAMS

CHICCARINE, G.
BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT
HIGH SPEEDS AND TEMPERATURES
NASA-CR-64183
N65-31051

CHILEMSKAS, A. A.

NICKEL CORROSION TESTS FOR FLUORIDE VOLATILITY
PROGRAM - SMALL SCALE LABORATORY TESTS IN TUBE
FURNACES AND IN-PLANT EXPOSURE TESTS
ANL-6979

N65-24704

CHIRIGOS, J. N.
ZIRCONIUM-BASE ALLOY DEVELOPMENT WITH IMPROVED
CORROSION RESISTANCE IN HIGH TEMPERATURE STEAM
WAPD-TM-546
N66-25094

CHISHOLM, S. L.
PREVENTION OF METALLIC EDGE CORROSION OF NAVAL
AIRCRAFT, EVALUATING SURFACE TREATMENTS, PRIMERS,
EPOXY ENAMELS, ETC
A66-12318

CHISTIAKOV, IU. D.
PATTERN-CONFORMING CRACKING OF OXIDE FILM ON
ALUMINUM DURING HIGH TEMPERATURE OXIDATION MAY
BE CAUSE OF DECREASE IN CORROSION RESISTANCE
A65-34857

CHKHIKVADZE, E. D.
CORROSION RATE OF BT-1 TITANIUM AND
9 KH18 N12 M2 T STAINLESS STEEL IN MANGANESEAMMONIUM SULFATE SOLUTIONS
A66-10990

CHRISTIAN, J. B.
GREASE LUBRICANTS FOR AEROSPACE APPLICATION,
DETERMINING PHYSICAL PROPERTIES AND TESTING THEM
AT 400 DEGREES F AND UNDER HIGH VACUUM
ASLE PAPER 66AM 3C2
A66-30409

CHRISTOPHER, S. S.
CORRELATIONS BETWEEN SENSITIZATION AND STRESS
CORROSION CRACKING OF 300 SERIES STAINLESS
STEELS

A66-18289

CEND-3256-250

N66-27561

N65-22403

A66-26304

CHUPIS, M. M. OIL OXIDATION EFFECT ON RUNNING-IN PROCESS OF RING-SOCKET PAIR IN INTERNAL COMBUSTION ENGINE FTD-TT-65-1039/16264 N66-2: N66-23581

SODIUM NITRATE SUSPENSION IN CALCIUM HYDROXIDE SOLUTION FTD-TT-64-1086/1

HASTELLOY F AND OTHER CORROSION RESISTANT STRUCTURAL MATERIALS FOR CENTRIFUGE IN REACTOR FUEL RECOVERY PLANT ORNL-3787 N65-20708

CLAUDSON, T. T.
CORROSION RESISTANCE OF HIGH TEMPERATURE ALLOYS FOR NUCLEAR APPLICATIONS BNWL-155 N66-27101

CLAUSS, F. AUSS, F. J.
PROPERTIES, CHARACTERISTICS AND PERFORMANCE OF
LUBRICANTS AND SELF-LUBRICATING MATERIALS USED IN
SPACECRAFT SYSTEMS INCLUDING DILS, GREASES,
PLASTICS, CERMETS, MOLYBDENUM SULFIDE, ETC A65-22744

FLUID LUBRICATION OF MANNED ORBITAL SPACE STATION DOOR MECHANISM

EVALUATION OF PERFORMANCE OF VARIOUS LUBRICANTS ON BALL BEARINGS OPERATING IN SIMULATED SPACE ENVIRONMENT N66-32538

CLAUSS, M. A.
EMBRITTLEMENT OF TANTALUM BY ROOM TEMPERATURE DEFORMATION IN PRESENCE OF HYDROCEN

A66-33441

COFFIN. C. L. FFIN, C. L.

MEASUREMENT OF SURFACE EMITTANCE OF SURFACE
COATINGS FOR SELECTED METALS, PROVIDING LOW—
THERMAL EMITTANCE CHARACTERISTICS IN IR SPECTRUM
FOR THERMAL AND CORROSION CONTROL AIAA PAPER 66-18 A66-15849

COHEN. B. SHOT PEENING FOR RESISTANCE TO STRESS CORROSION SHUT PEENING FUR KESISIANCE TO STRESS CURRUSTON
CRACKING OF HIGH STRENGTH STEEL AND ALUMINUM
ALLOYS AND TO IMPROVE FATIGUE LIFE OF LANDING
GEARS, WING SPARS, JET ENGINE COMPONENTS AND OTHER
STRUCTURAL PARTS
A66-25771

COHEN, S. C. FRICTION AND LUBRICATION OF POLYMERS

COLE, H. G. HIGH STRENGTH STEEL PROTECTION AGAINST CORROSION AND HYDROGEN EMBRITTLEMENT

SYNTHESIS OF ALKYL, CYCLOALKYL, AND DICYCLOALKYL SULFIDES TO PROVIDE REFERENCE COMPOUNDS NECESSARY IN SEARCH FOR SIMILAR CLASSES OF SULFUR COMPOUNDS IN CRUDE OIL BM-RI-6796 N66-28345

COLUCCI, G. J.
IGNITION INHIBITORS, SCREENING METHODS OF
CORROSION INHIBITOR SYSTEMS, AND FLASH AND FIRE
POINTS OF WATER GLYCOL HYRAULIC FLUIDS
N65-16 N65-16765

CORROSION INHIBITORS IMPROVEMENT IN METALS FROM ATTACK BY WATER BASED, FIRE RESISTANT, HYDRAULIC BMR-5 N65-27926

COMER, J. E. RELIABILITY TESTING PROGRAM FOR ESTIMATING
CYCLICAL LIFE FOR EQUIPMENT EXPERIENCING ONLY
WEAROUT FAILURE
A65-: A65-26059 COMPERE, E. L.
S NAP-8 CORROSION PROGRAM - HYDROGEN SOLUBILITY IN SODIUM-POTASSIUM, PERMEABILITY OF HYDROGEN AND DEUTERUM THROUGH STAINLESS STEEL, AND PHASE EQUILIBRIA NASA-CR-63196

DIFFERENCES IN CORROSION AND MASS TRANSFER RATES IN CORROSION LOOPS FOR SNAP-8 SYSTEM AND EFFECTIVENESS OF COLD TRAPPING IN REDUCING HYDROGEN CONCENTRATION NASA-CR-67272 N66-22205

FORCED FLOW CORROSION-LOOP EXPERIMENTS AND CORROSION-LOOP MATERIAL STUDIES IN SNAP-8 CORROSION PROGRAM NASA-CR-76382 N66-30971

FIELD TEST OF TRANSPORT VEHICLE COOLING SYSTEM CORROSION INHIBITOR CCL-190

CONSTANT, A. BRITTLENESS OF ANNEALED SIEELS USING CORROSION TESTS UNDER TENSION IN PRESENCE OF HYDROGEN A65-28628

CONSTANTINESCU, V. N.
FRICTION STRESSES IN TURBULENT LUBRICATION FILM
AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE
DISTRIBUTION STUDIED, USING MIXING-LENGTH ASLE PREPRINT 65AM 3A1

COHERENT THEORY OF TURBULENT LUBRICATION BASED ON MIXING-LENGTH HYPOTHESIS

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS ASLE PREPRINT 65AM 3A1

COOPER, D. B.
FORCED CIRCULATION, CROLDY 9 M MERCURY LOOP
DESIGNED TO INVESTIGATE CORROSION PRODUCT
SEPARATION TECHNIQUES
NASA-CR-217
N65-

FORCED CIRCULATION, HAYNES ALLOY 25, MERCURY LOOP TO STUDY CORROSION PRODUCT SEPARATION NASA-CR-241 N65-27394

COPELAND, M. PHASE RELATIONS OF GADOLINIUM ALLOYS STUDIED FOR MECHANICAL AND CORROSION PROPERTIES BM-RI-6636 N65-26040

CORCORAN, V. J.

PREVENTION OF WATER VAPOR CORROSION OF URANIUM
BY OXYGEN AND PROTECTIVE COATINGS N66-13178

COTTER, T. P.
HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE
ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT
TRANSFER RATE, LIFE TESTS, WORKING LIQUID
SELECTION, ETC
A66-15

COTTRELL, C. L. M. HIGH STRENGTH STRESS AND CORROSION RESISTANT STEEL DISCUSSING FAILURE MODE, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, MACHINING AND FORMING METHODS A65-35056

FRICTION CORROSION CAUSED BY ALTERNATE PIVOTING OF STEEL BALL ON PLANE OF LIGHT ALLOY

ELASTOHYDRODYNAMIC LUBRICATION AT POINT CONTACTS, DERIVING FILM THICKNESS FROM ELECTRICAL CAPACITY MEASUREMENTS AND NOTING SIDE-LEAKAGE CONCEPT A65-32762

COX. R. CORROSION ANALYSIS OF ZIRCONIUM ALLOYS EXPOSED TO REACTOR IRRADIATION AECL-2257

N66-24451

- COX, H.

 STRESS CORROSION CRACKING IN TITANIUM ALLOYS IN
 PRESENCE OF SALT, HIGH TEMPERATURE AND SUSTAINED
 STRESS
 AIAA PAPER 65-764

 A66-1305
- COYNE, J. C.
 LUBRICANT FILM-VAPOR INTERFACE ANALYSIS AFTER
 FLOW SEPARATION AND RUPTURE
- CRAIG, W. D., JR.
 STARTING FRICTION AND KINETIC FRICTION OF PTFE
 FABRIC-LINED SPHERICAL BEARINGS AND DEFLECTION AND
 PERMANENT SET UNDER STATIC LOADING
- CRAMFORD, W. O.

 RINSE SOLUTION CONTAINING ORGANIC ACIDS FOR
 IMPROVED SALT SPRAY RESISTANCE OF PHOSPHATE
 COATINGS FOR METAL SURFACES
 RIA-66-67
 N66-21419
- CROCKETT, L. K.

 DESIGN AND MANUFACTURING TECHNIQUES TO PREVENT
 STRESS CORROSION RESULTING FROM MATERIAL
 SUSCEPTIBILITY, SUSTAINED TENSILE SURFACE STRESS
 AND MILD CORROSIVE ENVIRONMENT
 ASME PAPER 65-MD-45

 A65-28637
- CROSSLEY, F. A.

 STRESS CORROSION OF WROUGHT HIGH-STRENGTH ALUMINUM
 ALLOYS, SUSCEPTIBILITY OF ALLOY STEEL TO HOT
 SALT STRESS CORROSION, AND KINETICS OF HOT SALT
 STRESS CORROSION CRACKING OF TITANIUM ALLOY
 ASD-TR-61-713, PT. III
 N65-13791
- CROWDER, J. U.
 TURBULENT HYDRODYNAMIC LUBRICATION THEORIES AND
 SOLUTION OF CONSTANTINESCU EQUATION FOR FINITELENGTH JOURNAL BEARING
 ASME PAPER 66-LUBS-11
 A66-3318
- CSANADY. A.
 FACTORS AFFECTING PERFORMANCE AND RELIABILITY OF
 THIN FILM CAPACITORS NOTING CORROSION EFFECT AT
 POINTS OF INTERMETALLIC MOUNTINGS

 A65-23538

D

- DALTON, C. A.
 SULFUR AND SEA SALT CORROSIVE ATTACK ON TURBINE
 BLADES AND AERO ENGINES, EMPHASIZING MARINE
 CONDITIONS
 ASME PAPER 65-GTP-7
 A65-23447
- DANEK, G. J.
 HOT CORROSION IN MARINE GAS TURBINE ENGINES
 N66-15557
 MEL-32/65
 N66-15557
- DANILIN, V. P.
 TEST METHODS AND MEASURING APPARATUS FOR RAPID
 APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL
 OILS, LUBRICATING OILS, AND ADDITIVES SCALE
 MODELS AND MICROANALYSIS N66-11112
- DANYUSHEVSKAYA, N. YE.
 OPTIMUM CONDITIONS FOR SYNTHESIZING CHROMIUM
 PHOSPHATE FOR USE AS ANTICORROSION PIGMENT
 IN SEALERS
 FTD-TT-65-55/162
 N65-30048
- DARRAS, R.
 MOLTEN SODIUM CORROSION OF AUSTENITIC STEEL
 CEA-2371
 N65-32983
- DAVIES, M. J.
 STRESS CORROSION OF IRRADIATED STAINLESS STEEL
 AERE-R-5014 N66-15921
- DAVIS, T. G.
 HIGH ACTIVITY OF ALKALI METAL SALTS OF CARBOXYLIC
 ACIDS AND SUBSTITUTED PHENOLS AS SYNERGISTS FOR
 ARYLAMINE ANTIOXIDANTS IN ESTER-TYPE SYNTHETIC
 LUBRICATING OILS
 A66-23123

- DAVTIAN, O. K.

 MEMBRANE TYPE CATALYSTS AS LIQUID ELECTROLYTIC
 FUEL CELLS AND OTHER HETEROGENEOUS PROCESSES,
 CONSIDERING ACTIVE THREE PHASE BOUNDARY

 A65-17229
- DAY, H. J.

 M HD LUBRICATION FLOW IN THRUST BEARING, NOTING
 FLUID INERTIA EFFECT ON LOAD CAPACITY AND FLOW
 RATE
 ASME PAPER 66-LUBS-8

 A66-33
- DAYTON, R. W.

 REACTOR MATERIALS AND COMPONENTS, FUEL
 DEVELOPMENT, RADIDISOTOPE AND RADIATION
 APPLICATIONS, COATED-PARTICLE FUEL MATERIALS,
 CORROSION STUDIES, AND GAS COOLED REACTORS
 N66-11852
- DE CHARD, R. J.

 MEANS OF ASSESSING AVIATION TURBINE LUBRICANT
 QUALITY, CONSIDERING SPECIFICATION, MAINTENANCE,
 OPERATIONAL FACTOR AND EQUIPMENT STRIP APPROACH
 SAE PAPER 660074

 A66-20159
- DE DORLODOT, P.
 CYNAMIC CORROSION TESTS OF CARBON STAINLESS STEEL
 IN PRESSURIZED WATER
 N66-2605
- DE GEE. A. W. J.
 LIFE EXPECTANCY OF HOLYBDENUM DISULFIDE LUBRICANT
 FILM VARIES WITH PRESENCE OF OXYGEN AND ADDITION
 OF GRAPHITE
 ASLE PAPER 64-LC-30

 A65-2279:
- DE LAAT, F. G. A.

 LUBRICANT SELECTION FOR LUNAR MISSIONS AND MANNED
 SPACECRAFT BASED ON COMPATIBILITY WITH OXYGEN-RICH
 ENVIRONMENT, PROPELLANT, ANODIC COATINGS AND
 SLIDING FRICTION BEHAVIOR IN VACUUM
 ASLE PAPER 66AM 7A2

 A66-30415

LUBRICANT SELECTION FOR APOLLO AND OTHER MANNED SPACECRAFT - COMPATIBILITY CRITERIA NASA-TM-X-58002 N66-2803

- DE MASTRY, J. A.
 NIOBIUM BASE ALLOY FOR USE AS CLADDING OR
 STRUCTURAL MATERIAL RESISTANT TO CORROSION BY
 SUPERHEATED STEAM
 BMI-1700
 N65-19464
- DE RECA, W.

 RADIOACTIVE TRACERS TO DETERMINE WEAR RESISTANCE
 OF CHROMIUM-NICKEL-IRON ALLOY GRINDING BALLS
 USED IN FABRICATING CEMENT
 N66-2824
- DE YAN, J. H.
 THEORY, TESTING, AND ANALYSIS OF LIQUID METAL
 CORROSION MERCURY AND PLUTONIUM LIQUID ALLOYS
 NASA-TM-X-54722 N65-29446
- DEAVER. W. H.

 CORRUSION INHIBITORS AND METALLIC SALTS EVALUATION
 FOR PREVENTION OR RETARDATION OF GALVANIC
 CORROSION OF MAGNESIUM STEEL ASSEMBLIES
 CCL-175
 N65-18674

CAUSE OF CORROSION OF CADMIUM PLATED STEEL IN ELECTRONIC VAN CCL-187 N66-12016

- DEEBEL, G. F.
 POUR POINT DEPRESSANT, POLYMER THICKENER,
 CORROSION TEST, AND COMPONENT COMPOUNDING FGR
 FIRE-RESISTANT HYDRAULIC FLUID
 BNA-5
 N65-27911
- DEKARTOV. A. P.
 RADIDACTIVE TRACER INVESTIGATION OF REACTION
 MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH
 COPPER FILMS IN HYDROCARBON LUBRICATING OIL

MEDIUM - FRICTION REDUCING ADDITIVES

N66-11106

DELAFOSSE, D.

ELECTROMAGNETIC PUMP DEVELOPMENT FOR CIRCULATION OF VERY CORROSIVE /FLUORINATED COMPOUND/ GASES CEA-R-2744

DELETRE, G.

ELECTROMAGNETIC PUMP DEVELOPMENT FOR CIRCULATION OF VERY CORROSIVE /FLUORINATED COMPOUND/ GASES N66-18872

DEMCHENKO, V. S.
IMPROVING ANTIHEAR PROPERTIES OF LUBRICATING OILS WITH DERIVATIVES OF 2-MERCAPTOBENZTHIAZOLE FTD-TT-64-1287/1 N65-28624

DEMIDENKO, V. P.

GRAPH-ANALYTICAL METHOD FOR DETERMINING EFFECT OF FORCES OF DRY FRICTION IN BEARINGS ON OPERATION OF GYROSCOPE SUSPENSION

DEMOREST, K. E.

SLIDING FRICTION TESTS AT ULTRAHIGH LOAD OF EIGHT GREASES AND 18 DRY LUBRICANTS AND VARIOUS BASE

ASLE PREPRINT 65-LC-23

SLIDING FRICTION TESTS AT ULTRAHIGH LOAD OF EIGHT GREASES AND 18 DRY LUBRICANTS AND VARIOUS BASE MATERIALS

ASLE PREPRINT 65-LC-23

A66-30571

HIGH LOAD, LOW SPEED SLIDING FRICTION TESTS ON FLUID LUBRICANTS AND DRY LUBRICANTS FOR DETERMINING COEFFICIENT OF FRICTION NASA-TM-X-53331

N66-10669

PHENOL RESIN BONDED, WOVEN GLASS AND TEFLON FIBER LUBRICANT FOR J-2 ROCKET ENGINE GIMBAL SYSTEM NASA-TM-X-53379 N66-16158

DEROW, H.

S NAP-8 REACTOR MATERIALS DEVELOPMENT PROGRAM -LUBRICANT, COOLANT, CORROSION LOOP, AND STRUCTURAL MATERIALS EVALUATION NASA-CR-54718

CORROSION RESISTANCE OF MOLYBDENUM-CHROMIUM STEEL IN MERCURY FORCED CONVECTION CORROSION LOOP FOR NUCLEAR AUXILIARY POWER SYSTEM COMPONENTS NASA-CR-54719

CORROSION RESISTANCE AND ENVIRONMENT EFFECT ON STEEL ALLOY COMPONENTS OF SNAP-8 NASA-CR-54719 N66-24442

TESTING MOTOR OILS FROM SULFUROUS CRUDES WITH DIFFERENT ADDITIVES N66-11121

HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT TRANSFER RATE, LIFE TESTS, WORKING LIQUID SELECTION, ETC A66-1 A66-15544

IN-FLIGHT TEST TO DETERMINE SPACE ENVIRONMENTAL EFFECTS ON FRICTION, WEAR, AND LUBRICATION OF MATERIALS - PROPOSED MODULAR SYSTEM NASA-TM-X-54967 N66-15241

DEVINE, M. J.
PROPERTY MEASUREMENTS AND CLASSIFICATION OF SOLID A65-15941

MILITARY SPECIFICATION FOR MULTIPURPOSE AERONAUTICAL LUBRICATING GREASE SAE PAPER 650817

A65-34831

DEVYATKIN, E. N. TESTING AUTOMOBILE TRANSMISSION OIL WITH DIFFERENT ADDITIVES FOR ANTIWEAR, ANTIABRASSIVE, ANTICORROSIVE, STABILITY, AND FOAM PROPERTIES N66-11127

DEWART, W. G.
S NAP-8 REACTOR OSCILLATING BEARINGS TO PROVIDE LOW FRICTION SELF-LUBRICATION AT 1150 DEGREES A66-30414

DEMEES, N. B.
TEST RIG FOR MEASURING WEAR AND FRICTION FOR
THE TRUE TO MATER UNDER PRESSURE

DEXTER, H. B.
SALT STRESS CORROSION OF RESIDUALLY STRESSED
TITANIUM-ALUMINUM-MOLYBDENUM-VANADIUM ALLOY
SHEET AFTER HIGH TEMPERATURE EXPOSURE

SALT STRESS CORROSION OF TI-8 AL-1 MO ALLOY SHEET AT ELEVATED TEMPERATURES - SURFACE TREATMENT

NASA-TM-X-56881

DINCA, I.

PURITY AND GRAIN SIZE OF VARIOUS NATURAL AND

ORDERHIM DISHIFTOE INFLUENCING FRICTION AND WEAR OF METAL SURFACES WHEN USED AS A65-30156

DINTSES, A. I.

CORROSIVE ACTION OF LIQUID METALS CONSIDERED FOR

FTD-TT-65-1447/16264

SOLID AND DRY-FILM LUBRICANTS, TABULATING KINETIC COEFFICIENTS OF FRICTION, NOTING PARTICLE SIZE, VISCOSITY, COSTS, WEAR LIFE, APPLICATION, ETC A66-24099

COMPOUNDS IN DESCALING METAL AND NONMETALLIC SURFACES SD-22

STRESS CORROSION CRACKING MECHANISM IN FACE-CENTERED CUBIC METALS AFDSR-65-2702 N66-24732

DODGE, F. T.
M HD SQUEEZE FILM BEARINGS IN PRESENCE OF ELECTROMAGNETIC FIELD ASME PAPER 64-WA/LUB-3 A65-33854

DORINSON, A.

MICROTOPOGRAPHICAL CHANGES OF GROUND STEEL SURFACES RELATION TO CONTACT AND WEAR UNDER HIGH PRESSURE LUBRICANTS ASLE PAPER 64-LC-15 A65-22788

DOWNING, R. S.

PROTECTIVE CONVERSION COATING DEVELOPED TO INCREASE CORROSION RESISTANCE IN WHITE PRIMER, AND TO WITHSTAND TESTING IN SALT SPRAY ATHOSPHERE NASA-CR-76638 N66-32137

PRESSURE AND ELASTIC DISTORTION EFFECT ON THIN FILM LUBRICATION OIL THICKNESS A65-2: A65-23504

COMPUTER METHOD FOR ISOTHERMAL PROBLEM OF RIGID AND ELASTIC CYLINDERS LUBRICATED BY CONSTANT AND VARIABLE PROPERTY FLUID, DISCUSSING FILM THICKNESS ASLE PAPER 64-LC-22 A65-31716

ELASTOHYDRODYNAMIC LUBRICATION, REVIEWING WORK ON FILM THICKNESS AND SHAPE, PRESSURE AND STRESS DISTRIBUTION, SIDE LEAKAGE, ETC

A65-33218

BIBLIOGRAPHY OF IME SYMPOSIUM ON ELASTOHYDRODYNAMIC LUBRICATION AT LEEDS, ENGLAND IN SEPTEMBER 1965 A65-33220

DRALEY, J. E.
ALUMINUM ALLOY POWDER EXTRUSIONS EVALUATED FOR TEMPERATURE WATER CORROSION RESISTANCE TO HIGH TEMPERATURE WATER FLOW, CONSIDERING RODS AND TUBINGS

A65-22133

- OREBELBIS, R. C.
 CORROSION CONTROL IN AIRCRAFT STRUCTURES, WEAPON SYSTEMS. AND GROUND SUPPORT EQUIPMENT N65-22212
- DREYER, G. A.
 STRESS CORROSION ON HIGH STRENGTH STEEL ALLOYS N65-15136 ML-TDR-64-3
- DRINGMAN, M. R.

 CORROSION OF UNALLOYED AND ALLOYED PLUTONIUM IN

 MONOBROMOBENZENE AND FREON 113 FLUOROCARBON

 N66-31 RFP-744
- DRIVER, W. E.
 SLIDING FRICTION AND COMPRESSION TESTING OF RIGID A66-25303 POLYURETHANE FOAMS
- DRUZHINIA, A. V.

 ALKYLPHENOL ADDITIVES OF FORMALDEHYDE CONDENSATION
 FOR USE IN LUBRICATING MOTOR OILS N66-11079
- DRUZHININA, A. V.
 REACTION MECHANISMS OF OXIDATION RESISTANT
 ADDITIVES IN OXIDATION PROCESS IN LUBRICATING
 OILS HYDROGEN PEROXIDE FORMATION
 NAG-N66-11111
- DUBROVINA, A. N.
 CHROMIUM STEEL STRENGTH AND CORROSION RESISTANCE
 IMPROVEMENT BY MOLYBDENUM AND TUNGSTEN ADDITION A66-22747
- DUDLEY. D. W.
 GEAR TOOTH ELASTOHYDRODYNAMIC LUBRICATION SURVEY A65-32770 DATA, EXAMINING CASE HISTORIES
- DUKEK, W. G.
 FUELS AND LUBRICANTS WITH THERMALLY STABLE
 MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET
 REQUIREMENTS OF SUPERSONIC TRANSPORT A65-27161

FUELS AND LUBRICANTS WITH THERMALLY STABLE MOLECULAR STRUCTURE AND ANTIOXIDANTS TO MEET REQUIREMENTS OF SUPERSONIC TRANSPORT A66-13221

LUBRICITY PROPERTIES OF HIGH TEMPERATURE JET FUELS OPR-1

- DUKHNINA, A. YA.

 DATA ON USE OF ANTICORROSIVE ADDITIVES IN RESIDUAL
 FUELS CONTAINING VANADIUM AND SULFUR N66-11131
- DULIEU. D.
 STACKING FAULT ENERGIES IN AUSTENITIC STAINLESS
 STEEL DETERMINED BY EXTENDED NODE MEASUREMENTS A65-14713
- DULING. I. N. POLYDLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM DILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE APPLICATION A66-12259 ASLE PREPRINT 65-LC-1

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM OILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE APPLICATION ASLE PREPRINT 65-LC-1 A66-24986

- DYKOVA, G. P.

 CORROSION RESISTANCE OF CHROME-NICKEL STEEL AND
 NICKEL BASE ALLOYS IN LIQUID SODIUM
 N65-22 FTD-TT-64-1210/1
- ELASTOHYDRODYNAMIC LUBRICATION THEORY, COMPARING
 OIL-FILM THICKNESS PREDICTED BY DOWSON AND
 HIGGINSON WITH MEASUREMENTS FROM DISK MACHINE
 LUBRICATED BY VARIOUS FLUIDS
 A65-327 DYSON. A. A65-32764

DZHONSON, V. A.
ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE MATERIALS IMPREGNATED WITH LIQUID METALS AND ALLOYS WORKING IN DRY FRICTION CONDITIONS N65-36288

ANTIFRICTION PROPERTIES OF IMPREGNATED MATERIALS BASED ON GRAPHITE, WORKING IN DRY FRICTION CONDITIONS

- EARL, A. G.
 FRICTION REDUCTION IN PISTON TYPE HYDRAULIC SERVO
 VALVES FINE FILTRATION OF OIL AND PISTON
 SEALING LAND TAPERING
 N65-2964 RAE-TN-GW-312
- ECKEL, J. F.

 RELATIONSHIP OF NITROGEN CONTENT OF AUSTENITIC

 STAINLESS STEELS TO STRESS CORROSION

 N66-29 N66-28987 EURAEC-1579
- STRESS CORROSION AND HIGH TEMPERATURE PROPERTIES
 OF MAGNESIUM-LITHIUM-SILICON ALLOYS N65-36228 FA-A64-31
- EDWARDS, J. A.
 TURBULENT HYDRODYNAMIC LUBRICATION THEORIES AND SOLUTION OF CONSTANTINESCU EQUATION FOR FINITE-LENGTH JOURNAL BEARING ASME PAPER 66-LUBS-11
- EDWARDS, W. E.

 IRON AND STEEL CORROSION PREVENTION BY PROTECTIVE
 COATINGS AND CATHODIC PROTECTION

 NA6-1849 AD-625900
- EKTERMANIS, J. A.

 BASIC MECHANISMS OF ULTRASONIC MACHINING PROCESS
 ARE MICROCHIP REMOVAL AND MATERIAL DISPLACEMENT BY
 PLASTIC DEFORMATION AND PARTICLE REMOVAL BY FRACTURE A65-16986 ASME PAPER 64-PROD-4
- ELROD, H. G., JR.
 TURBULENT FLUID FLOW THEORY AND APPLICATION TO
 HYBRID BEARINGS LUBRICATION

LUBRICANT FILM-VAPOR INTERFACE ANALYSIS AFTER FLOW SEPARATION AND RUPTURE N66-22717 MTI-65TR58

EMBURY, J. D.
DISLOCATION INFLUENCE ON NUCLEATION AND PROPAGATION OF STRESS CORROSION CRACKS

FTD-MT-64-213

EMINOVA, YE. A.
SYNTHESIS, PRODUCTION, AND EFFECTIVENESS OF
ANTIOXIDANT AND MULTIFUNCTIONAL ADDITIVES TO
NATURAL AND SYNTHETIC FUEL DILS — COLLECTION OF ARTICLES

A65-31684

N66-11076

ENDO, K.

TRAPEZOIDAL STRESS WAVEFORMS EFFECT ON LOW CYCLE
CORROSION FATIGUE STRENGTH, CLARIFYING MECHANISM
OF CORROSION FATIGUE
A66-238 A66-23849

ENGLISH, G. C. MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS OR-3

CATHODE PROTECTION OF ALUMINUM ALLOY UNDER STRESS CORROSIVE CONDITIONS IN ACID CHLORIDE SOLUTION - METALLURGY AD-615789

MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS N65-35437 AD-615789

CORROSION BEHAVIOR OF ALUMINUM ALLOY MATERIALS
FOR PERMANENT OR SEMIPERMANENT INSTALLATION IN
HIGH FLUX ISOTOPE REACTOR / HFIR/
ORNL-TM-1029 N66-1 N66-10698 ERBEN, A. R. CORROSION CONTROL ON AIRCRAFT SKIN, COUNTERSINKS
AND FASTENERS DESCRIBING TESTS, SEALANT COATINGS,
CHEMICAL TREATMENTS, MECHANICAL BARRIERS, PLATINGS
ON FASTENERS AND ORGANIC COATINGS

A66-12298

STRESS CORROSION CRACKING IN TITANIUM ALLOYS IN PRESENCE OF SALT, HIGH TEMPERATURE AND SUSTAINED STRESS AIAA PAPER 65-764

ERICKSON, G. F.
HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT TRANSFER RATE, LIFE TESTS, WORKING LIQUID SELECTION, ETC A66-15 A66-15544

ERLWEIN, D. M.
CADMIUM-TITANIUM CORROSION RESISTANT PLATING PROCESS FOR PROTECTING HIGH STRENGTH STEELS A65-18784

HIGH SPEED RELIABILITY OF OIL-LUBRICATED TILTING-PAD POTASSIUM TURBINE BEARING ASME PAPER 65-LUBS-10 A65-28600

ERRINGTON. F. ROTORACE GYROS WHICH REDUCE GIMBAL FRICTION BY USE OF SPECIAL BALL BEARINGS IME PAPER 13

STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COMPONENTS AND SYSTEMS D1-82-0460 N66-25768

EVAN, R. B.
BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND TEMPERATURES NASA-CR-64183 N65-31051

MOLYBDENUM SULFIDE AND TEFLON AS SOLID FILM LUBRICATING MATERIALS FOR SPACECRAFT APPLICATIONS CONSIDERING LOW FRICTION COEFFICIENT, WEAR RATE, A65-23318

IN-FLIGHT TEST TO DETERMINE SPACE ENVIRONMENTAL EFFECTS ON FRICTION, WEAR, AND LUBRICATION OF MATERIALS - PROPOSED MODULAR SYSTEM NASA-TM-X-54967

EVLANDY, N. G.
METAL FLOW, FRICTION AND LUBRICANT PERFORMANCE
DURING STAMPING OF THIN TITANIUM ALLOY BLANKS

EVSTIGNEEV, E. V.

DETERGENT ACTION OF OIL ADDITIVES, INVESTIGATING SORPTION OF CHARGED PARTICLES ON CARBONACEOUS PRODUCTS OF FUEL COMBUSTION AND OIL OXIDATION ASLE PAPER 64-LC-9

A65-180 A65-18057

FABULA, A. G.
TURBULENT FLOW FRICTION REDUCTIONS IN DILUTE POLYMER SOLUTIONS NAVWEPS-8636 N65-22385

FACORSKAYA, N. A.
SYNTHESIS OF THREE ANTIOXIDANT ADDITIVES OF
SHIELDED PHENOLS
N6 N66-11088

FALCONE, A. S. HELICOPTER CORROSION PROBLEMS DISCUSSING CAUSES. EXPOSED SURFACES, PREVENTION AND TREATMENT A66-12300

FALKOYSKAYA, A. A.

EFFECTIVENESS OF ORGAND-MOLYBDENUM AND ORGANDSULFUR COMPOUNDS AS ANTIHEAR ADDITIVES TO
LUBRICATING OILS

N66-1 N66-11085

COMPARISON OF AUTOMOTIVE LUBRICATION GREASES

RIA-64-3578

N65-19419

FARMELL, B. E.
S NAP-8 MATERIALS RESEARCH - MERCURY CORROSION
CAPSULE TESTS OF FERRITIC ALLOYS FOR MASS
TRANSFER, STRESS CORROSION, MODE OF ATTACK, AND MECHANICAL PROPERTIES NASA-CR-62379 N65-22558

S NAP-8 REACTOR MATERIALS DEVELOPMENT PROGRAM -LUBRICANT, COOLANT, CORROSION LOOP, AND STRUCTURAL MATERIALS EVALUATION NASA-CR-54718

CORROSION RESISTANCE OF MOLYBDENUM-CHROMIUM STEEL IN MERCURY FORCED CONVECTION CORROSION LOOP FOR NUCLEAR AUXILIARY POWER SYSTEM COMPONENTS NASA-CR-54719

CORROSION RESISTANCE AND ENVIRONMENT EFFECT ON STEEL ALLOY COMPONENTS OF SNAP-8 NASA-CR-54719

FASCIA, J. F. CORROSION RESISTANCE OF CONSOLIDATED ZIRCALDY 2 POWDER CONTAINING DXYGEN AND NITROGEN KAPL-3060 N65-36540

FATING, C. C.
FUEL-WATER AND OXIDIZER-WATER CORROSION IN ALUMINUM CAPILLARIES OF FUEL AND OXIDIZER TANKS DSR-S-11047 N65-35287

FAVORSKAYA, N. A.
BISPHENOL SYNTHESIS FOR ANTIOXIDANT ADDITIVE TO OILS AND GASOLINES N66-30274

LEVER ESCAPEMENT IMPROVEMENT - MATERIALS AND LUBRICATION FOR TIME MEASUREMENT INSTRUMENTS N65-26712

FAYNGOLO, L. L.

EFFECT OF HALOGENS ON CORROSION OF TITANIUM BY TO CHLORINE, BROMINE, AND IDDINE, AND EFFECT OF AROMATIC NITRO COMPOUND ON CORROSION OF TITANIUM N66-10297

FEDORCHENKO, I. M.
GRAPHITE CONTENT EFFECT ON ANTIFRICTION PROPERTIES
OF GRAPHITIZED NICKEL-BASED COPPER AND IRON ALLOYS

FEDDTOVA, A. G.
CORROSION RESISTANCE OF YTTRIUM IS HIGHER AT
HIGHER P H BECAUSE OF SLOWER ANODIC PROCESS A66-21747

FEIN, R. S. IN, K. 3.
HYDROCARBON BOUNDARY LUBRICATION OF HARD STEEL,
RELATING FRICTION AND WEAR TO HYDROCARBON
STRUCTURE AND OXYGEN CONCENTRATION
ASLE PAPER 64-LC-4
A65-18 A65-18053

WEAR MACHINE LUBRICANTS EFFECT ON TRANSITION TEMPERATURE DISCUSSING VISCOSITY, SPEED AND LOAD ASLE PAPER 64-LC-7 A65-18055

DENSITY AND VISCOSITY CHANGES OF LUBRICANTS IN CONTACT DUE TO PRESSURE CHANGES IN CONCENTRATED-CONTACT LUBRICATION ASME PAPER 65-LUB-4

FELDMAN, D. I.
WEAR RESISTANCE OF SLEEVE BEARINGS MADE FROM POLYMERPOLYFORMALDEHYDE /PFA/ FTD-TT-65-329/18284 N65-33005

FERRY, B. N.
NITROGEN CONTENT OF AUSTENITIC STAINLESS STEEL IN STRESS CORROSION EURAEC-1216 N65-32322

NITROGEN CONTENT EFFECT ON STRESS CORROSION IN AUSTENITIC STAINLESS STEELS EURAEC-1424 N66-18939

RELATIONSHIP OF NITROGEN CONTENT OF AUSTENITIC

STAINLESS STEELS TO STRESS CORROSION EURAEC-1579

N66-28987

N66-26504

FIALKO, N. M.
CORROSIVE ACTION OF LIQUID METALS CONSIDERED FOR LUBRICANTS

FTD-TT-65-1447/18284

FILIPPOV, V. F.

REACTION MECHANISMS OF OXIDATION RESISTANT
ADDITIVES IN OXIDATION PROCESS IN LUBRICATING
OILS - HYDROGEN PEROXIDE FORMATION

FINEFROCK, V. H.
CONTAMINATION OF JET FUEL SYSTEMS WITH MICROBIAL CONTRACTOR OF MICROBIAL GROWTH IN CORROSION AND EQUIPMENT MALFUNCTION N65-30860 AMRL-TR-65-30

CORROSION OF MATERIALS BY ETHYLENE GLYCOL-WATER

FIRSANOVA, YE. N.
CHARACTERISTICS OF SOVIET AND OTHER LUBRICATING
OILS FOR USE IN WINTER WEATHER TO START AND
MAINTAIN INTERNAL COMBUSTION MACHINES N66-11077

FISCH, K. R.
SEMIFLUID GREASE AND OIL BLEND LUBRICANT
EVALUATION FOR M61 RAPID FIRE MACHINE GUN IN
TERMS OF ANTIWEAR AND EXTREME PRESSURE PROPERTIES

FISCHER, E.
WEAR AND DETERIORATION IN PRECISION LAPPING
A6 A65-29781

FISHER. M. T.
ALUMINUM COMPLEX SDAPS AS THICKENERS FOR MULTIPURPOSE GREASE N65-18869

HIGH TEMPERATURE OXIDATION RESISTANCE OF ALUMINUM COMPLEX SOAP GREASE RIA-65-3264 N66-2001: N66-20013

WEAR AND FRICTION OF HIGH TEMPERATURE SOLID FILM LUBRICANT IN HIGH VACUUM AND IN AIR N65-29941

FLAKS, V. YA.
CORROSION RESISTANCE OF STRUCTURAL ALUMINUM ALLOY BUILDING MATERIALS N66-12739

ELECTROCHEMICAL AND METALLOGRAPHIC FEATURES
ASSOCIATED WITH CORROSION RESISTANCE OF NICKELCHROMIUM PROTECTIVE COATINGS, NOTING CATHODE POLARIZATION A65-32167

HYDRODYNAMIC LUBRICATION OF TWO LIGHTLY LOADED ROTATING CIRCULAR CYLINDERS, WITH REFERENCE TO SUBCAVITY PRESSURE AND NUMBER OF STREAMERS IN CAVITATION REGIONS A65-27984

HYDRODYNAMIC BEARING LUBRICATION OF ROTATING CYLINDER WITH REFERENCE TO SUB-CAVITY PRESSURE AND CAVITATION REGIONS N65-35473 UDC-621-89-032

FRICTION MEASUREMENT AND GASES EVOLVED DURING CLEAVAGE OF LAMELLAR SOLIDS IN ULTRAHIGH VACUUM ASLE PAPER 64-LC-18

ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE MATERIALS IMPREGNATED WITH LIQUID METALS AND ALLOYS WORKING IN DRY FRICTION CONDITIONS

ANTIFRICTION PROPERTIES OF IMPREGNATED MATERIALS BASED ON GRAPHITE, WORKING IN DRY FRICTION CONDITIONS

FONTANA, M. G.
STRESS CORROSION CRACKING EXPERIMENTS WITH IRON-NICKEL-CHROMIUM ALLOYS N65-34319

STRESS CORROSION CRACKING IN CHROMIUM-NICKEL-IRON
ALLOYS WITH FOURTH ELEMENT ADDED
COO-1319-27 N66-17533

FORGESON, B. W.
MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND TITANIUM ALLOY STRESS CORROSION, CATHODIC PROTECTION, CORROSION FATIGUE, AND ANTIFOULING PAINT FOR ALUMINUM ALLOYS NRL-MEMO-1634

FOSTER, E. L., JR.
FABRICATION AND EVALUATION OF THORIUM IRRADIATION
SAMPLES HAVING BORDN, URANIUM 233, OR GOLD CORES
N66-30414

ELECTROCHEMICAL CORROSION OF CAST IRON IN SODIUM AND POTASSIUM SOLUTIONS N65-31073 PRI)M _ - 3549

FRANCE, M. D., JR.
PREDICTING INTERGRANULAR CORROSION OF AUSTENITIC
STAINLESS STEELS

FRANCIS, W. C.
URANIUM INTERMETALLIC FUEL SYSTEM AND ALUMINUM-BERYLLIUM ALLOY CORROSION PROPERTY STUDIES

FRANK. H. NNK, M.
HYDROGEN-OXYGEN ELECTROLYTIC REGENERATIVE FUEL
CELL DEVELOPMENT AND TESTS - MATERIAL CORROSION
STUDIES, CYCLE CONTROLLER ASSEMBLY, AND PARTS
FABRICATION NASA-CR-57665

FRANK, R. G. MATERIALS FOR POTASSIUM LUBRICATED JOURNAL BEARINGS NASA-CR-54264

TEST PROGRAM TO EVALUATE MATERIALS SUITABLE FOR POTASSIUM LUBRICATED JOURNAL BEARING AND SHAFT APPLICATIONS IN SPACE SYSTEM TURBOGENERATORS OPERATING AT HIGH TEMPERATURES NASA-CR-54345

FRASER. W. A.
STEEL CORROSION MECHANISMS - GROWTH AND BREAKDOWN
OF PROTECTIVE FILMS IN HIGH TEMPERATURE AQUEOUS N65-15833 NRI -6082

FREDERICK, P. H.

MACHINING AND MACHINABILITY IMPROVEMENTS OF
STAINLESS STEEL ALLOYS PRESENTING COST,
AVAILABILITY, LUBRICATION AND CORROSION RESISTANCE A65-26951

FRISCO, L. J.
INSULATION RESISTANCE OF SPACECRAFT WIRING AGAINST
ABRASION, RADIATION EFFECTS, OXYGEN ENVIRONMENT,
AND EXTRUSION LUBRICANTS NASA-CR-65233

FROHN, H. F. M.
CORROSION RESISTANT ZINC PAINT EFFECTS ON
MECHANICAL PROPERTIES OF STEEL WELD JOINTS
AT-1959/69 N66-20026

FUFAEY, N. A. NONHOLONOMIC COUPLING ACHIEVED BY MEANS OF VISCOUS FRICTION FORCES, USING CHAPLYGIN SLEDGE

FUFAYEV, A. A.

SYNTHESIS, PRODUCTION TECHNOLOGY, AND TEST OF
BARIUM ALKYLPHENOLATE, ZINC DIALKYLPHENYLDITHIO
PHOSPHATE, AND DIAKYLPHENYLDITHIOPHOSPHORIC
ACID FOR MULTICOMPONENT ADDITIVES TO LUBRICANTS N66-11094 FUKS, G. I.

REACTION MECHANISM AND EFFECTIVENESS OF ADDITIVES
IN LUBRICATING OILS FOR FRICTION REDUCTION

N66-11109

FULLENWIDER, M.
HYDROGEN EMBRITTLEMENT RESULTING FROM CORROSION,
CATHODIC PROTECTION, AND ELECTROPLATING
QR-3
N66-3154

FULLER, D. D.

UNCONVENTIONAL LUBRICANTS CAPABLE OF WITHSTANDING
EXTREMES OF TEMPERATURE, PRESSURE AND RADIATION

A65-1681

FRICTION AND WEAR CHARACTERISTICS OF MATERIALS FOR GAS LUBRICATED BEARINGS UNDER STAT-STOP AND WHIRL INDUCED RUBBING CONDITIONS F-B2232 N66-20592

FUREY, M. J.

LUBRICITY PROPERTIES OF HIGH TEMPERATURE JET FUELS

QPR-1

N66-13426

G

GADDIS, D.

EVALUATION OF INORGANIC SOLID FILM LUBRICANTS
BEING DEVELOPED FOR SPACE ENVIRONMENTS

A65-17481

FRICTION COEFFICIENTS OF INORGANIC SOLID FILM LUBRICANTS FOR USE IN SPACE ENVIRONMENTS NASA-CR-60783 N65-17276

GAHNBERG, B.
CORROSION RESISTANT AND EMBRITTLEMENT
CHARACTERISTICS OF TITANIUM-CADMIUM PLATING
A600
N65-22093

GALETUSE, S.

FRICTION STRESSES IN TURBULENT LUBRICATION FILM
AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE
DISTRIBUTION STUDIED, USING MIXING-LENGTH
HYPOTHESIS
ASLE PREPRINT 65AM 3A1

A65-24:

FRICTION STRESSES IN TURBULENT LUBRICATION FILM AND DEPENDENCE ON REYNOLDS NUMBER AND PRESSURE DISTRIBUTION STUDIED, USING MIXING-LENGTH HYPOTHESIS

GALKIN, A. M.
SEIZING EFFECT AT INTERFACES SAP-SAP AND SAP-

AL, NOTING OPTIMUM THERMOMECHANICAL CONDITIONS
A66-28196

GALLAUGHER, W. C.
STRESS CORROSION ON HIGH STRENGTH STEEL ALLOYS
ML-TDR-64-3
N65-15136

PISTON SHAPE CHANGED, BREATHING AND LUBRICATION IMPROVED TO INCREASE LIFESPAN OF INTERNAL COMBUSTION AIRCRAFT ENGINES FTD-TT-65-723/1&2&4 N66-12606

GALVIN. G. D.

LUBRICANTS EFFECT ON STEEL AND OTHER METAL FATIGUE
LIVES IN ROTATING CANTILEVER FATIGUE TESTS

A65-26570

GAMBINO, J. R.
ACCELERATED HIGH TEMPERATURE NICKEL OXIDATION BY
SODIUM SULFATE N66-28680

GANNON, F.
TECHNIQUES FOR TESTING HIGH TEMPERATURE
PERFORMANCE OF GAS TURBINE SEAL LUBRICANTS
AFAPL-TR-65-3
N65-30867

GANTS, S. N.

EFFECT OF TEMPERATURE ON FRICTION AND WEAR OF
FILLED FLUORINATED PLASTIC MATERIALS
FTO-TT-64-1176/182

N65-29121

GANZ, S. N.
FRICTION REDUCING AND CHEMICALLY STABLE PLASTICS

BASED ON POLYTETRAFLUOROETHYLENE FTD-TT-65-857/18284

N66-19245

GARLAND, W. F.
EVALUATION OF FUNGUS-PROOF, TACK-FREE,
NONCORROSIVE, AND WEATHER-RESISTANT
PRESSURE-SENSITIVE PLASTIC OR PAPER TAPES
RIA-66-774
N66-27871

GARTNER, F.
PRESSURE DISTRIBUTION OF COUNTERFORMEL CYLINDERS
MEASURED TO DETERMINE HYDRODYNAMIC LOAD
ASLE PAPER 64-LC-12
A65-31717

GASSNER, R. H.

AIRCRAFT CORROSION FAILURES AND SOLUTIONS
DISCUSSING HYDRAULIC LINES, ANGLE OF ATTACK
INDICATOR, HOT AIR DUCTING, CONTROL CABLE AND
BELLOWS

A65-35750

GAUL, G. G.

CORROSION OF MATERIALS FOR FUEL CLADDING IN
SUPERHEAT REACTOR SYSTEMS
GEAP-4760
N65-31797

GAULIN, C. A.
FRICTION MEASUREMENT AND GASES EVOLVED DURING
CLEAVAGE OF LAMELLAR SOLIDS IN ULTRAHIGH VACUUM
ASLE PAPER 64-LC-18
A45-22791

GAYDAY, O. F.
ELECTRIC WEAR RESISTANCE OF SILVER AND CERMET
CONTACTS
N66-13269

GAYLE, J. B.

STRESS CORROSION TESTS ON ALUMINUM ALLOYS WITH
RESPECT TO STATISTICAL NATURE OF DISTRIBUTION
OF FAILURE TIMES
NASA-TM-X-53355
N66-1406

GENKINA, V. I.

THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS

OF ANTIOXIDANT ADDITIVES IN LUBRICATING OILS
U-S-S-R. N66-13718

GEORGIYEVSKIY, G. A.
HEAT AND WEAR RESISTANT PLASTIC MATERIALS WITH
HIGH FRICTION COEFFICIENTS
FTD-MT-64-483
N66-16816

GERASIMOV, V. V.
CORROSION OF URANIUM AND URANIUM ALLOYS IN AQUEOUS
AND NON-AQUEOUS MEDIA AND PROTECTIVE COATINGS
JPRS-31728
M65-33652

INCREASED URANIUM AND URANIUM ALLDY CORROSION
RESISTANCE IN WATER AND STEAM
N65-33652

ATMOSPHERIC CORROSION MECHANISM OF URANIUM AND URANIUM ALLOYS IN RELATION TO TEMPERATURE AND HUMIDITY EFFECTS ON CORROSION RATES

N65-33654

GERSTUNG, H. S.
SOLID AND DRY-FILM LUBRICANTS, TABULATING KINETIC COEFFICIENTS OF FRICTION, NOTING PARTICLE SIZE, VISCOSITY, COSTS, WEAR LIFE, APPLICATION, ETC. A66-24099

GIANNOTTI, R. J.

JET DIL LUBRICATION AND SCAVENGING TECHNIQUE FOR
20 MM HIGH SPEED BALL BEARING
ASLE PAPER 66AM 184

A66-30402

GILEADI, E.
HYDROGEN EMBRITTLEMENT RESULTING FROM CORROSION,
CATHODIC PROTECTION, AND ELECTROPLATING
QR-3
N66-31544

GILPIN. C. B.

POLARIZATION CURVES OF STRESS CORROSION CRACKING
IN MARTENSITIC HIGH STRENGTH STEELS
REPT.-132-Q7

N65-34370

GINER, J.

POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR
METALLIC INGOTS PREPARED AS ROTATING DISK
ELECTRODES — CATHODIC ELECTROCATALYSTS FOR USE
IN LOW TEMPERATURE HYDROGEN—OXYGEN FUEL CELLS

NASA-CR-68891

N66-13991

CATHODIC ELECTROCATALYSTS FOR USE IN LGW
TEMPERATURE HYDROGEN-DXYGEN FUEL CELLS WITH AN
ALKALINE ELECTROLYTE-CORROSION RESISTANCE AND
ACTIVITY TESTING OF MATERIALS AND ELEMENTS N66-24550

METAL, ALLOY, AND METAL COMPOUND TESTING FOR CORROSION RESISTANCE AND ACTIVITY AS OXYGEN ELECTRODES FOR HYDROX FUEL CELL WITH ALKALINE ELECTROLYTE N66-26759 NASA-CR-75199

GIOLMAS, S. N.
WEAR DEBRIS AS FACTOR IN WEAR RATE OF ROLLING
ELEMENT SUBJECTED TO TANGENTIAL SURFACE TRACTIONS A65-26571

GISSER, H. SEMIFLUID GREASE AND DIL BLEND LUBRICANT EVALUATION FOR M61 RAPID FIRE MACHINE GUN IN TERMS OF ANTIWEAR AND EXTREME PRESSURE PROPERTIES

GLADYREVSKAYA, S. A.
CORROSION RESISTANCE, FATIGUE STRENGTH, AND
ENGINEERING PROCESSES IN MANUFACTURING OF CLAD
STAINLESS STEELS N65-33887 JPRS-32087

GLAESER, W. A.
LUBRICATION MECHANISMS AND EFFECTS OF CRYSTAL-LATTICE STRUCTURE, HARDNESS AND SURFACE CHARACTERISTICS UPON WEAR AND FRICTION PHENOMENA A65-26490

LIFETIME, LOAD-CARRYING ABILITY, AND FRICTION AND WEAR CHARACTERISTICS OF PLAIN SLEEVE BEARINGS FOR AIRCRAFT SUPPORT STRUCTURES N66-24725 AD-628937

GLAGOVSKIY, B. A.
ELECTRIC STRAIN GAUGE FOR HIGH TEMPERATURE OR
CORROSIVE ENVIRONMENTS AND ELECTROMAGNETIC FIELDS - TENSOMETER FTD-TT-64-872/1&2 N65-19200

GLAZUNOV, S. G.

CORROSION RESISTANCE AND ELECTROCHEMICAL
PROPERTIES OF ALLOYS OF NIOBIUM-TITANIUM SYSTEM
A66-20 A66-20838

CORROSION RESISTANCE, ELECTROCHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM-A66-20839 NIOBIUM SYSTEM

GLENN, D. C.

POLYPHENYL ETHER, POLYSILOXANE, SEBACATE, AND HIGH
VISCOSITY MINERAL OIL AS IMPREGNATED LUBRICANTS
IN BALL-BEARING RETAINERS AT .000010 TORR NASA-TN-D-3259

ACCELERATED COOLING OF FERRITIC-MARTENSITIC STEEL AND FERRITIC STEEL AFTER SINTERING, COMBINED WITH ADDITIONAL HEAT TREATMENT, INCREASES STRENGTH AND 466-16690 CORROSION RESISTANCE

GLUKHODED, I. S.
DIALKYLDITHIOPHOSPHATES WITH SECONDARY
HYDROCARBON RADICALS AS ANTIOXIDANT ADDITIVES N66-11087 FOR LUBRICATING DILS

CORROSION RESISTANCE AND ELECTROCHEMICAL PROPERTIES OF ALLOYS OF NIOBIUM-TITANIUM SYSTEM A66-20838

CNATIUK, A. D.
EFFECT OF CORROSIVE AND SURFACE ACTIVE MEDIA ON
FATIGUE STRENGTH OF ALUMINUM ALLOYS WIDELY USED IN
AIRCRAFT CONSTRUCTION
A66-25883

GODFREY, D. FRICTION AND WEAR STUDY OF LUBRICATION MECHANISM OF TRICRESYL PHOSPHATE ON STEEL A65-18051 ASLE PAPER 64-LC-1

BOUNDARY LUBRICATION IN OIL SYSTEM DISCUSSED IN TERMS OF FILM STRENGTH COVERING ADSORBED, CHEMISORBED AND CHEMICAL REACTION FILM FORMATION A65-23505

GODWIN, E.
THIN FILM LUBRICANT DEVELOPED FOR GOLD-PLATED ELECTRIC CONTACTS DISCUSSING CHARACTERISTICS. PERFORMANCE AND TESTING

GOLDBERG. S.
CORROSION PROTECTION OF HIGH STRENGTH STEELS N65-19234

GOLDIN• V• N•
ORGANIC AND INORGANIC MEDIA COMPOSITION EFFECTS
UN METAL EROSION
N66-26

GOLDMANN, K.

SODIUM TECHNOLOGY AS RELATED TO NUCLEAR REACTOR
TECHNOLOGY - MATERIALS SCIENCE, CORROSION,
PURITY CONTROL, OPERATIONS, HEAT TRANSFER, AND
THERMAL CYCLING
N66-17 N66-17405

GOLDSTEIN, N. H.
LUBRICATION OF BALL BEARINGS IN HIGH SPEED
APPLICATION NOTING OIL TYPES, GREASE SHEAR AND OIL CHURNING

GOLOBORODOV, V. N.
LOW CORROSION RESISTANCE OF IRON-ALUMINUM ALLOYS
IN FLUORINE ATMOSPHERE AT HIGH TEMPERATURE NA5-13415

GOLOVANENKO, S. A.
CORROSION RESISTANCE, FATIGUE STRENGTH, AND
ENGINEERING PROCESSES IN MANUFACTURING OF CLAD
STAINLESS STEELS
JPRS-32087
N65-3:

GOLUBEY, A. I.

ELECTROCHEMICAL AND CORROSION BEHAVIOR OF
EL-BASED FE, NI, TI, CU AND SB ALLOYS AND
INTERMETALLIC COMPOUNDS

A66-208

GOMEZ. M. P.

RADIOACTIVE TRACERS TO DETERMINE WEAR RESISTANCE
OF CHROMIUM-NICKEL-IRON ALLOY GRINDING BALLS
USED IN FABRICATING CEMENT

NAG-282 CNEA-187

GONCHAREVSKIY, M. S.
STEEL PIPE HOT ROLLING LUBRICATION BY GRAPHITE AND SODIUM NITRATE SUSPENSION IN CALCIUM HYDROXIDE SOLUTION FTD-TT-64-1086/1

GOOGIN, J. M.
CHEMICAL COOLANTS FOR MACHINING URANIUM IN
PRESENCE OF TRACE AMOUNTS OF CHLORIDE CORROSION PREVENTION N65-18429 V-1475

GORDEYEV. V. YE.

COMBUSTION AND DETONATION PHYSICS FOR MIXTURES
OF LUBRICATING OILS AND DXYGEN FTD-TT-65-1106/16264

GORDON, A. N.
SURFACE TEMPERATURES OF FRICTIONAL CONTACTS
CONSIDERING TWO ROLLING/SLIDING CONTACTS, HEAT
SOURCE MOVING OVER SURFACE AT VARIOUS SPEEDS AND A65-25442 REPEATED CONTACT

GOROKHOVSKII, G. A.

EFFECT OF CRYSTALLINE STATE AND STRUCTURAL
ORIENTATION OF POLYMER ON ENDURANCE OF COUPLINGS
WITH POLYTETRAFLUOROETHYLENE COMPONENTS, ANALYZING
DRY FRICTION AND WEAR ON INTERFACES

A66-25912 A66-25912

GOULD, P. R.
HIGH TEMPERATURE TENSILE TESTS, ALLOY POWDER
TREATMENT, DRY LUBRICANT FRICTION, AND WEIGHT
LOSS MEASUREMENTS IN ULTRAHIGH VACUUM SYSTEM N66-12956 APS64G

GOURJAULT, J.-C.
FRICTION CORROSION CAUSED BY ALTERNATE PIVOTING OF

STEEL BALL ON PLANE OF LIGHT ALLOY

A66-27934

GOWARIKE, V. R.
THROAT EROSION RATES OF CARBON CHOKES IN ROCKET
MOTOR NOZZLE PREDICTED, USING MATHEMATICAL
APPROACH COMBINED WITH EXPERIMENTAL RESULT
AIAA PAPER 65-351
A65-30199

GRAFF, W.

MOLTEN SODIUM CORROSION OF AUSTENITIC STEEL
CEA-2371 N65-32983

GREEN, H. R., JR.
STRESS RELIEVING ALPHA-TITANIUM ALLOY WELDMENTS IN
VACUUM TO PREVENT CONTAMINATION IN A-5 VIGILANTE
WING SECTIONS
465-2647

GREENBERG, S.

ALUMINUM ALLOY POWDER EXTRUSIONS EVALUATED FOR CORROSION RESISTANCE TO HIGH TEMPERATURE WATER FLOW, CONSIDERING RODS AND TUBINGS

A65-22133

GREENE, N. D.
PREDICTING INTERGRANULAR CORROSION OF AUSTENITIC
STAINLESS STEELS
TR-3
N66-32514

GREER, J.

MECHANISMS OF CORROSION ON SELECTED STRUCTURAL
MATERIALS BY LIQUID CESIUM
MSAR-64-27
N65-17

CORROSIVE ATTACK MECHANISMS OF LIQUID CESIUM ON CONTAINMENT METALS AND TEMPERATURE GRADIENT MASS TRANSFER COMPARISON MSAR-65-111 N66-13775

GRIESS, J. C.
CORROSION BEHAVIOR OF ALUMINUM ALLOY MATERIALS
FOR PERMANENT OR SEMIPERMANENT INSTALLATION IN
HIGH FLUX ISOTOPE REACTOR / HFIR/
ORNL-TM-1029
N66-10698

GRIFFITH, J. Q.

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE
COMPARED WITH PETROLEUM OILS AND EXISTING
SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE
APPLICATION
ASLE PREPRINT 65-LC-1

A66-12:

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM OILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE APPLICATION ASLE PREPRINT 65-LC-1

GRIGORENKO, L. P.
STRUCTURAL CHANGES DURING FRICTION OF GRAPHITIZED
MATERIAL, COMPARING CRYSTAL SIZES AND INTEGRAL
LINE INTENSITY OF INITIAL AND WEAR PRODUCT
A65-31529

GRIGOREVA, A. A.

HEAT RESISTANCE IN AIR OF FOUR INDUSTRIAL
AUSTENITIC-FERRITE STEELS WITH LOW NICKEL CONTENT
AT 750-1050 DEGREES C, NOTING DXIDE SCALE
FORMATION

A66-10988

GRIMES, J. H.

REACTION RATE OF URANIUM AND WATER VAPOR AT
VARIOUS TEMPERATURES AND ACTIVATION ENERGY
DETERMINATIONS — OXIDE MEASUREMENTS FOR URANIUM
CORROSION
AWRE-0-68/65/
N66-18416

GROSS, E. M.

IMMERSION AND IMPINGEMENT ELECTROPOLISHING METHODS
FOR INCREASING CORROSION RESISTANCE OF STAINLESS
STEELS AND NICKEL ALLOYS USED IN PROPELLANT
DUCTS
NASA-CR-57864
N65-22641

GROSSETT, K. W. WEAR AND FRICTION OF LUBRICATED AND UNLUBRICATED STAINLESS STEEL BEARINGS IN SLIDING AND ROLLING CONTACT IN ULTRAHIGH VACUUM AND VARIOUS GAS ENVIRONMENTS

NASA-CR-65374

N66-27232

GROVER, G. M.
HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE
ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT
TRANSFER RATE, LIFE TESTS, WORKING LIQUID
SELECTION, ETC
A66-15544

GROVES, N. D.

COMPONENT DESIGN FOR CORROSION RESISTANCE
CONSIDERING CONFIGURATION, LOCATION, PROCESSING,
FABRICATION AND ASSEMBLY

A65-21666

GULYAYEV. V. N.

CORROSION RESISTANCE AND WELDABILITY OF AUSTENITIC
HEAT-RESISTING STEELS FOR STEAM POWER GENERATORS
N65-16736

GUNDERSON, G. E.

NICKEL CORROSION TESTS FOR FLUORIDE VOLATILITY
PROGRAM — SMALL SCALE LABORATORY TESTS IN TUBE
FURNACES AND IN-PLANT EXPOSURE TESTS
ANL-6979

N65-24709

GUPTA, S. K.

VOLATILE CORROSION INHIBITORS FOR FERROUS METAL
SURFACES - NITRITE SALTS OF VARIOUS AMINES

N65-17022

GURINSKY, D. H.

THEORY, TESTING, AND ANALYSIS OF LIQUID METAL
CORROSION - MERCURY AND PLUTONIUM LIQUID ALLOYS
NASA-TM-X-54722
N65-29446

GURYANOVA, YE. N.
IMPROVING ANTIWEAR PROPERTIES OF LUBRICATING OILS
WITH DERIVATIVES OF 2-MERCAPTOBENZTHIAZOLE
FTD-TT-64-1287/1
N65-28624

Н

HACHE, A.
BRITTLENESS OF ANNEALED STEELS USING CORROSION
TESTS UNDER TENSION IN PRESENCE OF HYDROGEN
A65-28628

HAGER, R. N., JR.
TESTING DRY FILM LUBRICANTS EXPOSED TO ULTRAHIGH
VACUUM ENVIRONMENT
A65-30030

HAINS, F. D.

MAGNETOHYDRODYNAMIC FLUID FLOW BOUNDARY LAYERS FOR
LIQUID METAL BEARINGS

N65-27510

MALLING, J.
WEAR DEBRIS AS FACTOR IN WEAR RATE OF ROLLING
ELEMENT SUBJECTED TO TANGENTIAL SURFACE TRACTIONS
A65-26571

SMALL-SCALE SLIP PROCESSES FROM APPLIED LOADING AND GEOMETRIC CONFORMITY BETWEEN ROLLING BODIES, MEASURING WEAR AND CREEP A65-26572

HALTMER, A. J.
FRICTION MEASUREMENT AND GASES EVOLVED DURING
CLEAVAGE OF LAMELLAR SOLIDS IN ULTRAHIGH VACUUM
ASLE PAPER 64-LC-18
A65-22791

SLIDING FRICTION MEASUREMENTS OF SOME LAYER
LATTICE COMPOUNDS IN ULTRAHIGH VACUUM
ASLE PREPRINT 65-LC-19
A66-12251

SLIDING FRICTION MEASUREMENTS OF SOME LAYER LATTICE COMPOUNDS IN ULTRAHIGH VACUUM ASLE PREPRINT 65-LC-19 A66-30569

HAMILTON, D. 8.
MICROIRREGULARITY LUBRICATION TO IMPROVE
RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE
SEAL
ASME PAPER 65-LUB-11
A66-14244

MICROIRREGULARITY LUBRICATION TO IMPROVE RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE SEAL ASME PAPER 65-LUB-11

HAMMITT, F. G.
PITTING CHARACTERISTICS OF EARLY PHASE CAVITATION

DAMAGE TO TEST SPECIMENS IN VENTURI ASME PAPER 64-WA/FE-2

A65-26503

HANES, H. D.
PHYSICAL METALLURGY, CORROSION, FABRICATION,
POWDER PRODUCTION, AND STRUCTURAL APPLICATIONS
OF BERYLLIUM AND BERYLLIUM ALLOYS
N65-14123

HARDEN, D. G.
BEARING AND LUBRICANT PROBLEMS
AD-429247

N65-26280

HARRIGTON, E. C.

GROWTH SUPPORT STUDIES OF SELECTED MICROORGANISMS
IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND
LIQUID ROCKET PROPELLANT
RTD-TDR-63-4117, PT. 11

N66-2482

HARRISON. R. W.

ALKALI METAL STRESS CORROSION AND MASS TRANSFER
EFFECTS ON REFRACTORY METAL AND STAINLESS STEEL
ALLOYS
NASA-CR-54281
N65-17

INFLUENCE OF STRESS ON CORROSION BEHAVIOR OF REFRACTORY ALLOY IN POTASSIUM, AND CORROSION MASS TRANSFER EFFECTS IN STAINLESS STEEL-NIOBIUM ALLOY-POTASSIUM SYSTEM NASA-CR-54390 N65-272

MATERIAL PROCUREMENT AND QUALITY ASSURANCE FOR ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM NASA-CR-54477 N65-33960

INFLUENCE OF STRESS ON CORROSION BEHAVIOR AND MASS TRANSFER EFFECT ON REFRACTORY MATERIALS FOR ADVANCED SPACE POWER SYSTEMS NASA-CR-54476 N66-12264

STRESS CORROSION REFLUX CAPSULE TESTS OF NIOBIUM ALLOY IN POTASSIUM NASA-CR-54844 N66-14754

ADVANCED REFRACTORY ALLOY CORROSION LOOP
NASA-CR-54845 N66-15373

PURIFICATION OF ALKALI METALS FOR USE IN ADVANCED REFRACTORY ALLOY CORROSION LOOP NASA-CR-54911 N66-22327

HASHIMOTO, K.

HEAT TREATMENT CYCLE EFFECT ON MECHANICAL
PROPERTIES OF CORROSION RESISTANT PRECIPITATION
HARDENED STEEL AM 355 IN TERMS OF METALLOGRAPHIC
STRUCTURE
A66-1130

MASSION, F. X.
WEAR RESISTANCE TESTING ON PINS COATED WITH
REFRACTORY METALS BY PLASMA-ARC PROCESS CERMETS
SA-TR18-1096 N66-11528

MAUFFE, K.

BOOK ON METAL OXIDATION COVERING STRUCTURAL
DEFECTS, TRANSPORT PROCESS, PHASE BOUNDARIES,
DIFFUSION, ETC

A65-36334

HAWKINS, R. M.
SOLID FILM LUBRICATED BEARINGS - SOLID LUBRICANTS
AND BEARINGS EVALUATION
PWA-2354
N65-16124

MAYS, D. F.

EIGENVALUES AND EIGENVECTORS OBTAINED BY NUMERICAL
SOLUTION OF SPECIAL HILL EQUATION IN LUBRICATION
THEORY
ASME PAPER 66-LUBS-13
A66-33185

HAZZARD, G. F.
AIRCRAFT FUEL TANK COATING CORROSION RESISTANCE,
DISCUSSING POLYURETHANE AND EPOXY MATERIAL
CHARACTERISTICS AND APPLICATION

HEIMERL, G. J.
STRESS CORROSION TESTING BY AXIAL COMPRESSION OF
SELF-STRESSED TITANIUM ALLOY SHEET SPECIMEN
A65-14622

SALT STRESS CORROSION OF TI-8 AL-1 MO ALLOY SHEET AT ELEVATED TEMPERATURES - SURFACE TREATMENT EFFECT NASA-TM-X-56881 N66-29401

HEINRICH, K. F. J.
ELECTRON PROBE ANALYZER FOR INVESTIGATING
ZIRCONIUM ALLOY CORROSION
N65-14870

HENNAUT, J.
SURFACE TREATMENT EFFECT ON STAINLESS AND CARBON
STEEL CORROSION IN HIGH TEMPERATURE WATER AND
STEAM - AUTOCLAVE TESTS
LUBAR-C-1039
N65-2386

HENNAUT, R.

CLOSED LOOP SYSTEM FOR DYNAMIC CORROSION TESTS AT
HIGH TEMPERATURE IN PRESSURIZED WATER REACTOR
N65-32146

HERRON, W. C.
AIRCRAFT PROTECTION FROM CORROSION COVERING STRESS
AND INTEGRAL FUEL TANK CORROSION AND COATING
METHODS
A65-21650

EFFECT OF CORROSIVE ENVIRONMENTS ON VARIOUS METALS AND ANTICORROSION TECHNIQUES TO PROTECT METAL SURFACES A66-13374

HESS, D. N.

HASTELLOY F AND OTHER CORROSION RESISTANT
STRUCTURAL MATERIALS FOR CENTRIFUGE IN REACTOR
FUEL RECOVERY PLANT
ORNL-3787

N65-20708

HESS, E. H.
STRESS-CORROSION SUSCEPTIBILITY OF ULTRAHIGH
STRENGTH STEEL EVALUATED IN TERMS OF FRACTURE
TOUGHNESS
8-1782
N66-19382

HICKAM, W. M.

CORROSION FILM ON INCONEL AND AISI 304 STAINLESS
STEEL INVESTIGATION WITH SCANNING ELECTRON
MICROSCOPE AND SPINNING SOURCE MASS SPECTROGRAPH
MICROPROBE
MFRI-1114-1

N66-18899

HIGGINS, R. W.
SYNTHESIS OF ALKYL, CYCLOALKYL, AND DICYCLOALKYL
SULFIDES TO PROVIDE REFERENCE COMPOUNDS
NECESSARY IN SEARCH FOR SIMILAR CLASSES OF
SULFUR COMPOUNDS IN CRUDE OIL
BM-RI-6796
N66-28345

HILDEBRAND, J. F.

FAILURE OF W C- CO COATED ROD-GLAND BEARING
CAUSED BY FRETTING AND PROTECTION MEASURES,
EXAMINING HYDRAULIC ACTUATORS AS PRECISION
POSITING DEVICES

A65-18628

HINGLEY, C. G.

PERFORMANCE OF AIRCRAFT GAS TURBINE MAINSHAFT BALL
BEARINGS, SEALS, AND LUBRICANTS UNDER SIMULATED
SUPERSONIC TRANSPORT ENGINE CONDITIONS
NASA-CR-54312

N66-15366

HINKLE, J. G.
FRICTION AND WEAR CHARACTERISTICS OF MATERIALS FOR GAS LUBRICATED BEARINGS UNDER STAT-STOP AND WHIRL INDUCED RUBBING CONDITIONS
F-82232
N66-20592

HIRANO, F.

DYNAMIC RESPONSE OF DIL SEAL LIP TO SHAFT
ECCENTRICITY, NOTING FOLLOWABLE LIMITS
INDEPENDENCY TO SHAFT SPEED

A65-14894

FOIL BEARING THEORY TO EXPLAIN LUBRICATION
CONDITION OF LIP SEAL, TAKING INTO ACCOUNT SURFACE
ROUGHNESS EFFECT AND VISCOELASTIC PROPERTY OF
MATERIAL
A65-32769

HIRTH, J. P.
STRESS CORROSION CRACKING EXPERIMENTS WITH
IRON-NICKEL-CHROMIUM ALLOYS
COO-1319-24
N65-34319

A66-17491

STRESS CORROSION CRACKING IN CHROMIUM-NICKEL-IRON ALLOYS WITH FOURTH ELEMENT ADDED COU-1319-27 N66-17533

HOCHMANN, J.

SURFACE FINISHING EFFECT ON STRESS CORROSION RESISTANCE OF AUSTENITIC STAINLESS STEELS

A66-33445

HODEL, J. E.

CORROSION STUDIES OF REFRACTORY METAL ALLOYS IN BOILING POTASSIUM AND LIQUID NA K CNLM-6246 N66-28939

HOFFMAN, E. E.
DESIGN AND TESTING OF POTASSIUM CORROSION TEST
LOOP FACILITY NASA-CR-54269

N65-16745

PROTYPE CORROSION TEST LOOP FOR EVALUATION OF REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS - SIMULATION OF PROJECTED SPACE ELECTRIC POWER SYSTEMS NASA-54344 N65-21626

COMPATIBILITY OF NICKEL, IRON, AND COBALT BASE HIGH TEMPERATURE ALLOYS WITH BOILING POTASSIUM INVESTIGATION IN NATURAL CIRCULATION CORROSION TESTING LOOPS ORNL-3790

MATERIAL PROCUREMENT AND QUALITY ASSURANCE FOR ADVANCED REFRACTORY ALLOY CORROSION LOOP PROGRAM N65-33966

POTASSIUM CORROSION TEST LOOP FOR EVALUATING REFRACTORY ALLOYS IN BOILING AND CONDEMSING POTASSIUM ENVIRONMENTS SIMULATING SPACE ELECTRIC POWER SYSTEMS NASA-CR-54735 N66-12126

CORROSION TEST LOOP FOR EVALUATION OF REFRACTORY ALLOYS IN BOILING AND CONDENSING POTASSIUM ENVIRONMENTS WHICH SIMULATE PROJECTED SPACE ELECTRIC POWER SYSTEMS NASA-CR-54843

PERFORMANCE CHARACTERISTICS OF POTASSIUM CORROSION TEST LOOP NASA-CR-54912 N66-24697

HOKE, J. H. STRESS CORROSION SUSCEPTIBILITY OF HIGH STRENGTH STEELS NY0-3257-1 N66-30 170

HOLAN, K. SCREW TYPE CLEARANCE SEALS AND CONTACT SEALS DETAILING HYDROSTATIC SEAL DESIGN

A65-14886

HOLLINGER, D. L.
STRESS CORROSION INFLUENCE ON GLASS FIBER STRENGTH N65-14228

STRESS CORROSION ON GLASS FIBER STRENGTH AT CRYOGENIC TEMPERATURE N65-19022

HONEYCUTT, J. D.

PROTECTIVE COATING EFFECT ON STRESS CORROSION
PROPERTIES OF SUPERSONIC TRANSPORT SKIN
MATERIALS - BENDING-DUCTILITY EVALUATION
N65-: N65-28201

PROTECTIVE COATINGS EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS NASA-CR-67014 N65-33871

PROTECTIVE COATING EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS NASA-CR-74414 N66-23647

HOPKINS, R. L. SYNTHESIS OF ALKYL, CYCLOALKYL, AND DICYCLOALKYL SULFIDES TO PROVIDE REFERENCE COMPOUNDS NECESSARY IN SEARCH FOR SIMILAR CLASSES OF SULFUR COMPOUNDS IN CRUDE DIL BM-RI-6796

N66-28345

HOPKINS, V.

EVALUATION OF INORGANIC SOLID FILM LUBRICANTS BEING DEVELOPED FOR SPACE ENVIRONMENTS

A65-17481

FRICTION COEFFICIENTS OF INORGANIC SOLID FILM LUBRICANTS FOR USE IN SPACE ENVIRONMENTS NASA-CR-60783 N65-17276

SOLID LUBRICATION OF MANNED ORBITAL SPACE STATION DOOR ACTIVATOR

HORVATH, A.

SERVICE LIFE OF ANTIFRICTION BEARINGS REPRESENTED
BY MEIBULL DISTRIBUTION LAW, WITH COMPUTER METHOD
FOR PARAMETERS AND DENSITY FUNCTION

A66-16486

A66-16486

ASLE PAPER 64-LC-17

HOYT, J. W.
TURBULENT FLOW FRICTION REDUCTIONS IN DILUTE
POLYMER SOLUTIONS NAVWEPS-8636

HSU, Y. C.
NON- NEWTONIAN LUBRICANT FLOW IN SLIDER BEARING,
USING CONSTITUTIVE EQUATION CONTAINING STRESS NONLINEARITIES

LIQUID METAL LUBRICATED JOURNAL BEARINGS - FILM-INERTIA AND TURBULENCE EFFECT SWRI-1228-60 N65-27786

HUBBELL, R.
SOLID LUBRICATION OF MANNED ORBITAL SPACE STATION
N66-1744: N66-17443

HUGHES, W. F.
M HD LUBRICATION FLOW IN THRUST BEARING, NOTING
FLUID INERTIA EFFECT ON LOAD CAPACITY AND FLOW ASME PAPER 66-LUBS-8

HUMMER, C. M., JR.
CORROSION OF ALUMINUM AND MAGNESIUM ALLOYS IN TROPICAL ENVIRONMENTS NRL-6105 N65-19255

HUMPHRIES, T. S.
GALVANIC CORROSION OF ALUMINUM ASSEMBLIES BY
STAINLESS STEEL WIRE INSERTS
NASA-TM-X-53404
N66-N66-19762

HUNT, J. B.

GEAR TOOTH PITTING DUE TO LUBRICANT FILM
CAVITATION, NOTING EFFECTS OF VIBRATION AND
INCREASED VISCOSITY OF FLUID
A6: A65-17527

EVALUATION OF AGEABLE BETA TITANIUM ALLOYS BY TENSILE STRENGTH, CREEP STABILITY, OXIDATION, AND STRESS CORROSSION TESTS
WAL-TR-405/2-9
N66-* N66-31169

HUNTLEY, W. R.

S NAP-8 CORROSION PROGRAM - HYDROGEN SOLUBILITY IN SODIUM-POTASSIUM, PERMEABILITY OF HYDROGEN AND DEUTERUM THROUGH STAINLESS STEEL, AND PHASE NASA-CR-63196 N65-25409

CORROSION LOOP PROGRAM TO INVESTIGATE STRUCTURAL MATERIALS AND NA K COOLANT IN SNAP-8 PRIMARY COOLANT CIRCUIT
NASA-CR-69822 N66-16305

DIFFERENCES IN CORROSION AND MASS TRANSFER RATES IN CORROSION LOOPS FOR SNAP-8 SYSTEM AND EFFECTIVENESS OF COLD TRAPPING IN REDUCING HYDROGEN CONCENTRATION NASA-CR-67272 N66-22205

FORCED FLOW CORROSION-LOOP EXPERIMENTS AND CORROSION-LOOP MATERIAL STUDIES IN SNAP-8 CORROSION PROGRAM NASA-CR-76382 N66-30971 HYDOCK, J. J. CORROSION OF MAGNESIUM IN WATER

A66-29724

1

IBRAHIMOVA: M. A.
CATHODIC POLARIZATION OF SPENT ZINC PAINT COATINGS FOR INCREASED PROTECTION AGAINST SEA WATER CORROSION N66-19189 T-424-R

IMAI. M. TRICTIONAL PROPERTIES OF SILICON NITRIDE AND CARBIDE DURING RECIPROCATING SLIDING BETWEEN HEMISPHERICAL STYLUS AND POLISHED HORIZONTAL A66-30253

IOSSEL, IU. IA.
VOLTAGE AND DENSITY OF CONTACT-CORROSION CURRENT
ARISING AT CONTACT SURFACE OF DIFFERENT METALS
A65-36016

ROTATING MACHINES IN EXTREME ENVIRONMENT DISCUSSING CONDUCTORS, MAGNETIC MATERIALS, INSULATIONS, BEARINGS AND PERFORMANCE

A65-31144

ISAGULYANTS, V. I.
MULTIFUNCTIONAL AND ANTIOXIDANT ADDITIVES SYNTHESIZED FROM DIESTERDITHIOPHOSPHORIC ACID —
CHARACTERISTICS OF ALKYLPHENOLS AND DISULFIDES
OBTAINED AS INTERMEDIATE PRODUCTS

SYNTHESIS OF THREE ANTIOXIDANT ADDITIVES OF SHIELDED PHENOLS N6 N66-11088

BISPHENDL SYNTHESIS FOR ANTIOXIDANT ADDITIVE TO OILS AND GASOLINES N66-30: N66-30274

ISAYEV. A. P.
VIBRATION EFFECT ON FRICTION TORQUE IN CYLINDRICAL
GUIDE BEARINGS FOR BALANCE-WHEEL SPINDLE N66-27598 FSTC-HT-23-40-66

ISHCHUK, IU. L.
RELATION BETWEEN CHAIN LENGTH IN SATURATED ALIPHATIC ACIDS AND STRUCTURE OF PSEUDOGELS
THICKENED WITH THEIR LI AND CA SOAPS STUDIED FOR LUBRICATING PURPOSES

CORROSION CHARACTERISTICS OF AL- ZN- MG ALLOYS A65-30744

ISHIWATA, H.

DYNAMIC RESPONSE OF OIL SEAL LIP TO SHAFT ECCENTRICITY, NOTING FOLLOWABLE LIMITS INDEPENDENCY TO SHAFT SPEED 465-14894

FOIL BEARING THEORY TO EXPLAIN LUBRICATION CONDITION OF LIP SEAL, TAKING INTO ACCOUNT SURFACE ROUGHNESS EFFECT AND VISCOELASTIC PROPERTY OF

DEFORMATION AND ANNEALING EFFECTS ON CORROSION RESISTANCE OF PURE AND PALLADIUM-ALLOYED TITANIUM IN SULPHURIC AND HYDROCHLORIC ACIDS

MECHANISM BY WHICH PALLADIUM ADDITIONS INCREASE TITANIUM CORROSION-RESISTANCE STUDIED, USING A65-34980 RADIOCHEMISTRY

IVANOV. K. I.
FIRE RESISTANT LUBRICANT FOR TURBINES USING PHOSPHOROUS COMPOUNDS AS BASE FTD-TT-64-1291/1

CHEMICAL KINETIC MECHANISMS IN OXIDATION RESISTANT ADDITIVES TO LUBRICATING DILS N66-11110

DETERMINATION OF WORKING PROPERTIES OF INHIBITED INSULATING TRANSFORMER DILS N66-111 N66-11118 IVERSON. W. P. CATHODIC DEPOLARIZATION THEORY OF BACTERIAL CORROSION, USING DESULFOVIBRIO DESULFURICANS WITH BENZYL VIOLOGEN AS ELECTRON ACCEPTOR 466-22303

JACKSON, J. D.
RELATIVE RESISTANCE OF ALUMINUM ALLOYS, AND EFFECT OF GRAIN STRUCTURE ON SUSCEPTIBILITY TO STRESS CORROSION CRACKING DMIC-MEMO-202

CORROSION OF MATERIALS BY ETHYLENE GLYCOL-WATER N65-29914

JACOBS. A. J.
TRANSMISSION ELECTRON MICROSCOPY STRUCTURAL
ANALYSIS OF DISLOCATIONS IN STRESS-CORROSION
CRACKING OF 7075 ALUMINUM ALLOY A66-18761

EXPLOSIVE DEFORMATION EFFECT ON STRESS-CORROSION AND MECHANICAL PROPERTIES OF 7075 ALUMINUM ALLOY

ELECTRON MICROSCOPE INVESTIGATION OF DISLOCATION EFFECT ON STRESS CORROSION CRACKING IN ALUMINUM A66-29418

JAMISON, W. E. SURVEY OF LUBRICATION DEVICES FOR REDUCING FRICTION IN MECHANISMS OPERATING IN SPACE NASA-CR-62281

VARIOUS TECHNIQUES USED TO PROTECT MECHANISMS OPERATING IN SPACE FROM MALFUNCTIONS DUE TO FRICTION NASA-CR-62282

NOTE OF THE STATE OF MICKEL, IRON, AND COBALT BASE HIGH TEMPERATURE ALLOYS WITH BOILING POTASSIUM INVESTIGATION IN NATURAL CIRCULATION CORROSION TESTING LOOPS ORNL-3790

JANTZEN, E. K.
SIMULATION OF LUBRICATING OIL CIRCULATION IN
AVIATION TURBINE ENGINES BY CONSTRUCTED MODEL,
NOTING CHANGE OF VISCOSITY, ACID NUMBER AND
ELECTRICAL CONDUCTIVITY AT HIGH TEMPERATURES A66-23751

JARVIS, N. L. REDUCTION OF POLYMERIC FRICTION BY MINOR CONCENTRATIONS OF PARTIALLY FLUORINATED COMPOUNDS N65-26290 NRL-6227

JASINSKI, R. J.
POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR
METALLIC INGOTS PREPARED AS ROTATING DISK
ELECTRODES — CATHODIC ELECTROCATALYSTS FOR USE
IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS
IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS N66-13991 NASA-CR-68891

CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-DXYGEN FUEL CELLS WITH AN ALKALINE ELECTROLYTE-CORROSION RESISTANCE AND ACTIVITY TESTING OF MATERIALS AND ELEMENTS NASA-CR-70930

METAL, ALLOY, AND METAL COMPOUND TESTING FOR CORROSION RESISTANCE AND ACTIVITY AS OXYGEN ELECTRODES FOR HYDROX FUEL CELL WITH ALKALINE ELECTROLYTE NASA-CR-75199

JENNINGS, C. W.

MEAR CHARACTERISTICS OF ELECTROPLATED METAL

COATING COMBINATIONS FOR USE IN ROTARY SWITCHES

SC-DR-65-269

N66-22 N66-22066

JOHNSON, C. M.
CHROMATOGRAPHY FOR CORROSIVE GAS ANALYSIS NA5-32849 KY-485

JOHNSON, E. T.
POWDER METAL BEARINGS MANUFACTURE NOTING SHAPES,
SIZES, TOLERANCES, MATERIALS, DESIGN,
A66-241 A66~24100

JOHNSON, J. L.
ELECTRICAL SLIDING CONTACT LUBRICATION BY NIOBIUM DISELENIDE COMPARED WITH MOLYBDENUM DISULFIDE FOR A65-31094

DESIGN CRITERIA FOR AVOIDANCE OF FATIGUE BREAKAGE AND EXCESSIVE WEAR BASED ON THEORIES OF FAILURE FOR DUCTILE AND BRITTLE MATERIALS

JOHNSON, R. L.

DEGRADATION OF FLUOROCARBON TELOMERS, PTFE,
PCFE, POLYIMIDE, EPOXY COMPOSITIONS IN
EVAPORATION AND SLIDING FRICTION EXPERIMENTS AT
A65-18 A65-18793

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS
AS RELATED TO CRYSTAL STRUCTURE AND LATTICE
PARAMETERS IN VACUUM
ASLE PREPRINT 65-LC-18
A66-122

VACUUM EFFECTS ON LUBRICANTS AND BEARING MATERIALS DUE TO REDUCED AMBIENT PRESSURE AND LOW CONCENTRATION OF OXIDIZING GASES

A66-24383

A65-14459

FRICTION AND WEAR OF HEXAGONAL METALS AND ALLOYS
AS RELATED TO CRYSTAL STRUCTURE AND LATTICE
PARAMETERS IN VACUUM
ASLE PREPRINT 65-LC-18
A66-3056 A66-30568

CRYSTAL STRUCTURE INFLUENCE ON FRICTION AND WEAR OF TITANIUM AND TITANIUM ALLOYS IN VACUUM NASA-TN-D-2671

DEGRADATION OF POLYMER COMPOSITIONS IN VACUUM IN EVAPORATION AND SLIDING FRICTION EXPERIMENTS NASA-TM-X-54549 N65-35203

EVAPORATION RATES, FRICTION, AND WEAR OF LUBRICATING MATERIALS UNDER VACUUM CONDITIONS NASA-TM-X-52009

FRICTION, WEAR, AND ADHESION CHARACTERISTICS OF TITANIUM-ALUMINUM ALLOYS IN VACUUM NASA-TN-D-3235 N66-15 N66-15491

JOHNSTON, C. PREVENTION OF WATER VAPOR CORROSION OF URANIUM BY OXYGEN AND PROTECTIVE COATINGS AWRE-0-42/65 N66-13178

JOHNSTON, R. R. M.
BUILDUP OF MOLYBDENUM DISULFIDE FILMS ON COPPER
SURFACE, EXAMINING BURNISHING PROCESS AND EFFECTS
OF LOAD AND HUMIDITY CONDITIONS

A65-15680

JONES, J. J.
ROTORACE GYROS WHICH REDUCE GIMBAL FRICTION BY USE
OF SPECIAL BALL BEARINGS
IME PAPER 13
A65-19706

CORROSION AND OXIDATION INHIBITING SYSTEM STABILITY IN BRAKE FLUIDS AFTER EXTENDED STORAGE N65-22484

JUSTE, P.
MOLTEN SODIUM CORROSION OF AUSTENITIC STEEL
N6 N65-32983

KAGARISE, R. E.
STABILIZATION OF SILICONE LUBRICATING FLUIDS AT
300 TO 400 DEG C BY SOLUBLE CERIUM COMPLEXES
N65-22

AUSTENITIC STAINLESS STEEL COLD WORKING EFFECTS ON STRESS CORROSION CRACKING IN HIGH TEMPERATURE SODIUM AND MAGNESIUM CLORIDE SOLUTIONS

A65-23936

KAMEMSHINE, J. A.
SLIDING CONTACTS IN ROLLER BEARINGS - WEAR TESTING
MACHINE AND LUBRICANT TESTING
N66-14463

CORRUSION RESISTANCE METALS AND COATINGS FOR PROTECTING CHEMICAL EQUIPMENT N65-26208

KANETZKY, W. G.
STRESS CORROSION INFLUENCE ON GLASS FIBER STRENGTH BMPR-3 N65-14228

STRESS CORROSION ON GLASS FIBER STRENGTH AT CRYOGENIC TEMPERATURE HMPR-4 N65-19022

KANNEL, J.

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED,
HEAVILY LOADED ROLLING CONTACTS - MEASUREMENT OF
DEFORMATION BY X-RAY TECHNIQUE
ASD-TDR-61-643, PT. V

N65-3050

KANUNNIKOVA, A. M.
PRODUCTION SPECIFICATIONS FOR HOT ROLLED THICK
TWO-LAYERED CORROSION RESISTANT STEEL SHEETS
N6-21

KARDOMOV, B. A.
DEFORMATION RESISTANCE OF HIGH STRENGTH AND
ANTICORROSION STEEL ALLOY CLADS DURING HOT
NO. N66-24253

KARLASHOV, A. V.

EFFECT OF CORROSIVE AND SURFACE ACTIVE MEDIA ON
FATIGUE STRENGTH OF ALUMINUM ALLOYS WIDELY USED IN
AIRCRAFT CONSTRUCTION

A66-25883

KARPE. S. A.

LOAD EFFECTS ON KINETIC FRICTION COEFFICIENT OF
MOLYBDENUM DISULFIDE POWDERS
ASLE PAPER 64-LC-21

A65-227

KARTASHEVSKIY, A. 1.

ANTIOXIDATION, ANTICORROSION, AND DETERGENT ADDITIVES FOR LUBRICATING OILS OBTAINED BY TREATING PRODUCTS OF OXIDATION OF PARAFFIN WITH PHOSPHORUS PENTASULFIDE

N65-224 N65-22440

KATKHANOV, M. N.
GRAPH-ANALYTICAL METHOD FOR DETERMINING EFFECT OF
FORCES OF DRY FRICTION IN BEARINGS ON OPERATION OF
GYROSCOPE SUSPENSION A65-30288

KATO, H. PHASE RELATIONS OF GADOLINIUM ALLOYS STUDIED FOR MECHANICAL AND CORROSION PROPERTIES BM-RI-6636 N65-26040

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS AD-453733

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS AD-625454

KAZARIN, V. I.

CORROSION RESISTANCE, ELECTROCHEMICAL AND
MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM—
A66 A66-20839

KAZMINA, YE. A.
FUEL OIL ADDITIVE WITH BARIUM NAPHTHENATE FOR WEAR
AND SCALE REDUCTION IN HIGH SPEED DIESEL ENGINE
FTD-TT-65-1125/164
N66-19561

KEDDY, E. S.
HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT TRANSFER RATE, LIFE TESTS, WORKING LIQUID SELECTION, ETC A66-1 A66-15544 KELLER, C. H., JR.

BEARING SELECTION FOR MAXIMUM TOTAL PRODUCT
PERFORMANCE
ASME PAPER 65-MD-51

A65-28639

KELLEY. B. W.

FAILURE POINT OF NONREACTIVE MINERAL OIL PREDICTED
BY BLOK CRITICAL TEMPERATURE HYPOTHESIS IN
ROLLING AND SLIDING CONTACT
ASLE PAPER 64-LC-13

A65-31719

KELLOGG, L. G.
HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING
HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING
FRICTION AND SURFACE FILM FORMATION BETWEEN DRY
LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS OF
METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR
DATA
ASLE PREPRINT 65AM 6A1

A65-2424:

HIGH TEMPERATURE AND VACUUM EFFECTS ON SLIDING FRICTION AND SURFACE FILM FORMATION BETWEEN DRY LUBRICATED AND NONLUBRICATED PAIR COMBINATIONS OF METALS, CARBON AND CERAMICS, NOTING SNAP REACTOR DATA ASLE PREPRINT 65AM 6A1

S NAP-8 REACTOR OSCILLATING BEARINGS TO PROVIDE LOW FRICTION SELF-LUBRICATION AT 1150 DEGREES F A66-30414

ULTRAHIGH-VACUUM FRICTION STUDIES OF SNAP REACTOR MATERIALS
NAA-SR-9644
N66-27134

KELLY. K. J.

CORROSION STUDIES OF REFRACTORY METAL ALLOYS IN

BOILING POTASSIUM AND LIQUID NA K

CNLM-6246 N66-2893

KELSEY. R. A.
STRESS CORROSION CRACKING OF HIGH STRENGTH
ALUMINUM ALLOYS
NASA-CR-74443
N66-23655

KEMME, J. E.
HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE
ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT
TRANSFER RATE, LIFE TESTS, WORKING LIQUID
SELECTION, ETC
A66-15544

KENAMAN, C. B.
STRESS CORROSION CRACKING OF VANADIUM, MOLYBDENUM,
AND TITANIUM-VANADIUM ALLOY IN HYDROCHLORIC
ACID AND SULFURIC ACID SOLUTIONS
BM-RI-6680 N66-10098

CORROSION PROPERTIES OF MOLYBDENUM, TUNGSTEN,
VANADIUM, AND SOME VANADIUM ALLOYS
BM-RI-6715
N66-16451

KERLINS, V.

ELECTRON MICROSCOPY APPLICATIONS TO FRACTURE
MECHANICS FOR DETERMINING CRACK PROPAGATION
DIRECTION, AND CHARACTERISTIC DIFFERENCES
BETWEEN STRESS CORROSION AND HYDROGEN
EMBRITTLEMENT
SM-49150
N66-22627

KERSCHNER, P. M.
BEST LUBRICANT CHARACTERISTICS OF ESTERS,
SILICONES AND FLUORINATED HYDROCARBONS COMBINED IN
NEW SYNTHETIC LUBRICANT A65-33627

KESTELMAN, N. YA.

MEAR RESISTANCE OF SLEEVE BEARINGS MADE FROM
POLYMERPOLYFORMALDEHYDE /PFA/
FTO-TT-65-329/16264 N65-33005

KESTELMAN, V. N.

MEAR RESISTANCE OF SLEEVE BEARINGS MADE FROM
POLYMERPOLYFORMALDEHYDE /PFA/
FTO-TT-65-329/16264

N65-33005

KETCHAM, S. J.

CHEMICAL MILLING EFFECT ON SUSCEPTIBILITY OF HIGH
STRENGTH STEELS TO HYDROGEN EMBRITTLEMENT AND
STRESS CORROSION CRACKING
NAEC-AML-2418

N66-29945

KETTLEBOROUGH, C. F.
INERTIA, TURBULENT AND VISCOUS TERMS COMPUTED FOR
SLIDER BEARING LUBRICATION, USING MATRIX ALGEBRA
METHODS
ASLE PAPER 64-LC-16
A65-3172

KEYS, N. V.
CORROSION RESISTANCE AND PLASTICITY OF STAINLESS
STEELS WITH ADDITIONS OF RARE EARTH METALS AND
OXIDES
N65-18737

KHALIL, S. E.
CORROSION RESISTANCE AND ANODIC BEHAVIOR OF
KHIB N9 STEELS WITH VARIOUS NICKEL-MANGANESECARBON-TITANIUM CONTENTS
A66-10987

KHANLAROVA, A. G.
CATHODIC POLARIZATION OF SPENT ZINC PAINT COATINGS
FOR INCREASED PROTECTION AGAINST SEA WATER
CORRUSION
N66-19189

KHANMAMEDOVA, M. R.
CATHODIC POLARIZATION OF SPENT ZINC PAINT COATINGS
FOR INCREASED PROTECTION AGAINST SEA WATER
CORROSION
1-424-R
N66-19189

KHARAKHASH, V. G.
CORRUSION RESISTANT POLYMERIC MATERIALS FOR USE AS PROTECTIVE COATINGS ON IRON AND STAINLESS STEEL SURFACES
JPRS-35452

N66-25284

KHAYKINA, S. E.
ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO
PREVENT ASH DEPOSITS AND VANADIUM CORROSION
N66-11130

KHEYFETS, YE. M.

EFFECTIVENESS OF ORGANO-MOLYBDENUM AND ORGANOSULFUR COMPOUNDS AS ANTIWEAR ADDITIVES TO
LUBRICATING OILS

N66-1108

KICHKIN, G. 1.

ADDITIVE EFFECT ON ANTIWEAR PROPERTIES OF JET FUELS

FTD-TT-64-937/1&2

N65-227

NEW METHOD OF EVALUATING EFFECTIVENESS OF ANTIABRASIVE PROPERTIES OF FUEL AND OIL ADDITIVES N66-11115

FRICTION MACHINE USED FOR EVALUATING EFFECTIVENESS
OF ACTION OF ANTI-SCORING ADMIXTURES TO DILS AND
FUELS
FUELS
FID-TT-65-1491/16264
N66-29690

KILLIAN, L. N.

CONTAMINATION OF JET FUEL SYSTEMS WITH MICROBIAL ENTITIES AND IMPLICATION OF MICROBIAL GROWTH IN CORROSION AND EQUIPMENT MALFUNCTION
ANRL-TR-65-30

N65-30866

KIMZEY, J. H.

LUBRICANT SELECTION FOR LUNAR MISSIONS AND MANNED
SPACECRAFT BASED ON COMPATIBILITY WITH OXYGEN-RICH
ENVIRONMENT, PROPELLANT, ANODIC COATINGS AND
SLIDING FRICTION BEHAVIOR IN VACUUM
ASLE PAPER 66AM 7A2

A66-30415

LUBRICANT SELECTION FOR APOLLO AND OTHER MANNED
SPACECRAFT - COMPATIBILITY CRITERIA
NASA-TM-X-58002
N66-2803

KING. W.

HIGH STRESS CORROSION RESISTANCE OF 7075- T73
ALUMINUM ALLOYS VERIFIED BY SOLUTION POTENTIAL AND
ELECTRIC CONDUCTIVITY MEASUREMENTS

A65-22215

STRESS CORROSION CRACKING OF HIGH STRENGTH
ALUMINUM ALLOYS
NASA-CR-74443
N66-23655

KINGSBURY, J. E.
NONSTRUCTURAL MATERIALS FOR SPACE UTILIZATION
INCLUDING LUBRICANTS, SLIDING ELECTRICAL CONTACTS
AND DIELECTRICS
A66-28006

DRY FILM LUBRICANT DEVELOPMENT AND PERFORMANCE COMPARISON WITH LIQUID LUBRICANTS

N66-17717

KIRCHNER, R. L.
HIGH THERMAL STRESS SALT CORROSION CRACKING OF
HIGH STRENGTH STEEL AND TITANIUM ALLOYS IN
PRESENCE OF STRESS CONCENTRATORS NASA-CR-57914

HIGH TEMPERATURE STRESS CORROSION OF TITANIUM AND TITANIUM ALLOYS NASA-CR-69851

N66-16193

KIRICHENKO, L. N.
FIRE RESISTANT LUBRICANT FOR TURBINES USING PHOSPHOROUS COMPOUNDS AS BASE FTD-TT-64-1291/1

N65-28723

STRESS CORROSION CRACKING FAILURE OF STAINLESS
STEEL AT HIGH TEMPERATURE A65-3: A65-33134

KTRKIN, G. M.

ALUMINUM ADDITIONS EFFECT ON TITANIUM CORROSION RESISTANCE AND ELECTROCHEMICAL CHARACTERISTICS WHEN IMMERSED IN SULFURIC ACID SOLUTIONS

CORROSION RESISTANCE OF TITANIUM AND ITS ALLOYS IN SOLUTIONS OF ACETIC AND NITRIC ACIDS AS AFFECTED BY ALUMINUM ADDITIONS A66-16608

KISHKIN, S. T.
STRESS CORROSION EFFECTS ON HEAT RESISTANT ALLOYS BY SODIUM CONTAINING ADMIXTURES FTD-TT-65-1050/16264

N66-18539

KLAMUT, C. J.
THEORY, TESTING, AND ANALYSIS OF LIQUID METAL
CORROSION — MERCURY AND PLUTONIUM LIQUID ALLOYS
NASA-TM-X-54722
N65-29

CHEMICAL ADSORPTION AND P-32 IMPURITIES
ASSOCIATED WITH TRICRESYL PHOSPHATE AS ANTIWEAR ASSUCIATED WITH INTEREST PHOSPINAL ADDITIVE FOR STUDY OF BEARING SURFACE ASLE PAPER 64-LC-2

PUBLICATIONS ON LUBRICATION COVERING FLUID FILM, METAL WORKING, AUTOMOTIVE, GEAR, BEARING, FRICTION AND WEAR

ASME PAPER 64-WA/LUB-1

A65-33853

GRONTH SUPPORT STUDIES OF SELECTED MICROORGANISMS
IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND
LIQUID ROCKET PROPELLANT
RTD-TDR-63-4117, PT. II
N66-24820 N66-24820

KLEINBERG, S.
LIQUID FLUORINE CORROSION OF METALS IN IMPURITYFREE DRY SYSTEM AND RESULTANT PRODUCTS, NOTING
EFFECT OF SURFACE CONTAMINANTS
A65-192 A65-19259

GRAPHITE LUBRICANT PHYSICAL AND CHEMICAL COMBINATIONS WITH OTHER MATERIALS FOR IMPROVED HIGH TEMPERATURE FRICTION AND WEAR, DISCUSSING NUCLEAR IRRADIATION FOR GRAPHITE LATTICE MODIFICATION A66-31933

CORROSION AND CORROSION HYDRIDING STUDIES FOR ZIRCONIUM ALLOYS EURATOM-2683-E N66-24419

KLIMOV, K. I.

NEW METHOD OF EVALUATING EFFECTIVENESS OF ANTIABRASIVE PROPERTIES OF FUEL AND OIL ADDITIVES N66-11115

FRICTION MACHINE USED FOR EVALUATING EFFECTIVENESS OF ACTION OF ANTI-SCORING ADMIXTURES TO OILS AND **FUELS**

FTD-TT-65-1491/16264

KLINGENSMITH, D. G.
MACHINING AND MACHINABILITY IMPROVEMENTS OF

STAINLESS STEEL ALLOYS PRESENTING COST. AVAILABILITY, LUBRICATION AND CORROSION RESISTANCE A65~26951

KLYUCHKO, G. V.
THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS
OF ANTIOXIDANT ADDITIVES IN LUBRICATING OILS -N66-1371

KNIAZHEVA, V. M.

CORROSION RESISTANCE AND ANODIC BEHAVIOR OF
KH18 N9 STEELS WITH VARIOUS NICKEL-MANGANESECARBON-TITANIUM CONTENTS
A66-1 A66-10987

KNIEFEL, R. M.

POLYCRYSTALLINE BE D NOTING STRESS CORROSION, FRACTOGRAPHY AND X-RAY ROCKING CURVES

A66-14933

KNOX. M. G.

PERFORMANCE OF GAS TURBINE SEAL LUBRICANTS AFAPL-TR-65-3 N65-30867

KOBER, E. H.
NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS -TETRAMERIC ARYL-1,1-DI-H-POLYFLUOROALKYL
PHOSPHONITRILATES AD-608144

N65-15846

N66-13754

KOBZOVA, R. I.

COMPARISON OF VARIOUS POLYORGANOSILOXANE LIQUIDS
FOR USE AS BASES IN HIGH TEMPERATURE CONSISTENT FTD-TT-65-322/16264

ORGANIC SILOXANE POLYMER LIQUIDS AS COMPONENTS OF HIGH TEMPERATURE LUBRICATING OILS FTD-TT-65-322/18284 N65-3594

SILICONE OIL STABILITY AND UXIDATION RESISTANCE ENHANCED BY CYCLOPENTADIENYL TRICARBONYL MANGANESE FTD-TT-65-520/164

KOCH, P.

PLASTIC ORIFICE FOR FLOW CONTROL DEVICE IN GAS
LUBRICATED BEARINGS - COMPUTER PROGRAMMING
N65-31

KOCHANOV, E. S.

VOLTAGE AND DENSITY OF CONTACT-CORROSION CURRENT ARISING AT CONTACT SURFACE OF DIFFERENT METALS

KOCHERGINA, D. G.
EFFECT OF TITANIUM ADDITIONS ON RESISTANCE OF
FERRITIC AUSTENITIC STEELS TO INTERCRYSTALLINE
CORROSION AFTER QUENCHING
A65-3; A65-32944

KOEHLING, A.

COULOMETRIC-POTENTIOSTATIC MEASUREMENTS OF ANODIC OXIDATION OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES

A65-22369

KOESTER, R. D.

NIOBIUM BASE ALLOY FOR USE AS CLADDING OR STRUCTURAL MATERIAL RESISTANT TO CORROSION BY SUPERHEATED STEAM BMI-1700 N65-19464

KOGAN, L. M.
HEXACHLOROCYCLOPENTADIENE USED AS ANTIWEAR
ADDITIVE TO LUBRICATING OILS
FTD-TT-65-795/18284

N66-19772

KOHN, E. J.
WEAR DURABILITY AND ABRASION RESISTANCE OF
POLYTETRAFLUORDETHYLENE COATINGS ON ELASTOMERIC NRL-6298

KOLESMICHENKO, L. F.
STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER
BOUNDARY FRICTION CONDITIONS IN PRESENCE OF SURFACE ACTIVE LUBRICANT ADDITIVES

A66-25884

- KOLOTYRKIN, M.
 CORROSION RESISTANCE AND ANODIC BEHAVIOR OF
 KH18 N9 STEELS WITH VARIOUS NICKEL-MANGANESECARBON-TITANIUM CONTENTS
 A66-10987
- KOLPASHNIKOV, A. I.
 INDIVIDUAL STRUCTURAL ELEMENTS CONNECTED INTO
 NONDETACHABLE STRUCTURES, USING SEIZING PHENOMENA,
 EXPERIMENTING WITH SINTERED ALUMINUM POWDER
 ELEMENTS
 A66-28197
- KOLTUNOVA, L. N.
 HYDROGEN PEROXIDE VAPOR DECOMPOSITION ON METAL
 SURFACES AND ROLE IN ATMOSPHERIC CORROSION
 INVESTIGATED BY PHOTOGRAPHIC AND OPTICAL
 POLARIZATION METHODS

 A65-20347
- KOMAI, K.
 TRAPEZOIDAL STRESS WAVEFORMS EFFECT ON LOW CYCLE
 CORROSION FATIGUE STRENGTH, CLARIFYING MECHANISM
 OF CORROSION FATIGUE
 A66-23845
- KOMAROV, B. I.

 DATA ON USE OF ANTICORROSIVE ADDITIVES IN RESIDUAL
 FUELS CONTAINING VANADIUM AND SULFUR
 N66-11131
- ROMASHINSKIY, B. A.

 REDUCTION OF MECHANICAL LOSSES DUE TO FRICTION IN
 SHAFT BEARINGS OF INSTRUMENTS BY FORCED MOTION OF
 OUTER RACES OF BALL BEARING

 A65-2554

REDUCTION OF FRICTION WITH FORCED ROTATION OF OUTER RACES OF BALL BEARINGS IN SUPPORTS OF INSTRUMENT SHAFTS N65-28269

- KOMOS, V. F.

 COMBUSTION AND DETONATION PHYSICS FOR MIXTURES

 OF LUBRICATING OILS AND OXYGEN

 FTD-TT-65-1106/18284

 N66-18553
- KONOMOVICH, S. A.
 CHLORIDEBENZYL QUINOLINE TO INCREASE CORROSION
 RESISTANCE OF IRON AND STEEL IN ACIDS
 FTD-TT-65-770/184
 N66-10787
- KONTOROVICH, V. P.

 EFFECT OF AGE AND WEAR ON RELIABILITY OF MEASURING
 DEVICE N65-24158
- KOROLEV, S. I.

 CORROSION RESISTANCE OF YTTRIUM IS HIGHER AT
 HIGHER P H BECAUSE OF SLOWER ANDDIC PROCESS
 A66-21747
- KOROTNENKO, V. P.

 EFFECTIVENESS OF ANTIWEAR ADDITIVE DURING
 PROLONGED OPERATION OF HIGH SPEED AND FORCED
 SHIP DIESEL ENGINES ON SULFUR BEARING FUELS AND
 DIIS

 N66-11126
- KOSTETSKII, B. I.
 STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER
 BOUNDARY FRICTION CONDITIONS IN PRESENCE OF
 SURFACE ACTIVE LUBRICANT ADDITIVES

 A66-25884

MECHANISM OF PLASTIC DEFORMATION IN CRYSTALLINE BODIES, DISCUSSING STATIC AND DYNAMIC FRICTIONAL FORCES IN RELATION TO DISLOCATION STRUCTURE OF BODIES IN CONTACT

A66-25887

- KOTENKO, A. F.
 LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES
 OF CERTAIN POLYAMIDES N66-22761
- KOVALENKO, V. S.
 CARBON STEEL CORROSION RESISTANCE IN WATER
 INCREASED BY IIRCONIUM ADDITION AFFECTING BOTH
 ANDDIC AND CATHODIC PROCESSES
 A65-23440
- KOWALSKI, Z.

 INFLUENCE OF THERMAL AFTERTREATMENT ON PROPERTIES

 OF POLYAMIDE COATING IN CORROSION PREVENTION

 N65-28277
- KOZHIN, V. M.
 CORROSION RESISTANT STAINLESS STEEL WITH BETTER

- MECHANICAL PROPERTIES FOR TROPICAL CLIMATE FTD-TT-65-487/1 N66-12509
- KOZIOL, J. J.

 CORRELATIONS BETHEEN SENSITIZATION AND STRESS
 CORROSION CRACKING OF 300 SERIES STAINLESS
 STEELS
 CEND-3256-250

 M66-275
- KRAGELSKII, I. V.

 BOOK ON FRICTION AND WEAR COVERING NATURE OF
 INTERACTION BETWEEN SOLID SURFACES, GENERAL
 CONCEPTS AND ENGINEERING AND DESIGN CALCULATIONS
 A66-13834
- KRAGHELSKY, 1. V.

 GEOMETRICAL AND MECHANICAL FACTORS AFFECTING RATE
 OF WEAR BY ELASTIC AND PLASTIC DEFORMATION AND
 MICROCUTTING
 ASME PAPER 64-WA/LUB-5
 A65-33852
- KRAWETZ, A. A.

 DIFFERENTIAL THERMAL ANALYSIS FOR STUDY OF THERMAL

 DECOMPOSITION OF ORGANIC LUBRICANT SYSTEM

 A66-31899
- KREUZ, K. L.
 HYDROCARBON BOUNDARY LUBRICATION OF HARD STEEL,
 RELATING FRICTION AND WEAR TO HYDROCARBON
 STRUCTURE AND OXYGEN CONCENTRATION
 ASLE PAPER 64-LC-4
 A65-18053
- KREYMA, S. E.
 SYNTHESIS, PRODUCTION, AND EFFECTIVENESS OF
 ANTIOXIDANT AND MULTIFUNCTIONAL ADDITIVES TO
 NATURAL AND SYNTHETIC FUEL OILS COLLECTION OF
 ARTICLES
 FTO-MT-64-213
 N66-110
- KRIEGER, R. J.

 M HD LUBRICATION FLOW IN THRUST BEARING, NOTING
 FLUID INERTIA EFFECT ON LOAD CAPACITY AND FLOW
 RATE
 ASME PAPER 66-LUBS-8

 A66-33181
- KRINKE, T. A.

 OPTIMUM WELDING CONDITION OF RESISTANCE SPOT
 WELDING OF TI ALLOY FOR SUPERSONIC AIRCRAFT
 STRUCTURES

 A65-33624
- KRIVOSHEYN, G. S.
 EFFECT OF LUBRICATING MATERIALS AND ADDITIVES ON
 PITTING FORMATION N66-11116
- KROTKY, J.
 AVIATION LUBRICATING OIL FOR JET AND TURBOPROP,
 NOTING REQUIREMENTS OF EACH SYSTEM
 A65-22234
- KRUEGER, R. H.

 MEASUREMENT OF FRICTION OF MATERIALS SLIDING IN

 JP-4 FLUID TO PREDICT PERFORMANCE OF HYDRAULIC
 PUMP

 A66-16136
- KRUPP, A. H.

 GALVANDSTATIC MEASUREMENTS OF DERIVATIVES OF
 METHANE, ETHANE AND PROPANE IN AQUEOUS
 ELECTROLYTES

 A65-22368
- KRUYS, P.
 THERMODYNAMICS OF TWO-PHASE FLOW, CORROSION AND
 OXIDATION, EMBRITTLEMENT IN STEELS FOR NUCLEAR
 REACTOR VESSELS, AND URANIUM OXIDE RESEARCH
 EUR-1840.E
- KU, P. M.

 LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF
 THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR
 BELOW AND ABOVE FILM MELTING POINT
 ASLE PAPER 64-LC-6

 A65-18054

WEAR AND GREASE LUBRICATION EFFECTS IN MATCHED AIRCRAFT SPLINE SPECIMENS SUBJECTED TO OSCILLATORY MOTION A66-30572

IMPACT SENSITIVITY TEST METHOD FOR LUBRICANTS IN CONTACT WITH LIQUID PROPELLANT AFAPL-TR-65-70 N66-1422 MOLYBDENUM DISULFIDE SOLID LUBRICANT PROPERTIES COMPRESSION, TENSION, TORSION, COHESION,
ADHESION, AND SLIDING FRICTION MEASUREMENTS
RS-460

AIRCRAFT LUBRICANT AND SELECTED SOLVENT TESTS FOR REMOVAL OF CARBONACEOUS DEPOSITS ON JET ENGINE BEARING AFAPL-TR-65-118

EFFECT OF HYDROCARBON ANTIOXIDANTS ON SPLINE WEAR WHEN OPERATING SUBMERGED IN MINERAL OIL

N66-26576

EFFECT OF AIRCRAFT GAS TURBINE ENGINE LUBRICANTS
AND SOLVENTS ON REMOVAL OF CARBONACEOUS DEPOSITS
AFAPL-TR-65-118
N66-31108

KUCHTA, J. M.
IGNITION TEMPERATURE CHARACTERISTICS OF AIRCRAFT
FUELS AND LUBRICANTS
AFAPL-TR-65-18

KUCZKOWSKI, T. J.

CRYSTAL STRUCTURE INFLUENCE ON FRICTION AND WEAR
OF TITANIUM AND TITANIUM ALLOYS IN VACUUM
NASA-TN-D-2671

N65-1745

KULBAKH, A. A.
ANTIFRICTION PROPERTIES OF CARBON AND GRAPHITE
MATERIALS IMPRECNATED WITH LIQUID METALS AND
ALLOYS WORKING IN DRY FRICTION CONDITIONS

ANTIFRICTION PROPERTIES OF IMPREGNATED MATERIALS
BASED ON GRAPHITE, WORKING IN DRY FRICTION
CONDITIONS
N65-36289

KULIYEV, A. M.

SYNTHESIS OF ORGANIC COMPOUNDS AS ADDITIVES TO LUBRICATING OILS FTD-TT-64-880/1 N65-19037

ADMIXTURE SYNTHESIS AND APPLICATION TO LUBRICATING DILS FOR QUALITY IMPROVEMENT FID-TT-64-860/162 N65-24415

SYNTHESIS OF SULFONATES OF ALKYL AROMATIC HYDROCARBONS FOR USE AS ADDITIVES TO DIESEL AND MOTOR LUBRICATING OILS

N66-11082

SYNTHESIS OF CHLORINE AND SULFUR AROMATIC HYDROCARBON ADDITIVES AND ANTIWEAR PROPERTIES OF ADDITIVES TO LUBRICANTS

N66-11092

KUMLEVA, L. A.

RADIATION EFFECT ON MINERAL OILS USED AS
DISPERSION MEDIA FOR PLASTIC LUBRICANTS
FTD-TT-65-1731/184

N66-28246

KURDYUMOV, A. V.

LOW CORROSION RESISTANCE OF IRON-ALUMINUM ALLOYS
IN FLUORINE ATMOSPHERE AT HIGH TEMPERATURE

N65-1341

KURITZA, O. M.
SUBLIMATION TECHNIQUE TO LUBRICATE SLIP RINGS IN
HIGH VACUUM
NASA-CR-75119
N66-26656

KUSAKOV, M. M.

RADIOACTIVE TRACER INVESTIGATION OF REACTION
MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH
COPPER FILMS IN HYDROCARBON LUBRICATING OIL
MEDIUM - FRICTION REDUCING ADDITIVES

N66-11106
KUSTER, E. C.
AIRCRAFT FUEL TANK COATING CORROSION RESISTANCE,
DISCUSSING POLYURETHANE AND EPDXY MATERIAL
CHARACTERISTICS AND APPLICATION

KUTEINIKOV, A. F.

POLARIZATION DURING ELECTROCHEMICAL PHASE ANALYSIS
OF POWDERED MATERIALS CONTAINING TUNGSTEN AND
TITANIUM CARBIDE

KUTKOV, A. A.
FRICTION REDUCTION AND MECHANICAL STRENGTH
DEPENDENCE ON METHOD OF APPLYING POLYAMIDE AND
POLYETHYLENE COATINGS TO MACHINE PARTS
N66-28856

KUZMA, D. C.

M HD PARALLEL PLATE SLIDER BEARING UNDER
NONUMIFORM MAGNETIC FIELD
ASME PAPER 64-WA/LUB-2
A65-33851

L

LACHENAUD, R.
FRICTION CORROSION CAUSED BY ALTERNATE PIVOTING OF
STEEL BALL ON PLANE OF LIGHT ALLOY
A66-27934

LADYZHENSKAYA, I. V.
ORGAND-PHOSPHORUS ANTIOXIDANT LUBRICATING OIL
ADDITIVES OBTAINED FROM REACTION OF PHOSPHORUS
PENTASULFIDES AND TERPENES IN PRESENCE OF
SULFURIC ACID

LAMB, J. P.

TURBULENT HYDRODYNAMIC LUBRICATION THEORIES AND
SOLUTION OF CONSTANTINESCU EQUATION FOR FINITE—
LENGTH JOURNAL BEARING
ASME PAPER 66-LUBS-11

LAMSON. E. R.
PROPERTY MEASUREMENTS AND CLASSIFICATION OF SOLID
LUBRICANTS
A65-1594

MILITARY SPECIFICATION FOR MULTIPURPOSE AERONAUTICAL LUBRICATING GREASE SAE PAPER 650817 A65-34831

LAMUERMEYER, D. J.

METALLURGICAL INVESTIGATION OF HYDROGEN PREHEATER
TUBE FAILURE - STRESS CORROSION, ZINC
CONTAMINATION, CRACK DETECTION, OVERHEATING
EFFECTS, AND FAILURE SIMULATION
RN-TM-0312
N66-29548

LANCASTER, J. K.

LUBRICATION BY CONTINUOUS TRANSFER OF SOLID FILMS,
EXAMINING LOAD CARRYING CAPACITY OF GRAPHITE AND
MOLYBDENUM DISULFIDE
ASLE PAPER 64-LC-19

A65-22792

LANDSMAN, D. A.
STRESS CORROSION OF IRRADIATED STAINLESS STEEL
AERE-R-5014 N66-15921

LANGLOIS, W. E.
FLUID FILM LUBRICATION THEORY DEVELOPED FROM
ASSUMPTION OF LOCAL WEDGE FLOW RATHER THAN LOCAL
PARALLEL CHANNEL FLOW
A65-23826

LAPATUKHIN, V. S.

CORROSION PROTECTION BY COLD PHOSPHATIZATION
METHOD OF COATING IRON AND STEEL
FSTC-HT-23-24-66
N66-27803

LARKIN, B. K.
FUEL-WATER AND OXIDIZER-WATER CORROSION IN
ALUMINUM CAPILLARIES OF FUEL AND OXIDIZER TANKS
DSR-S-11047
N65-35287
LASHKO. N. F.

SOLDER DISSOLUTION OF METAL BEING SOLDERED
N65-20203

SOLDER DISSOLUTION OF METAL BEING SOLDERED
N65-20203

LAMLER, C. W.
LOAD-CARRYING CAPACITY OF GEAR LUBRICANTS FROM
TESTS WITH HIGH TEMPERATURE GEAR MACHINE AND
INDUCTION HEATED GEARS
AFAPL-TR-65-23

LE BRET, P.
STRESS LEVEL FOR CRACK INITIATION AND PROPAGATION
AND DELAYED FAILURES IN STAINLESS STEEL USED FOR
BOLTS
A66-33442

A66-17491

- LE GRAND, R.
 ALUMINUM ALLOY CORROSION AND FRACTURE UNDER
 TENSION SHOWING RELATION TO INTERGRANULAR
 CORROSION A65-19790
- LE SURF, J. E.
 AMMONIA USED TO SUPPRESS OXYGEN PRODUCTION AND
 CORROSION IN BOILING WATER REACTOR
 AFCL-2562
 N66-28337
- LEACH, E. F.

 FAILURE POINT OF NONREACTIVE MINERAL OIL PREDICTED
 BY BLOK CRITICAL TEMPERATURE HYPOTHESIS IN
 ROLLING AND SLIDING CONTACT
 ASLE PAPER 64-LC-13

 A65-31719
- LEACH, P. B.
 SURFACE CHEMICAL METHODS OF DISPLACING WATER OR
 OIL AND SALVAGING FLOODED EQUIPMENT
 NRL-0291
 N65-33771
- LEBEDEVA, F. B.

 DETERGENT ACTION OF OIL ADDITIVES, INVESTIGATING SORPTION OF CHARGED PARTICLES ON CARBONACEOUS PRODUCTS OF FUEL COMBUSTION AND OIL OXIDATION ASLE PAPER 64-LC-9

 A65-18057

ELECTROKINETIC PROCESSES AND MECHANISM OF DISPERSION ACTION IN MOTOR OIL ADDITIVES DETERMINED BY RADIOACTIVE TRACERS

N66-11113

LEDERLE, H. F.
NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS
N65-14379

NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS -TETRAMERIC ARYL-1-1-DI-H-POLYFLUOROALKYL PHOSPHONITRILATES AD-608144 N65-15846

- LEE: R. E.: JR.

 LUBRICATION OF BEARINGS AND GEARS FOR HEAVILY

 LOADED LOW VELOCITY SPACE SIMULATOR

 AEDC-TR-65-19

 N65-19971
- LEIDHEISER, H., JR.
 CORROSION MECHANISMS WITH EMPHASIS ON PREVENTION,
 DESTRUCTIVE CATASTROPHIC CORROSION AND INDUSTRIAL
 PROBLEMS A65-22208
- LEIKINO A. E.
 TEXTBOOK ON CHARACTERISTICS OF PRINCIPAL METALLIC
 AND NONMETALLIC MATERIALS USED IN AIRCRAFT
 STRUCTURES
 A65-16908
- LELYUK. V. O.
 OIL OXIDATION EFFECT ON RUNNING-IN PROCESS OF
 RING-SOCKET PAIR IN INTERNAL COMBUSTION ENGINE
 FTD-TT-65-1039/1&2&4
- LENNOX, T. J., JR.
 CATHODE PROTECTION, METALLIC AND STRESS CORROSION
 RESEARCH, AND DEEP OCEAN TECHNOLOGY
 NRL-1574
 N65-27111

MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND TITANIUM ALLOY STRESS CORROSION, CATHODIC PROTECTION, CORROSION FATIGUE, AND ANTIFOULING PAINT FOR ALUMINUM ALLOYS NRL-MEMO-1634 N66-14232

LEONARDI, S. J.
OXIDATIVE AND DEPOSIT FORMING PROPERTIES OF HIGH
TEMPERATURE LUBRICANTS

ASD-TDR-62-222, PT. III N65-14144

OXIDATION RESISTANCE AND DEPOSIT FORMATION OF HIGH
TEMPERATURE LUBRICATING OIL
AFAPL-TR-65-85
N66-19474

LESTEY, A. M.
MOTION OF INTEGRATING GYROSCOPE WITH DRY FRICTION
N66-26104

LEVEILLE, A. R.
ROLLING FRICTION STUDIES OF INTERMETALLIC AND
ZIRCONIUM OXIDE FOR CONTROL SURFACE BEARINGS FOR
SPACE REENTRY VEHICLE

ASLE PAPER 66AM 5D4

A66-30413

SCREENING OF HIGH TEMPERATURE BEARING ELEMENTS
N65-31078

TEST RIG FOR RELIABILITY, DESIGN OF SLIDING FRICTION TEST SPECIMEN, AND CALIBRATION TECHNIQUE - HIGH TEMPERATURE BEARING ELEMENTS INVESTIGATION N65-31079 PR-2

- LEVIN, A. N.

 ALUMINUM POWDER, TALCUM, GRAPHITE, AND MOLYBDENUM
 DISULFIDE ADDITIONS TO POLYCAPROLACTUM COATINGS
 FOR IMPROVED ADHESION AND FRICTION PROPERTIES OF
 METAL JOINTS
 FTD-TT-65-986/16264

 N66-1851
- LEVIN. I. A.

 EFFECT OF TITANIUM ADDITIONS ON RESISTANCE OF
 FERRITIC AUSTENITIC STEELS TO INTERCRYSTALLINE
 CORROSION AFTER QUENCHING

 A65-32944
- LEVINSON, G. 1.

 DATA ON USE OF ANTICORROSIVE ADDITIVES IN RESIDUAL FUELS CONTAINING VANADIUM AND SULFUR
 N66-11131
- LEWIS. P.
 SPACE ENVIRONMENT SIMULATION TEST EQUIPMENT FOR
 EVALUATING FLUID LUBRICANTS AND LUBRICATING
 SYSTEMS
 A65-23512

BALL BEARING LIFE OPERATING IN VACUUM WITH MOLYBDENUM DISULFIDE AND OILS AS LUBRICANT ASLE PAPER 66AM 7A3

BALL BEARING LIFE TESTS IN VACUUM USING MOLYBDENUM SULFIDE SOLID FILMS WITH HIGH VACUUM OILS AS LUBRICANTS NASA-CR-71695

LIFKA, B. W.
HIGH STRESS CORROSION RESISTANCE OF 7075- 173
ALUMINUM ALLOYS VERIFIED BY SOLUTION POTENTIAL AND
ELECTRIC CONDUCTIVITY MEASUREMENTS

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS

N65-143:
AD-453733

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS

N66-18520

STRESS CORROSION CRACKING OF HIGH STRENGTH
ALUMINUM ALLOYS
NASA-CR-74443
N66-23655

- LINDGREN. E. R.
 FRICTION REDUCTION EFFECTS ON TURBULENT FLOWS IN
 DISTILLED WATER BY DILUTE ADDITIVE OF HIGH
 MOLECULAR WEIGHT POLYETHYLENE OXIDE
 TR-1
 N66-10777
- LINDSAY, W. T., JR.

 CORROSION FILM ON INCONEL AND AISI 304 STAINLESS
 STEEL INVESTIGATION WITH SCANNING ELECTRON
 MICROSCOPE AND SPINNING SOURCE MASS SPECTROGRAPH
 MICROPROBE
 WERL-1114-1
- LING. F. F.
 FRICTION COEFFICIENTS AND LUBRICATION FOR EXTREME
 PRESSURE METAL WORKING
 MTI-65TR59
 N66-1919

FRICTIONAL BEHAVIOR AND LUBRICATION OF METALS IN
HOT METAL DEFORMATION
N66-25854

SURFACE TEMPERATURES AT SLIDING INTERFACES IN VACUA AND METAL ADHESION, AND FRICTION AND WEAR APPARATUS
ML-TDR-64-97
N66-27676

N65-31079

A66-25779

LINGWALL, R. G.
HIGH TEMPERATURE STRESS CORROSION OF TITANIUM AND
TITANIUM ALLOYS
NASA-CR-69851
N66-16193

LIPP, L. C.

GRAPHITE LUBRICANT PHYSICAL AND CHEMICAL
COMBINATIONS WITH OTHER MATERIALS FOR IMPROVED
HIGH TEMPERATURE FRICTION AND WEAR, DISCUSSING
NUCLEAR IRRADIATION FOR GRAPHITE LATTICE
MODIFICATION

A66-31933

LIPSHTEYN, R. A.

DETERMINATION OF WORKING PROPERTIES OF INHIBITED
INSULATING TRANSFORMER DILS

N66-11118

ADDITIVES TO LIQUID FUELS FOR GAS TURBINES TO PREVENT ASH DEPOSITS AND VANADIUM CORROSION
N66-11130

OIL ADDITIVE TO SUPPRESS VANADIUM FUEL CORROSION TETRAETHOXYSILANE
FTD-TT-65-505/1&4
N66-12831

ADDITIVE FOR SUPPRESSING VANADIUM CORROSION OF FUELS FTD-TT-65-505/184 N66-29818

LISTOY, V. A.

EFFECTIVENESS OF ORGANO-MOLYBDENUM AND ORGANOSULFUR COMPOUNDS AS ANTIWEAR ADDITIVES TO
LUBRICATING OILS

N66-11085

OXYGEN EFFECTS ON CORROSION OF NIOBIUM BY LIQUID POTASSIUM ORNL-3751

LITTLE, R. C.
PHYSICAL PROPERTIES OF METAL SOAP OIL SYSTEM
BEHAVIOR
NRL-6361
N66-22765

LOCKHART, R. W.
MASS TRANSFER AND CORROSION RATES OF MATERIALS IN
FLOWING SODIUM
N66-24268

STRESS CORROSION CRACKING CAUSED BY ELECTROCHEMICAL DISSOLUTION, ALLOYING AND HYDROGEN EMBRITTLEMENT OF STEELS IN SOLUTIONS AND LIQUID METALS

A65-15126

STRESS CORROSION TESTING TO EVALUATE MATERIALS FOR SPECIFIC APPLICATION A66-29723

STRESS CORROSION PROPERTIES OF 12 PERCENT NICKEL
MARAGING STEEL WELDMENTS IN MARINE ENVIRONMENTS
S-23309
N65-30915

LONDON, S. A.

CONTAMINATION OF JET FUEL SYSTEMS WITH MICROBIAL
ENTITIES AND IMPLICATION OF MICROBIAL GROWTH IN
CORROSION AND EQUIPMENT MALFUNCTION
AMRL-TR-65-30

N65-30860

LONGFIELD, M. D.
FRICTIONAL TORQUE MEASUREMENTS IN
ELASTOHYDRODYNAMIC LUBRICATION
MTI-641R63

N65-21445

FRICTION AND WEAR OF FIVE BEARING-RETAINER
MATERIALS, AND THERMAL STABILITY AND LIQUID
COMPATIBILITY OF POLYPHENYL ETHER LUBRICANTS
FOR SNAP SPACE POWER GENERATOR
NASA-TN-D-2663
N65-17328

LORKING, K. F.
ALLOYING ELEMENTS EFFECT ON ALUMINUM CORROSION
OVER WIDE P H RANGE IN WATER, ALKALI AND 0.1 N
SOLUTIONS OF ANIONS
A66-31392

MECHANISMS OF CORROSION PROCESSES ON ALUMINUM -CORROSION WEIGHT LOSSES, OXIDE FILM THICKNESS DETERMINATION AND ELECTROCHEMICAL MEASUREMENTS ARL/MET-54 N65-22059 LOUTHAN, M. R., JR.
MICROSTRUCTURE AND DISLOCATION SUBSTRUCTURE
RELATION TO STRESS CORROSION CRACKING
SUSCEPTIBILITY IN AUSTENITIC STAINLESS STEEL
DP-957
N65-20710

HOT SALT STRESS CORROSION CRACKING IN TITANIUM ALLOYS — CHLORIDE CORROSION ROLE DETERMINATION USING CHLORINE ISOTOPES AND RELATION BETWEEN CRACK MORPHOLOGY AND ALLOY STRUCTURE NASA-CR-60194 N65-23708

STRESS CORROSION RUPTURING OF TITANIUM ALLOY FRACTURE MECHANICS
NASA-CR-67710
N66-10876

MICROSTRUCTURE AND SUBSTRUCTURE DISLOCATION IN STRESS CORROSION CRACKING OF AUSTENITIC STAINLESS STEEL DP-957 N66-18773

LOVRECEK, 8.

ANODIC DISSOLUTION OF N-TYPE GE STUDIED,
CONSTRUCTING POTENTIAL VS CURRENT DIAGRAM IN BROAD
CURRENT DENSITY RANGE
A65-30552

LUDEMA, K. C.
FRICTIONAL AND VISCOELASTIC PROPERTIES OF PLASTICS
AND RUBBER SHOW RELATIONSHIP TO SLIDING SPEED AND
TEMPERATURE
ASME PAPER 65-LUB-15
A66-14247

LUDWIG, H. R.

ROLLING FRICTION STUDIES OF INTERMETALLIC AND
ZIRCONIUM OXIDE FOR CONTROL SURFACE BEARINGS FOR
SPACE REENTRY VEHICLE
ASLE PAPER 66AM 5D4

SCREENING OF HIGH TEMPERATURE BEARING ELEMENTS
PR-3
N65-31078

TEST RIG FOR RELIABILITY, DESIGN OF SLIDING FRICTION TEST SPECIMEN, AND CALIBRATION TECHNIQUE - HIGH TEMPERATURE BEARING ELEMENTS INVESTIGATION PR-2

LUND, C. H.
COMPOSITE CASTING AS METALLURGICAL BONDING
TECHNIQUE, NOTING APPLICATION TO WEIGHT REDUCTION
AND INCREASE OF CORROSION RESISTANCE

LUNEVA. V. S.

COMPARISON OF POTENTIOMETRIC AND INDICATOR
TITRATIONS FOR ACID-ALKALINE PROPERTIES OF OILS
WITH ADDITIONS

A65-14877

LUPTON, T. C.

MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND TITANIUM ALLOY STRESS CORROSION, CATHODIC PROTECTION, CORROSION FATIGUE, AND ANTIFOULING PAINT FOR ALUMINUM ALLOYS

NRL-MEMO-1634

N66-14232

AQUEOUS ENVIRONMENT EFFECTS ON HIGH STRESS LOW-CYCLE FATIGUE OF 18 PERCENT NICKEL MARAGING STEELS NRL-MEMO-1685 N66-27661

LURYE, G. B.

DETERMINATION OF FRICTION IN SLIDE GUIDES,
ANTIFRICTION PROPERTIES OF MATERIALS USED FOR
STRAP GUIDES, AND FRICTION COEFFICIENT DEPENDING
ON DURATION OF CONTACT AND SLIDING SPEED
FTD-TT-64-1179/162
N65-28504

LUZHETSKIY, A. A.
CHEMICAL KINETIC MECHANISMS IN OXIDATION RESISTANT
ADDITIVES TO LUBRICATING OILS
N66-11110

DETERMINATION OF WORKING PROPERTIES OF INHIBITED INSULATING TRANSFORMER OILS N66-11118

LYON, T. F.

POTASSIUM CORROSION TEST LOOP DEVELOPMENT HELIUM ANALYSIS SYSTEM TO MEASURE IMPURITIES IN
VACUUM PURGED, INERT GAS WELDING CHAMBER
NASA-CR-54168
N66-13015

LYUBIMOV. V. N.

CORROSION RESISTANCE AND PLASTICITY OF STAINLESS
STEELS WITH ADDITIONS OF RARE EARTH METALS AND
OXIDES

N65-18737

W

MABIE. H. H.

DRY AND FLUID LUBRICATION EFFECTS ON INSTRUMENT
BALL BEARING TORQUES AT HIGH SPEED

A65-26662

MAC PHERSON, R. E.
S NAP-8 CORROSION PROGRAM - HYDROGEN SOLUBILITY IN
SODIUM-POTASSIUM, PERMEABILITY OF HYDROGEN AND
DEUTERUM THROUGH STAINLESS STEEL, AND PHASE
EQUILIBRIA
NASA-CR-63196
N65-25409

DIFFERENCES IN CORROSION AND MASS TRANSFER RATES
IN CORROSION LOOPS FOR SNAP-8 SYSTEM AND
EFFECTIVENESS OF COLD TRAPPING IN REDUCING
HYDROGEN CONCENTRATION
NASA-CR-67272
N66-22205

FORCED FLOW CORROSION-LOOP EXPERIMENTS AND CORROSION-LOOP MATERIAL STUDIES IN SNAP-8 CORROSION PROGRAM NASA-CR-76382 N66-30971

MACKAWA, T.

AUSTENITIC STAINLESS STEEL COLD WORKING EFFECTS ON
STRESS CORROSION CRACKING IN HIGH TEMPERATURE
SODIUM AND MAGNESIUM CLORIDE SOLUTIONS
A65-23936

MAGIE, P. M.
HEAVY METAL DERIVATIVE SOLID LUBRICANTS,
PROPERTIES AND APPLICATION
ASLE PAPER 66AM 2B3

MAGUIRE, M.
SOLID FILM LUBRICATED BEARINGS - SOLID LUBRICANTS
AND BEARINGS EVALUATION
PMA-2354
N65-16124

A66-30406

MAKEYEVA, YE. D.
RADIATION EFFECT ON MINERAL DILS USED AS
DISPERSION MEDIA FOR PLASTIC LUBRICANTS
FTD-TT-65-1731/1&4
N66-28246

MAKHMUDOV, D. S.
ALUMINUM POWDER, TALCUM, GRAPHITE, AND MOLYBDENUM
DISULFIDE ADDITIONS TO POLYCAPROLACTUM COATINGS
FOR IMPROVED ADHESION AND FRICTION PROPERTIES OF
METAL JOINTS
FTO-TT-65-986/18284
N66-18514

MAKRIDES, A. C.
POTENTIOSTATIC AND CORROSION RESISTANCE TESTS FOR
METALLIC INGOTS PREPARED AS ROTATING DISK
ELECTRODES - CATHODIC ELECTROCATALYSTS FOR USE
IN LOW TEMPERATURE HYDROGEN-OXYGEN FUEL CELLS
NASA-CR-68891 N66-1399

CATHODIC ELECTROCATALYSTS FOR USE IN LOW TEMPERATURE HYDROGEN-DXYGEN FUEL CELLS WITH AN ALKALINE ELECTROLYTE-CORROSION RESISTANCE AND ACTIVITY TESTING OF MATERIALS AND ELEMENTS NASA-CR-70930 N66-24550

METAL, ALLDY, AND METAL COMPOUND TESTING FOR CORROSION RESISTANCE AND ACTIVITY AS OXYGEN ELECTRODES FOR HYDROX FUEL CELL WITH ALKALINE ELECTROLYTE
NASA-CR-75199
N66-26759

MAMEDOV, M. A.
SYNTHESIS OF SULFONATES OF ALKYL AROMATIC
HYDROCARBONS FOR USE AS ADDITIVES TO DIESEL AND
MOTOR LUBRICATING OILS
N66-11082

MANN, T. K., JR.

TURBULENT HYDRODYNAMIC LUBRICATION THEORIES AND
SOLUTION OF CONSTANTINESCU EQUATION FOR FINITELENGTH JOURNAL BEARING
ASME PAPER 66-LUBS-11

A66-3318

MANUILOV, V. F.
SEIZING EFFECT AT INTERFACES SAP-SAP AND SAPAL, NOTING OPTIMUM THERMOMECHANICAL CONDITIONS
A66-28196

INDIVIDUAL STRUCTURAL ELEMENTS CONNECTED INTO NONDETACHABLE STRUCTURES, USING SEIZING PHENOMENA, EXPERIMENTING WITH SINTERED ALUMINUM POWDER LEMENTS A66-28197

MARBLE, J. D.
ULTRASONIC INSPECTION OF ANTIFRICTION BEARINGS
AD-454013
N65-19727

MARINI. N.
ELASTIC SLIPPING AND FRICTION COUPLINGS BETWEEN
ROLLERS OF VARIOUS MATERIALS

N65-24640

MARSHAKOV, I. K.
CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC
MG- ZN ALLOYS IN HALIDE SOLUTION
A66-2602

MARSHALL, A. W.
STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR
COMPONENTS AND SYSTEMS
D1-82-0460
N66-25768

MARTENS, C. R.
PROTECTIVE CONVERSION COATING DEVELOPED TO
INCREASE CORROSION RESISTANCE IN WHITE PRIMER,
AND TO WITHSTAND TESTING IN SALT SPRAY
ATMOSPHERE
NASA-CR-76638
N66-32137

MARTIN, G.

AIRCRAFT MATERIALS STRESS CORROSION AT HIGH
TEMPERATURE DISCUSSING TEST AND RESULTS ON
TITANIUM ALLOYS, PRECIPITATION HARDENING STEELS
AND SUPERALLOYS

A66-12299

MARTIN, H. F.
GROWTH SUPPORT STUDIES OF SELECTED MICROORGANISMS
IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND
LIQUID ROCKET PROPELLANT
RTD-TDR-63-4117, PT. II N66-24820

MARTIN, P., JR.
TEST METHOD FOR STORAGE DEGRADATION OF VOLATILE
CORROSION PREVENTING PAPER
RIA-65-3105
N66-2131

MARTYNOV, V. M.
ELASTICITY OF SATURATED VAPORS FROM LUBRICATING
OILS AND GREASES
FID-T1-65-1063/18284
N66-1865

MARUMO, H.

TEST RIG FOR GAS-LUBRICATED JOURNAL BEARINGS
MEASURING FRICTIONAL TORQUE, GAS FILM PRESSURE
DISTRIBUTION, STATIC AND DYNAMIC ECCENTRICITY
CHANGES. ETC

A66-24929

MASHKOVICH, L. A.

POLARIZATION DURING ELECTROCHEMICAL PHASE ANALYSIS

OF POWDERED MATERIALS CONTAINING TUNGSTEN AND

TITANIUM CARBIDE

A65-17805

MASLOVA, T. P.
POLARIZATION DURING ELECTROCHEMICAL PHASE ANALYSIS
OF POWDERED MATERIALS CONTAINING TUNGSTEN AND
TITANIUM CARBIDE
A65-17805

MATHES, K. N.
INSULATION RESISTANCE OF SPACECRAFT WIRING AGAINST
ABRASION, RADIATION EFFECTS, DXYGEN ENVIRONMENT,
AND EXTRUSION LUBRICANTS
NASA-CR-65233
N66-18181

MATSON, L. K.
GAS SPARGE CORROSION PROTECTION FOR HYDROFLUORIC
SALT CONTAINER
BMI-X-329
N66-1822

MATSUI, E. S.
IMPROVED TECHNIQUE OF DETERMINING METAL CORROSION
RATE BY WEIGHT LOSS
R-341
N65-18075

MATT, R. J.
JET OIL LUBRICATION AND SCAVENGING TECHNIQUE FOR
20 MM HIGH SPEED BALL BEARING
ASLE PAPER 66AM 184
A66-3060

MATTOX, D. M.

ION PLATING OF ALUMINUM THIN FILMS ON URANIUM FOR CORROSION PREVENTION - PROTECTIVE COATINGS SC-DR-65-519

N66-13189

CORROSION PROTECTION OF REACTOR PARTS BY ION
PLATED COATING OF ALUMINUM
SC-DR-65-530 N66-15554

MATVEEVA, T. V.

CORRUSION OF RHENIUM IN VARIOUS ACIDS AND
HYDROXIDES IS ELECTROCHEMICAL IN NATURE AND
DETERMINED BY KINETICS OF ANODIC AND CATHODIC
PRUCESSES INVOLVED

A66-21748

MAURICE, M.
SURFACE TREATMENT EFFECT ON STAINLESS AND CARBON
STEEL CORRUSION IN HIGH TEMPERATURE WATER AND
STEAM - AUTOCLAYE TESTS
EURAEC-1038
N65-23867

MAYU, T. J.

CHRDMATOGRAPHY FOR CORROSIVE GAS ANALYSIS

KY-485

N65-32849

MC COOL, J. I.
INFLUENCE OF LUBRICATION ON ENDURANCE OF ROLLING
CONTACTS
AL641057
N65-1405

SLIDING CONTACTS IN ROLLER BEARINGS - WEAR TESTING MACHINE AND LUBRICANT TESTING AL65L081

MC DANIEL, R. H.

NUCLEAR REACTOR RADIATION EFFECT ON HIGH
TEMPERATURE SOLID FILM LUBRICANTS
FZK-212

N65-22421

MC DONALD, J. E.

100 PLATING OF ALUMINUM THIN FILMS ON URANIUM FOR
CORROSION PREVENTION - PROTECTIVE COATINGS
SC-DR-65-519
N66-13189

MC HARDY, J.
MECHANISM OF STRESS CORROSION OF ALUMINUM ALLOYS
UR-3
N65-16667

MC KANNAN, E. C.
DRY FILM LUBRICANT DEVELOPMENT AND PERFORMANCE
CUMPARISUN WITH LIQUID LUBRICANTS

N66-17717 MC KIBBEN, J. M.

EQUIPMENT CORROSION IN HEAVY WATER COMPONENTS TEST REACTOR
DP-964
N65-29234

DIFFUSION OF ELECTROLYTIC HYDROGEN THROUGH
MEMBRANES OF IRON CRYSTALS AS FUNCTION OF STRESS,
TEMPERATURE AND DISSOLVED HYDROGEN CONCENTRATION
A66-23071

MCCAIN, J. W.
DISENGAGING GEAR LUBRICATION THROUGH HEAT
DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET
LUBRICANT
ASLE PREPRINT 65-LC-16
A66-1225

DISENGAGING GEAR LUBRICATION THROUGH HEAT
DISSIPATION AS FACTOR IN RYDER RATING OF ROCKET
LUBRICANT
ASLE PREPRINT 65-LC-16
A66-30574

MCCARTNEY, R. J.
PROPERTY MEASUREMENTS AND CLASSIFICATION OF SOLID
LUBRICANTS
A65-15941

MCCOOL, J. I.
LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC
RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING
CONFIGURATION FOR MINERAL OILS AND ESTERS

ASLE PREPRINT 65AM 4A4

A65-24250

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL OILS AND ESTERS

A66-18292

MCDANIEL, R. H.

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE
EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR
AEROSPACE APPLICATION
ASLE PREPRINT 65AM 5C4

A65-24248

GAMMA RAY AND NEUTRON IRRADIATION AND TEMPERATURE EFFECTS ON WEAR-LIFE OF SOLID LUBRICANTS FOR AEROSPACE APPLICATION ASLE PREPRINT 65AM 5C4

MCHUGH, J. D.

DIAMAGNETIC, SUPERCONDUCTING, ELECTROSTATIC AND
FREELY AND PARTIALLY SUSPENDED MAGNETIC BEARINGS
A65-14746

MCHUGH, K. L.

AIRCRAFT TURBINE LUBRICANT TECHNOLOGY FOR HIGH
MACH NUMBER ENGINES ESPECIALLY SST, NOTING
STABILITY, AUTOIGNITION, COKING, TOXICITY, ETC
SAE PAPER 660071

A66-20156

MCKANNAN, E. C.
NONSTRUCTURAL MATERIALS FOR SPACE UTILIZATION
INCLUDING LUBRICANTS, SLIDING ELECTRICAL CONTACTS
AND DIELECTRICS
AND DIELECTRICS

MEADE, F. S.

RESIN BONDED SOLID FILM LUBRICANT EFFECTIVENESS
AND CORROSION PROTECTION STUDY RESTRICTED TO STEEL
SURFACES

A65-20033

WEAR LIFE AND CORROSION PROTECTION OF SOLID FILM LUBRICANTS IMPROVED THROUGH SUBSTITUTING OTHER LUBRICATIVE PIGMENTS FOR GRAPHITE ASLE PAPER 66AM 1C3 A66-30405

FACTORS INFLUENCING CORROSION PROTECTION PROVIDED BY SOLID FILM LUBRICANT COATINGS RIA-65-3380

MEANDROY, L. V.

CORROSION RESISTANCE, FATIGUE STRENGTH, AND
ENGINEERING PROCESSES IN MANUFACTURING OF CLAD
STAINLESS STEELS
JPRS-32087

N65-3288

MEANS. H.
BRAYTON CYCLE TURBONACHINERY ROLLING ELEMENT
BEARING SYSTEM
NASA-CR-54785
N66-140

MEIKLE, G.

HEAT TREATMENT VARIATIONS OF ALUMINUM ALLOYS TO
STUDY ATMOSPHERIC STRESS CORROSION
RAE-MET-PHYS-96

N65-24010

MELBOURNE, S. H.

ELECTROCHEMICAL AND METALLOGRAPHIC FEATURES
ASSOCIATED WITH CORROSION RESISTANCE OF NICKELCHROMIUM PROTECTIVE COATINGS, NOTING CATHODE
POLARIZATION
A65-32167

MELENTYEVA, N. V.
DIALKYLDITHIOPHOSPHATES WITH SECONDARY
HYDRUCARBON RADICALS AS ANTIOXIDANT ADDITIVES
FOR LUBRICATING OILS
N66-11087

MELNIKOV, A. F.
DEFORMATION RESISTANCE OF HIGH STRENGTH AND
ANTICORROSION STEEL ALLOY CLADS DURING HOT
FORMING
N66-24253

MENDELEVICH, A. IU.

PATTERN-CONFORMING CRACKING OF DXIDE FILM ON
ALUMINUM DURING HIGH TEMPERATURE OXIDATION MAY
BE CAUSE OF DECREASE IN CORROSION RESISTANCE

MERKURYEV, A. N.

ORGANIC AND INORGANIC MEDIA COMPOSITION EFFECTS
ON METAL EROSION N66-26154

- MESSINA. J.
 SEMIFLUID GREASE AND OIL BLEND LUBRICANT
 EVALUATION FOR M61 RAPID FIRE MACHINE GUN IN
 TERMS OF ANTIWEAR AND EXTREME PRESSURE PROPERTIES
 A65-1789
- METCALFE, A. G.
 STRESS CORROSION ON E GLASS FIBERS EXPOSED TO
 WATER VAPOR
 A66-23120
- PREVENTION OF WATER VAPOR CORROSION OF URANIUM
 BY DXYGEN AND PROTECTIVE COATINGS
 ANRE-0-42/65
 N66-13178
- MIELNIKOMA, 8.
 SYNTHETIC OILS FOR TURBINE ENGINES AND AIRCRAFT
 LUBRICATION
 FTD-TT-64-117/162
 N65-27856
- MIMAIL. A.
 CORROSION PROTECTION FOR REACTOR ROTATING
 ASSEMBLIES COVERING REQUIREMENTS, COATING TESTS
 AND MATERIALS
 A65-1616
- MIKHAILOVSKII, IU. N.
 ELECTROCHEMICAL AND CORROSION BEHAVIOR OF TITANIUM
 IN SULFURIC ACID AND HYDROCHLORIC ACID SOLUTIONS
 DURING SQUARE WAVE AC POLARIZATION

 A65-20349
- MIKHELSON, A. YA.

 DETERMINATION OF WORKING PROPERTIES OF INHIBITED
 INSULATING TRANSFORMER OILS

 N66-11118
- MILFORD, R. P.
 HYDROFLUDRINATOR CORROSION RATE DETERMINATION
 DURING FUEL PROCESSING RUNS WITH ZIRCONIUMURANIUM ALLOY
 ORNL-3623
 N65-18428
- MILLER. P. D.

 CORROSION OF MATERIALS BY ETHYLENE GLYCOL-WATER
 DMIC-216

 N65-29914

GAS SPARGE CORROSION PROTECTION FOR HYDROFLUORIC SALT CONTAINER BMI-X-329 N66-18224

- MILLER, S. T.

 MEASURING APPARATUS FOR STUDYING BALL BEARING
 SPINNING FRICTION
 NASA-TN-D-2796
 N65-23819
- MINDLIN, I. M.
 STABILITY OF MOTION OF GYROSCOPE ON HORIZONTAL
 PLANE UNDER DRY SLIDING FRICTION ACTIVITY
 N65-28052
- MINUSHKIN, 8.

 SODIUM TECHNOLOGY AS RELATED TO NUCLEAR REACTOR
 TECHNOLOGY MATERIALS SCIENCE, CORROSION,
 PURITY CONTROL, OPERATIONS, HEAT TRANSFER, AND
 THERMAL CYCLING
 N66-1740
- MITCHELL, R. M. S.

 SURFACE TEMPERATURE AND CORROSION IN AIR AND WATER
 COOLED TURBOCHARGERS OF MARINE DIESEL ENGINE
 TDCK-44575

 N66-25815
- MITROFANOV. M. G.

 LOW-FREEZING-POINT OIL PREPARATION BY EXTRACTING PARAFFINS FROM PETROLEUM DISTILLATES WITH CARBAMIDE FTO-TT-65-1509/1&4 N66-28277
- MIYAKAWA, Y.
 SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR
 VARIOUS LOADS, SPEEDS AND LUBRICANTS
 ASLE PREPRINT 65AM 6A2
 A65-24258

SURFACE ROUGHNESS EFFECT ON BOUNDARY FRICTION FOR VARIOUS LOADS, SPEEDS AND LUBRICANTS ASLE PREPRINT 65 AM 6AZ A66-25367

MOBERLY, L. E.
ELECTRICAL SLIDING CONTACT LUBRICATION BY NIOBIUM
DISELENIDE COMPARED WITH MOLYBDENUM DISULFIDE FUR
SPACE APPLICATION
A65-3109

- MODESTOVA, V. N.
 SURFACE HYDRIDE CORROSION FILM EFFECT ON
 ELECTRULYTIC CORROSION AND OXIDATION OF TITANIUM
 A66-20841
- MONASTYRSKIY, V. N.

SYNTHESIS, PRODUCTION, AND EFFECTIVENESS OF ANTIOXIDANT AND MULTIFUNCTIONAL ADDITIVES TO NATURAL AND SYNTHETIC FUEL OILS - COLLECTION OF ARTICLES

N66-110*
TD-MT-64-213

N66-110*

SYNTHESIS, PRODUCTION TECHNOLOGY, AND TEST OF BARIUM ALKYLPHENOLATE, ZINC DIALKYLPHENYLDITHIO PHOSPHATE, AND DIAKYLPHENYLDITHIOPHOSPHORIC ACID FOR MULTICOMPONENT ADDITIVES TO LUBRICANTS N66-11094

- MONIZ, W. B.

 NUCLEAR MAGNETIC RESUNANCE SPECTROSCUPIC ANALYSIS

 OF MIXED PENTAERYTHRITOL, DIPENTAERYTHRITOL, AND

 TRIMETHYLOLPROPANE ESTERS

 NRI -6307

 N66-15016
- MOORE, A. J. M.
 BUILDUP OF MOLYBDENUM DISULFIDE FILMS ON CUPPER
 SURFACE, EXAMINING BURNISHING PROCESS AND EFFECTS
 UF LUAD AND HUMIDITY CONDITIONS

 A65-1568
- MOORE, 8. B.

 EFFECT OF FINELY DIVIDED MATERIALS ON POLYDIMETHYL
 SILICONE DIL FILLER REINFORCEMENT IN SILICUNE
 LIQUID POLYMERS
 RAE-TR-66061

 N66-31918
- MODRE, C. C.

 SPLIT-INNER-RACE BALL BEARINGS DESIGN FOR USE AS
 THRUST BEARINGS ON AIRCRAFT GAS TURBINES
 ASME PAPER 66-LUBS-10

 A66-33183
- MORINAGA, T.

 CR AND MN EFFECTS ON AGING MECHANISM AND
 ANTICORROSION PRUPERTIES UF AL- 2N- MG ALLOYS
 A66-12723
- MOROZOV, G. A.

 CLASSIFICATION OF SULFUR-CONTAINING LUBRICATING
 OILS, WITH AND WITHOUT ADDITIVES, FOR USE WITH
 VARIOUS TYPES OF DIESEL ENGINES
 N66-11078
- MGROZOVA, I. A.

 DETERGENT ACTION OF OIL ADDITIVES, INVESTIGATING
 SORPTION OF CHARGED PARTICLES ON CARBONACEOUS
 PRODUCTS OF FUEL COMBUSTION AND OIL DXIDATION
 ASLE PAPER 64-LC-9
 A65-18057

ELECTROKINETIC PROCESSES AND MECHANISM OF DISPERSION ACTION IN MOTOR OIL ADDITIVES DETERMINED BY RADIGACTIVE TRACERS

N66-11113

- MOROZOVA, I. V.
 ALKYLPHENOL ADDITIVES OF FORMALDEHYDE CONDENSATION
 FOR USE IN LUBRICATING MOTOR OILS
 N66-11079
- MOROZOVA, M. V.
 ELASTICITY OF SATURATED VAPORS FROM LUBRICATING
 OILS AND GREASES
 FID-TY-65-1063/16264
 N66-18654
- MORRIS. J. R.

 REACTION RATE OF URANIUM AND WATER VAPOR AT VARIOUS TEMPERATURES AND ACTIVATION ENERGY DETERMINATIONS DXIDE MEASUREMENTS FOR URANIUM CORROSION

 AWRE-0-68/65/
- MORROW, J.

 CORRELATION EQUATION ESTIMATING PITTING FATIGUE
 LIFE OF BEARINGS FROM MINIMAL ROLLING CONTACT RIG
 DATA
 ASME PAPER 65-WA/CF-5
 A66-15624
- MORTON. H. T. BOOK ON DESIGN AND UTILIZATION OF ANTIFRICTION

BEARINGS

A66-26281

MOSLAVAC, K.

ANODIC DISSOLUTION OF N-TYPE GE STUDIED.

CONSTRUCTING POTENTIAL VS CURRENT DIAGRAM IN BROAD

CURRENT DENSITY RANGE

A65-30552

CIRCULAR CHANNEL PRESSURE DROP, FLOW QUALITY, AND CORROSION FILM THICKNESS MEASUREMENTS EURAEC-1288 N66~18864

MUIJDERMAN, E. A.
OIL, GAS AND SPIRAL BEARINGS, COMPARING PROPERTIES AND APPLICATIONS 465-16273

SINTERING METHOD TO PROVIDE DESIRED PRECIPITATION HARDENABLE HIGH TEMPERATURE BEARING MATERIAL WITH PREFERRED LATTICE STRUCTURE SAE PAPER 650796

MULHERIN, J. H.
STRESS-CORROSION SUSCEPTIBILITY OF HIGH-STRENGTH
STEEL AT VARIOUS LEVELS OF TENSILE YIELD STRENGTH AND FRACTURE TOUGHNESS ASME PAPER 66-MET-5

STRESS-CORROSION SUSCEPTIBILITY OF ULTRAHIGH STRENGTH STEEL EVALUATED IN TERMS OF FRACTURE TOUGHNESS

R-1782 N66~19382

MURPHY, C. M.

ETHYLHEXYLAZELATE BASED LUBRICANTS FOR BALL BEARINGS NRL-6356

N66-21121

MURPHY, G. P.

RESIN BONDED SOLID FILM LUBRICANT EFFECTIVENESS AND CORROSION PROTECTION STUDY RESTRICTED TO STEEL A65-20033

WEAR LIFE AND CORROSION PROTECTION OF SOLID FILM LUBRICANTS IMPROVED THROUGH SUBSTITUTING OTHER LUBRICATIVE PIGMENTS FOR GRAPHITE ASLE PAPER 66AM 1C3 A66-30405

FACTORS INFLUENCING CORROSION PROTECTION PROVIDED BY SOLID FILM LUBRICANT COATINGS RIA-65-3380 N66-21473

MURRAY, S. F.
BALL BEARING LIFE OPERATING IN VACUUM WITH MOLYBDENUM DISULFIDE AND DILS AS LUBRICANT ASLE PAPER 66AM 7A3 A66-30416

BALL BEARING LIFE TESTS IN VACUUM USING MOLYBDENUM SULFIDE SOLID FILMS WITH HIGH VACUUM DILS AS LUBRICANTS NASA-CR-71695 N66-24604

MURRENS, R.

TRANSPARENT PLASTIC PACKAGING FILMS FOR PREVENTION OF CORROSION FROM WATER VAPOR LEAKAGE

RIA-65-1588

N66-14309

ALKYLPHENOL ADDITIVES OF FORMALDEHYDE CONDENSATION FOR USE IN LUBRICATING MOTOR OILS

N66-11079

NAKAJIMA, N.

AUSTENITIC STAINLESS STEEL COLD WORKING EFFECTS ON STRESS CORROSION CRACKING IN HIGH TEMPERATURE SODIUM AND MAGNESIUM CLORIDE SOLUTIONS

A65-23936

NAMATEVS, A. A. ELECTRICAL CORROSION OF METALS BY REPEATED DISCHARGES N66-26152

NAMETKIN, N. S.
NATURE OF POLYSILOXANES RELATED TO IMPROVEMENT
OF LUBRICATING EFFECTS OF HYDROCARBONS
FTD-TT-64-1268/182 N65-28 N65-28845 POLYSILOXANES AS ANTIFRICTION AND ANTIWEAR ADMIXTURES TO PETROLEUM GREASES FTD-TT-65-316/18284 N66-12375

NAMIS, L.
DIFFUSION OF ELECTROLYTIC HYDROGEN THROUGH MEMBRANGS OF IRON CRYSTALS AS FUNCTION OF STRESS, TEMPERATURE AND DISSOLVED HYDROGEN CONCENTRATION A66-23071

STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER BOUNDARY FRICTION CONDITIONS IN PRESENCE OF SURFACE ACTIVE LUBRICANT ADDITIVES

NAYLOR. H.

LUBRICANTS EFFECT ON STEEL AND OTHER METAL FATIGUE LIVES IN ROTATING CANTILEVER FATIGUE TESTS A65-26570

ELASTOHYDRODYNAMIC LUBRICATION THEORY, COMPARING OIL-FILM THICKNESS PREDICTED BY DOWSON AND HIGGINSON WITH MEASUREMENTS FROM DISK MACHINE LUBRICATED BY VARIOUS FLUIDS

NAZARENKO, P. V.

MECHANISM OF PLASTIC DEFORMATION IN CRYSTALLINE BODIES, DISCUSSING STATIC AND DYNAMIC FRICTIONAL FORCES IN RELATION TO DISLOCATION STRUCTURE OF BODIES IN CONTACT

A66-258 A66-25887

NEJEDLIK, J. F.
SYSTEM FOR NUCLEAR AUXILIARY POWER- 2 /SNAP-2
POWER CONVERSION SYSTEM - SELECTION OF MATERIALS
WITH MINIMUM FORMATION OF CORROSION PRODUCTS
NAS-3650 N65-36569

CORROSION, MASS TRANSFER, AND CORROSION PRODUCT REMOVAL FOR NUCLEAR TO ELECTRIC POWER CONVERSION SYSTEM USING MERCURY AS WORKING FLUID NAA-SR-6321 N66-32126

NELSON, E. E.
GALVANIC CORROSION OF ALUMINUM ASSEMBLIES BY
STAINLESS STEEL WIRE INSERTS
NASA-TM-X-53404
N66 N66-19762

FABRICATION AND EVALUATION OF THORIUM IRRADIATION SAMPLES HAVING BORON, URANIUM 233, OR GOLD CORES BMI-1761

NEMETH. Z. M.

SPEED, LOAD, AND TEMPERATURE EFFECT ON MINIMUM OIL FLOW REQUIREMENTS OF 30 AND 75 MILLIMETER-BORE BALL BEARINGS N65-27392

NEMBEGIN, R. L.
CATHODE PROTECTION, METALLIC AND STRESS CORROSION
RESEARCH, AND DEEP OCEAN TECHNOLOGY
NA5-27111

MARINE METAL CORROSION - HIGH STRENGTH ALLOY AND TITANIUM ALLOY STRESS CORROSION, CATHODIC PROTECTION, CORROSION FATIGUE, AND ANTIFOULING PAINT FOR ALUMINUM ALLOYS NRL-MEMO-1634 N66-14232

NEWEY, D. A.
ROTOR DYNAMICS TESTS WITH OVERHUNG MASS USING HYDROSTATIC WATER BEARINGS TIM-874 N66-13147

NEWPORT, G. N. STEEL CORROSION MECHANISMS - GROWTH AND BREAKDOWN OF PROTECTIVE FILMS IN HIGH TEMPERATURE AQUEOUS SYSTEMS NRL-6082 N65-15833

EXTENDED EXPOSURE TO HEATED LITHIUM HYDRIDE EFFECT ON TENSILE PROPERTIES OF STAINLESS STEELS NAA-SR-MEMO-10885 N66-18903

NEZHDANOV, V. T.
WEAR OF ELECTRIC CONTACTS DURING SWITCHING OF LOW

VOLTAGE DIRECT AND ALTERNATING CURRENTS

N66-13268

NG. C. W.
STATIC AND DYNAMIC LOAD RESPONSE TESTS ON TILTING-PAD AND FLOATING-RING JOURNAL BEARINGS AND FUNDAMENTAL PROCESSES OF LUBRICANT FLOW N65-16201 NASA-CR-54259

TURBULENT FLUID FLOW THEORY AND APPLICATION TO HYBRID BEARINGS LUBRICATION NIO-3363-2 N66-18846

COMPUTATION OF FLOW RATE IN PIPES AND DETERMINATION OF HEAD LOSSES IN PIPES OF LUBRICATION SYSTEMS WITH FLUID LUBRICANTS A65-30155

NICOL, R. G.
HYDROFLUORINATOR CORROSION RATE DETERMINATION DURING FUEL PROCESSING RUNS WITH ZIRCONIUM-URANIUM ALLOY N65-18428 ORNL - 3623

PRESSURE DISTRIBUTION OF COUNTERFORMEL CYLINDERS MEASURED TO DETERMINE HYDRODYNAMIC LOAD A65-31717 ASLE PAPER 64-LC-12

NIJPJES, J. M.
OXIDE AND CARBIDE CORROSION PRODUCTS IN MATRIX AND SURFACE OF STEEL PLATE BY ELECTRON DIFFRACTION N66-18080

NIKITIN, V. I.
HIGH TEMPERATURE TESTING FOR MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF NICKEL BASE AND CHROMIUM-NICKEL STEEL ALLOYS IN LIQUID SODIUM FTD-TT-64-704/162 N65-21108

CORROSION RESISTANCE OF CHROME-NICKEL STEEL AND NICKEL BASE ALLOYS IN LIQUID SODIUM FTD-TT-64-1210/1 N65-226 N65-22886

NIKOLAI, Y. L.

GYROSCOPE IN GIMBAL SUSPENSION - DIFFERENTIAL
EQUATIONS OF MOTION, AXIS STABILITY, AND EFFECT
OF FRICTION AT GIMBAL-RING AXES

N66-12 FTD-TT-65-416/162 N66-12595

NIKOLAYEVA, S. A.
INFLUENCE OF NICKEL SULFATE ADDITIONS ON CORROSION PROPERTIES OF TITANIUM ALLOYS IN SULFURIC ACID

NIKOLAYEVA, V. G.
DATA ON USE OF ANTICORROSIVE ADDITIVES IN RESIDUAL FUELS CONTAINING VANADIUM AND SULFUR N66-11131

NIKULOVA, V. F.
CORROSION RESISTANCE AND ELECTROCHEMICAL PROPERTIES OF ALLOYS OF NIOBIUM-TITANIUM SYSTEM A66-20838

CORROSION RESISTANCE, ELECTROCHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM-NIOBIUM SYSTEM A66-20839

ELECTROMAGNETIC PUMP DEVELOPMENT FOR CIRCULATION
OF VERY CORROSIVE /FLUORINATED COMPOUND/ GASES
CEA-R-2744 N66-188

CORROSION RATES OF MAGNESIUM AND MAGNESIUM ALLOYS IN MAGNESIUM SALT SOLUTIONS OF CHLORIDE, BROWIDE, AND PERCHLORATE ECOM-2517 N65-19161

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY PLATES FOR WING SKINS AD-453733 N65-14327

FRACTURE TOUGHNESS, FATIGUE CRACK PROPAGATION, AND CORROSION CHARACTERISTICS OF ALUMINUM ALLOY

PLATES FOR WING SKINS AD-625454

N66-18520

NOSOV, M. I.
SLIDING VELOCITY AND TEMPERATURE EFFECT ON LUBRICATING PROPERTIES OF POLYETHYLSILOXANE SOLUTIONS IN PETROLEUM 465-20015

NATURE OF POLYSILOXANES RELATED TO IMPROVEMENT OF LUBRICATING EFFECTS OF HYDROCARBONS N65-28845 FTD-TT-64-1268/162

POLYSILOXANES AS ANTIFRICTION AND ANTIWEAR ADMIXTURES TO PETROLEUM GREASES FTD-TT-65-316/16284 N N66-12375

OIL ADDITIVE ACTION ON WEAR RESISTANCE AND ANTIFRICTION PROPERTIES OF POLYSILOXANE U.S.S.R. COMPOUNDS -

EFFECTS OF ORGANIC ADDITIVES CONTAINING SULFUR, CHLORINE, AND PHOSPHOROUS ON POLYSILOXANE LUBRICANTS FSTC-381-T65-553

NOVAKOVSKII, V. M.
DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK FLECTRODES

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK ELECTRODES A66-3159 A66-31597

NUTTING, J.
DISLOCATION DISTRIBUTION AND CRACK PROPAGATION DUE A66-33444 TO STRESS CORROSION

0

OBERRIGHT, E. A.
OXIDATIVE AND DEPOSIT FORMING PROPERTIES OF HIGH TEMPERATURE LUBRICANTS

N66-11126

ASD-TDR-62-222, PT. III OXIDATION RESISTANCE AND DEPOSIT FORMATION OF HIGH TEMPERATURE LUBRICATING OIL

N66-19474 AFAPI -TR-65-85 OBLEUKHOV, O. S.
EFFECT OF MOTOR OIL ADDITIVES ON PITTING OF
HYDRAULIC LIFTERS
N6

TESTING AUTOMOBILE TRANSMISSION OIL WITH DIFFERENT ADDITIVES FOR ANTIWEAR, ANTIABRASSIVE, ANTICORROSIVE, STABILITY, AND FOAM PROPERTIES N66-11127

OCONMELL, T. C.

TITAN II MISSILE GUIDANCE COMPONENTS - INERTIAL
MEASUREMENT UNIT HEAT EXCHANGER, AND MISSILE
GUIDANCE COMPUTER CORROSION RESISTANCE TESTING
IN OPERATIONAL READINESS ENVIRONMENT
N65-2611 EP64-241

ODING, I. A.

CONTACT FRICTION EFFECTS ON FATIGUE PHYSICAL LIMIT
AND CYCLIC STRENGTH OF STEEL

A65-14788

OGALE, V. A.
SURFACE TEMPERATURE AND CORROSION IN AIR AND WATER
COOLED TURBOCHARGERS OF MARINE DIESEL ENGINE
N66-25815

OPARINA, YE. M.
COMPARISON OF VARIOUS POLYORGANOSILOXANE LIQUIDS
FOR USE AS BASES IN HIGH TEMPERATURE CONSISTENT FTD-TT-65-322/16264

ORGANIC SILOXANE POLYMER LIQUIDS AS COMPONENTS OF HIGH TEMPERATURE LUBRICATING OILS FTD-TT-65-322/18284 N65-3594 N65-35941

PRESSURE, TEMPERATURE AND FILM THICKNESS BETWEEN TWO CIRCULAR DISKS CORRELATED WITH THEORETICAL SOLUTIONS OF THERMAL ELASTOHYDRODYNAMIC LUBRICATION OF INFINITELY LONG ROLLERS

A65-32767

STEADY-STATE AND DYNAMIC CHARACTERISTICS OF FULL CIRCULAR BEARING AND CENTRALLY LOADED ARC BEARING PRESENTED IN DESIGN CHARTS FOR TURBULENT LUBRICATION ANALYSIS ASME PAPER 66-LUBS-4

STATIC AND DYNAMIC LOAD RESPONSE TESTS ON TILTING-PAD AND FLOATING-RING JOURNAL BEARINGS AND FUNDAMENTAL PROCESSES OF LUBRICANT FLOW NASA-CR-54259 N65-16201

FILM RUPTURE AND CAVITATION IN JOURNAL BEARINGS WITH LOW KINEMATIC VISCOSITY LUBRICANTS MTI-65TR13 N66-20254

HIGH SPEED ROTORS SUPPORTED IN JOURNAL BEARINGS WITH LOW VISCOSITY LUBRICANT IN TURBULENT FLOW MTI-65TR12 N66-20259

MEASURING PERFORMANCE CHARACTERISTICS OF LIQUID METAL LUBRICATED TURBOMACHINE BEARING UNDER STEADY STATE AND DYNAMIC LUAD CONDITIONS

N66-31686

ORDYNSKAIA, V. V.

HYDROGEN PERDXIDE VAPOR DECOMPOSITION ON METAL
SURFACES AND ROLE IN ATMOSPHERIC CORROSION
INVESTIGATED BY PHOTOGRAPHIC AND OPTICAL POLARIZATION METHODS

OREAR, J. G. SYNTHESIS, CHARACTERIZATION, AND ESTER-ESTER INTERCHANGE STUDY OF MIXED ESTER 2-ETHYLHEXYL BENZYL AZELATE FOR USE AS LOW TEMPERATURE INSTRUMENT DILS N65-22144

STABILIZATION OF SILICONE LUBRICATING FLUIDS AT 300 TO 400 DEG C BY SOLUBLE CERIUM CUMPLEXES

QUANTITATIVE CHEMICAL ANALYSIS, USING GAS CHROMATOGRAPHY, FOR ACYL COMPONENTS OF NEOPENTYL POLYDL ESTER AIRCRAFT ENGINE LUBRICANT NRL-6338 N66-22779

LIGHT DIL ANALYSIS FROM FLUIDIZED COAL CARBONIZATION USING GAS CHROMATOGRAPHY BM-RI-6709

N66-16581

A66-25884

OSHEA, R. P.
HIGH TEMPERATURE STRESS CORROSION OF TITANIUM AND NASA-CR-69851 N66-16193

OSHER, R. N.
ALUMINUM STEARATE AND OLEOSTEARATE ADDITIVES FOR
ANTIWEAR AND ANTICORROSION IMPROVEMENT OF

OSTERLE, J. F. M HD SQUEEZE FILM BEARINGS IN PRESENCE OF ELECTROMAGNETIC FIELD ASME PAPER 64-WA/LUB-3 A65-33854

OSTROUMOV, G. A.
ELECTRICAL CORROSION OF METALS BY REPEATED

OSTROVOI, IU. D.
STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER
BOUNDARY FRICTION CONDITIONS IN PRESENCE OF

OTTMANN, G. F.
NONFLAMMABLE HYDRAULIC FLUIDS AND LUBRICANTS TETRAMERIC ARYL-1,1-DI-H-POLYFLUOROALKYL **AD-608144** N65-15846

OVERHOFF, R. F.
RATING SYSTEM ASSESSING PERFORMANCE OF AIRCRAFT
GAS TURBINE SYNTHETIC LUBRICANTS BASED ON DEMERIT
A65-2950 A65-29501 OWENS, R. S. BOUNDARY LUBRICANTS FOR CHROME STEEL, NOTING FRICTION REDUCTION AND DECREASE IN WEAR A65-15681

OZERYANAYA, I. N.
ZIRCONTUM CORROSION IN MOLTEN EQUIMOLAR MIXTURE OF
POTASSIUM AND SODIUM CHLORIDES N66-17783

P

PAN. C. H. T.
TURBULENT FLUID FLOW THEORY AND APPLICATION TO
HYBRID BEARINGS LUBRICATION
N66-18 N66-18846

FILM RUPTURE AND CAVITATION IN JOURNAL BEARINGS WITH LOW KINEMATIC VISCOSITY LUBRICANTS MT I-65TR13 N66-20254

TEST METHODS AND MEASURING APPARATUS FOR RAPID APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL OILS, LUBRICATING OILS, AND ADDITIVES - SCALE MODELS AND MICROANALYSIS N66-111 N66-11112

OILS, LUBRICANTS, AND COOLANTS FOR DIESEL ENGINE, AIRCRAFT ENGINE, AND ROCKET ENGINE N66-19816

PAPROCKI, S. J.
REACTOR MATERIALS AND COMPONENTS, FUEL
DEVELOPMENT, RADIOISOTOPE AND RADIATION
APPLICATIONS, COATED-PARTICLE FUEL MATERIALS,
AND CAS COOLED REACTORS CORROSION STUDIES, AND GAS COOLED REACTORS BMI-1745 N66-11852

PARKER, R. J.
MEASURING APPARATUS FOR STUDYING BALL BEARING
SPINNING FRICTION
N65-:

ROLLING CONTACT LUBRICATION CHARACTERISTICS OF POLYPHENYL ETHERS AND MINERAL DILS AT REDUCED PRESSURES NASA-TN-D-3130

EFFECT OF STEEL COMPONENT HARDNESS DIFFERENCES ON BEARING FATIGUE AND LOAD CAPACITY NASA-TM-X-52087 N66-27083

FRICTION DUE TO BALL MOTION IN ANGULAR CONTACT BALL BEARING NASA-TM-X-52207

PARKER, T. D. SUPER CHROMIUM STEEL SURVEY, INCLUDING
APPLICATIONS IN GAS TURBINES AND AEROSPACE
INDUSTRIES, PHYSICAL AND MECHANICAL PROPERTIES,
THERMAL STABILITY, CORROSION RESISTANCE, ETC

PARKHOMENKO, V. B.
FRICTION REDUCING AND CHEMICALLY STABLE PLASTICS
BASED ON POLYTETRAFLUORDETHYLENE
N66-1924 N66-19245

PARKHOMENKO, V. D.

EFFECT OF TEMPERATURE ON FRICTION AND WEAR OF
FILLED FLUORINATED PLASTIC MATERIALS
FTD-TT-64-1176/162

N65-2 N65-29121

S NAP-8 MATERIALS RESEARCH - MERCURY CORROSION CAPSULE TESTS OF FERRITIC ALLOYS FOR MASS TRANSFER, STRESS CORROSION, MODE OF ATTACK, AND MECHANICAL PROPERTIES NASA-CR-62379

CORROSION TESTS ON IRRADIATED AND UNIRRADIATED
TYPE 304 STAINLESS STEEL
GEAP-4968 N66-26483

PAVELESCU, D.
SLIDING WEAR EVOLUTION AND RADIOACTIVE TRACER
A66-A66-28466

- PAVIKOVICH, A. M.
 HEXACHLORDCYCLOPENTADIENE USED AS ANTIWEAR
 ADDITIVE TO LUBRICATING OILS
 FTD-TT-65-7795/18284
 N66-19772
- PAVLOV, YU. K.
 STRESS CORROSION CRACKING OF STEEL IN VARIOUS
 MEDIA
 FTD-TT-64-643/182
 N65-17187
- PEALE, L. F.
 SEMIFLUID GREASE AND OIL BLEND LUBRICANT
 EVALUATION FOR M61 RAPID FIRE MACHINE GUN IN
 TERMS OF ANTIWEAR AND EXTREME PRESSURE PROPERTIES
 A65-17897
- PEARL. W. L.
 CORROSION OF MATERIALS FOR FUEL CLADDING IN
 SUPERHEAT REACTOR SYSTEMS
 CEAP-4760
 N65-31797
- PECHURO, N. S.

 ORGANIC AND INORGANIC MEDIA COMPOSITION EFFECTS
 ON METAL EROSION
 N66-26154
- PEHLKE, R. D.
 PITTING CHARACTERISTICS OF EARLY PHASE CAVITATION
 DAMAGE TO TEST SPECIMENS IN VENTURI
 ASME PAPER 64-WA/FE-2
 A65-26503
- PENTLAND, W.

 BASIC MECHANISMS OF ULTRASONIC MACHINING PROCESS
 ARE MICROCHIP REMOVAL AND MATERIAL DISPLACEMENT BY
 PLASTIC DEFORMATION AND PARTICLE REMOVAL BY
 FRACTURE
 ASME PAPER 64-PROD-4

 A65-16986
- PERELIAEV, V. A.
 INTERACTION OF CO WITH POWDERED AND SOLID
 NIOBIUM, EMPHASIZING OXYCARBIDE FORMATION,
 CHEMICAL STRENGTH, ACTIVATION ENERGIES AND
 DIFFUSION COEFFICIENTS
 A65-28341
- PERELMITER, M. S.
 SYNTHESIS, PRODUCTION TECHNOLOGY, AND TEST OF
 BARIUM ALKYLPHENOLATE, ZINC DIALKYLPHENYLDITHIO
 PHOSPHATE, AND DIAKYLPHENYLDITHIOPHOSPHORIC
 ACID FOR MULTICOMPONENT ADDITIVES TO LUBRICANTS
 N66-11094
- PERRY, J. P.
 RATING SYSTEM ASSESSING PERFORMANCE OF AIRCRAFT
 GAS TURBINE SYNTHETIC LUBRICANTS BASED ON DEMERIT
 DEPOSITS
 A65-29501
- PESIN. O. YU.
 ORGANIC AND INORGANIC MEDIA COMPOSITION EFFECTS
 ON METAL EROSION
 N66-26154
- PETERSON, N. B.
 HIGH TEMPERATURE LUBRICATION, SUPPLYING GRAPHS OF
 FRICTION COEFFICIENT
 A65-23513

FRICTION COEFFICIENTS AND LUBRICATION FOR EXTREME PRESSURE METAL WORKING M11-65TR59 N66-19192

FRICTIONAL BEHAVIOR AND LUBRICATION OF METALS IN
HOT METAL DEFORMATION
MTI-66TR18
N66-25854

- PETERSON. M. H.
 CATHODE PROTECTION, METALLIC AND STRESS CORROSION
 RESEARCH, AND DEEP OCEAN TECHNOLOGY
 NBI-1574
 N65-27111
- PETYAKINA, YE. I.

 ANTIMEAR ADDITION TESTING FOR THERMAL STABILITY IN
 LUBRICATING OILS, NOTING EFFECT OF LUBRICANTS AND
 OTHER ADDITIONS

 A65-14875
 - REACTION MECHANISM OF ANTISCORING ADDITIVES IN LUBRICATING OILS FOR FRICTION REDUCTION

TECHNIQUE FOR EVALUATING THERMAL STABILITY OF ANTIMEAR ADDITIVES IN LUBRICATING DILS N66-14567

- PFOUTZ. B. D.
 TECHNIQUES FOR TESTING HIGH TEMPERATURE
 PERFORMANCE OF GAS TURBINE SEAL LUBRICANTS
 AFAPL-TR-65-3
 N65-30867
- PFUETZNER, N.
 OIL CUSHION RESILIENCE IN HYDRODYNAMIC BEARINGS,
 EXAMINING EFFECT ON DYNAMIC BEHAVIOR OF
 UNSYMMETRICAL SHAFT WITH ONE DISK
 A66-24999
- PHALEN. D. I.
 STRUCTURAL CHANGES ASSOCIATED WITH STRESS
 CORROSION AND DELAYED FAILURE IN HIGH STRENGTH
 STEEL
 AD-468171
 N65-3186

STRUCTURAL CHANGES IN HIGH-STRENGTH STEEL
ASSOCIATED WITH STRESS CORROSION AND ITS
RELATIONSHIP TO DELAYED FAILURE
OPR-1
N65-32351

- PHILLIPS, A.

 ELECTRON MICROSCOPY APPLICATIONS TO FRACTURE
 MECHANICS FOR DETERMINING CRACK PROPAGATION
 DIRECTION, AND CHARACTERISTIC DIFFERENCES
 BETWEEN STRESS CORROSION AND HYDROGEN
 EMBRITTLEMENT
 SM-49150
 N66-22627
- PHILLIPS, L. R.

 CHEMICAL COOLANTS FOR MACHINING URANIUM IN
 PRESENCE OF TRACE AMOUNTS OF CHLORIDE +
 CORROSION PREVENTION
 Y-1475

 N65-18429
- PICTON, G. CORROSION OF SOME URANIUM-PLUTONIUM-IRON ALLOYS N66-14170
- PILKINGTON, R. H.

 BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT
 HIGH SPEEDS AND TEMPERATURES
 NASA-CR-64183
 N65-31051
- PISAREV. N. M.

 CORROSION RESISTANT STAINLESS STEEL WITH BETTER
 MECHANICAL PROPERTIES FOR TROPICAL CLIMATE
 FTD-TT-65-487/1
 N66-12509
- PITEK, N.
 SOLID FILM LUBRICATED BEARINGS SOLID LUBRICANTS
 AND BEARINGS EVALUATION
 N65-16124
- PIZZOLATO, P. J.
 FUEL-WATER AND OXIDIZER-WATER CORROSION IN
 ALUMINUM CAPILLARIES OF FUEL AND OXIDIZER TANKS
 DSR-S-11047
 N65-35287
- PLANT. H. T.
 STRESS CORROSION INFLUENCE ON GLASS FIBER STRENGTH
 N65-14228

STRESS CORROSION ON GLASS FIBER STRENGTH AT
CRYOGENIC TEMPERATURE
NA65-19022

- PLAYICH, L. A.
 SURFACE HYDRIDE CORROSION FILM EFFECT ON
 ELECTROLYTIC CORROSION AND OXIDATION OF TITANIUM
 A66-20841
- PLUMMER, E. L.
 ALUMINUM SALTS OF SUBSTITUTED BENZOIC ACIDS FOR
 USE AS HIGH TEMPERATURE GREASE THICKENERS BIBLIOGRAPHY WITH ABSTRACTS
 AFML-TR-64-324
 N65-31634
- PLUTALOVA, L. A.
 STRUCTURAL CHANGES DURING FRICTION OF GRAPHITIZED
 MATERIAL, COMPARING CRYSTAL SIZES AND INTEGRAL
 LINE INTENSITY OF INITIAL AND WEAR PRODUCT
 A65-31529
- POCALYKO, A.

 EXPLOSION CLADDING FOR BONDING SIMILAR AND
 DISSIMILAR METALS MITHOUT INTERMEDIATE METAL OR
 EXTERNALLY APPLIED HEAT
 A66-12317

PODLASECK, S.

COLD WELDING OF METAL CONTACTING SURFACES OF
SYSTEM FOR NUCLEAR AUXILIARY POWER-19 EJECTION
MECHANISMS AND MINIMIZATION WITH LUBRICANT
APPLICATION
MND-3169-66

N65-25522

PODDLSKII, M. E.
THERMAL BOUNDARY CONDITIONS FOR PARALLEL-SURFACE
THRUST BEARING
A65-25479

POLUBOIARTSEVA, L. A.
DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR
TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK
ELECTRODES

A65-29311

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK ELECTRODES A66-31597

PONGILSKII, N. F.

DEVICE FOR TAKING LONG TIME CORROSION FATIGUE
CURVES ON SMALL CROSS SECTION SPECIMENS AT HIGH
TEMPERATURES AND PRESSURES
ASS-20431

PONOMARENKO, N. E.
GRAPHITE CONTENT EFFECT ON ANTIFRICTION PROPERTIES
OF GRAPHITIZED NICKEL-BASED COPPER AND IRON
ALLOYS
A66-10745

POPOV, M. S.

LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES
OF CERTAIN POLYAMIDES
N66-2276

CORROSION RESISTANCE AND PLASTICITY OF STAINLESS
STEELS WITH ADDITIONS OF RARE EARTH METALS AND
OXIDES
N65-18737

PORANSKI, C. F., JR.

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPIC ANALYSIS
OF MIXED PENTAERYTHRITOL, DIPENTAERYTHRITOL, AND
TRIMETHYLOLPROPANE ESTERS
NRL-6307

N66-15016

POROTSKII, E. S.
TEXTBOOK ON CHARACTERISTICS OF PRINCIPAL METALLIC
AND NONMETALLIC MATERIALS USED IN AIRCRAFT
STRUCTURES
A65-16908

PORTE, H. A.

POTENTIOSTATIC POLARIZATION STUDIES OF IRON AND
STAINLESS STEEL ALLOYS IN ELECTROLYTE SYSTEMS
FOR CORROSION RESISTANCE PREDICTION
R-423

POSEY, F. A.

ELECTROCHEMICAL ASPECTS OF CORROSION OF ALUMINUM
ALLOYS IN SODIUM CHLORIDE AT ELEVATED
TEMPERATURES IN TITANIUM DYNAMIC LOOP FACILITY
ORNL-P-1430
N66-11492

POTTER, A. F.
FRICTION INDUCED VIBRATION TO DETERMINE EXISTENCE
OF CRITICAL VELOCITY OF DRIVEN SURFACE
ASME PAPER 65-LUB-5
A66-14241

POZDNYAKOV, V. V.
FRICTION AND ADHESION OF GRAPHITE MATERIALS IN
VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA
A65-23565

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA

A65-31530

SPONTANEOUS TRANSITION OF SLIDING FRICTION TO ROLLING FRICTION WITH REFRACTORY VANADIUM AND MOLYBDENUM CARBIDES AT HIGH TEMPERATURES NASA-TT-F-9499 N65-29738

POZHAVRITSKII, G. K.
VANISHING OF SLIDING IN MECHANICAL SYSTEMS WITH
DRY FRICTION
A65-27690

PRASAD, R.

HYDROMAGNETICALLY SQUEEZED FILMS BETWEEN TWO

CONDUCTING SURFACES USED AS LUBRICATOR, DISCUSSING

LOAD CAPACITY, PRESSURE AND TIME OF APPROACH ASME PAPER 65-LUBS-6 A65-28635

SURFACE ROUGHNESS EFFECTS IN HYDROMAGNETICALLY LUBRICATED EXTERNALLY PRESSURIZED BEARINGS AND HYDROMAGNETIC SQUEEZE FILM BETWEEN TWO CIRCULAR PLATES
ASME PAPER 66-LUBS-9

PRAYDIN, A. V.

DEFORMATION RESISTANCE OF HIGH STRENGTH AND
ANTICORROSION STEEL ALLOY CLADS DURING HOT
FORMING

N66-24253

PRAZAK, M.

TEMPERATURE EFFECT ON CHROMIUM-NICKEL STAINLESS
STEEL CORROSION IN PASSIVITY RANGES
FTO-TT-65-1223/1628364 N66-2789

PRIBUTSKY, G.

VOLATILE CORROSION INHIBITORS FOR IMPROVING PRESERVATIVE CHARACTERISTICS OF STANDARD OPERATING OILS RIA-64-3577

N65-2]

PRIDE, R. A.

SALT STRESS CORROSION CRACKING OF RESIDUALLY
STRESSED TITANIUM ALLOY BRAKE FORMED SHEET FOR
SUPERSONIC TRANSPORT
NASA-TM-X-1082
N65-20483

PRITCHARD, H. R.
ALTERNATE IMMERSION STRESS-CORROSION TESTS ON
COMMERCIAL AND HIGH PURITY ALUMINUM ALLOYS
M65-17-1
N65-28351

PROKOPCHUK, V. A.

RELATION BETWEEN CHAIN LENGTH IN SATURATED
ALIPHATIC ACIDS AND STRUCTURE OF PSEUDOGELS
THICKENED WITH THEIR LI AND CA SOAPS STUDIED FOR
LUBRICATING PURPOSES

A65-31216

PROTASOV. V. V.

EFFECT OF MOTOR OIL ADDITIVES ON PITTING OF
HYDRAULIC LIFTERS

N66-11126

PUCHKOY, N. G.
CALCULATING NECESSARY CONCENTRATION OF
NEUTRALIZING ADDITIVES IN MOTOR OILS WHEN
USING FUELS WITH LARGE SULFUR CONTENTS

N66-11119

TESTING MOTOR OILS FROM SULFUROUS CRUDES WITH DIFFERENT ADDITIVES N66-11121

PUGH, E. N.
STRESS-CORROSION CRACKING, RATE OF WEIGHT LOSS AND
SURFACE CONDITION OF 70-30 COPPER ZINC ALLOY IN
CONCENTRATED AQUEOUS AMMONIA A66-18519

MECHANISMS OF STRESS-CORROSION CRACKING IN METAL REVIEW OF VARIOUS THEORIES
AROD-5023-1
N65-36246

PUGINA, L. I.

GRAPHITE CONTENT EFFECT ON ANTIFRICTION PROPERTIES
OF GRAPHITIZED NICKEL-BASED COPPER AND IRON
ALLOYS

A66-10745

R

RABINOMICZ, E.
FRICTION AND WEAR OF SLIDING MATERIALS PREDICTED
BY ADHESION-PLASTIC DEFORMATION THEORY
A65-18331

RABKO, V. D.

CYLINDRICAL BODY ROLLING FRICTION MEASUREMENTS
INCLUDING ROLLING RATE, LOAD AND SPECIFIC
PRESSURE, LUBRICATION, MATERIAL AND RADII OF
CURVATURE EFFECTS

A65-22965

RADNIK, J. L.

EFFECTS OF SURFACE LUBRICATION BY HEAVY LAYER OF P-38 SYNTHETIC OIL FOR SLIP-RING ASSEMBLIES NASA-CR-64251

N65-30545

RAKHMAN, B. M.
ELECTRIC STRAIN GAUGE FOR HIGH TEMPERATURE OR

CORROSIVE ENVIRONMENTS AND ELECTROMAGNETIC FIELDS - TENSOMETER FTD-TT-64-872/182 N65-19200

RAKOFF, P.

IGNITION INHIBITORS, SCREENING METHODS OF
CORROSION INHIBITOR SYSTEMS, AND FLASH AND FIRE
POINTS OF WATER GLYCOL HYRAULIC FLUIDS
BMR-4

N65-1676

CORROSION INHIBITORS IMPROVEMENT IN METALS FROM ATTACK BY WATER BASED, FIRE RESISTANT, HYDRAULIC FLUID
N65-27926

RALL, H. T.

SYNTHESIS OF ALKYL, CYCLOALKYL, AND DICYCLOALKYL
SULFIDES TO PROVIDE REFERENCE COMPOUNDS
NECESSARY IN SEARCH FOR SIMILAR CLASSES OF
SULFUR COMPOUNDS IN CRUDE GIL
BM-RI-6796 N66-28345

RAMAYA, K. S.
ORGANIC METALLIC SALTS AS OXIDATION CATALYSTS IN
LUBRICATING OILS - CORROSION RESISTANT ADDITIVES
N66-1110

DETERMINING ANTIOXIDATION EFFECTIVENESS OF MOTOR OIL ADDITIVES N66-1111

EFFECT OF OIL ADDITIVES ON CORROSIONAL WEAR OF LEAD ALLOY BEARINGS N66-1111

RANISH, B. E.
FRICTION AND WEAR BETWEEN UNLUBRICATED METAL AND
NOMBETAL SURFACES
DM-220
N66-17654

RAPAPORT, B.

RADIDACTIVE TRACERS TO DETERMINE WEAR RESISTANCE
OF CHROMIUM-NICKEL-IRON ALLOY GRINDING BALLS
USED IN FABRICATING CEMENT
CNEA-187
N66-2824

RAPOPORT, I. 8.

EFFECTIVENESS OF ORGANO-MOLYBDENUM AND ORGANOSULFUR COMPOUNDS AS ANTIWEAR ADDITIVES TO
LUBRICATING OILS

N66-11085

RAVIKOVICH, A. M.
ANTIWEAR ADDITION TESTING FOR THERMAL STABILITY IN
LUBRICATING OILS, NOTING EFFECT OF LUBRICANTS AND
OTHER ADDITIONS
A65-14875

ORGANO-PHOSPHORUS ANTIOXIDANT LUBRICATING OIL ADDITIVES OBTAINED FROM REACTION OF PHOSPHORUS PENTASULFIDES AND TERPENES IN PRESENCE OF SULFURIC ACID N66-11086

TECHNIQUE FOR EVALUATING THERMAL STABILITY OF ANTIWEAR ADDITIVES IN LUBRICATING OILS FTD-TT-65-867/1&4 N66-14567

RAZUMOVSKAYA, E. A.

RADIOACTIVE TRACER INVESTIGATION OF REACTION
MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH
COPPER FILMS IN HYDROCARBON LUBRICATING OIL
MEDIUM — FRICTION REDUCING ADDITIVES
NAG-11106

REASON, B. R.
DIL FILM THICKNESS CAUSING HYDRODYNAMIC
LUBRICATION BETWEEN MOVING SURFACES OF MACHINE
COMPONENTS
COA-AERO-184
N66-190

REICHENBACH, G. S.
ELECTRON MICROSCOPE STUDY OF SURFACE TOPOGRAPHY
CHANGES IN RUNNING TRACK IN ROLLING CONTACT
FATIGUE TESTER
ASLE PAPER 64-LC-29
A65-317

REMORENKO, R. P.
STARTING FRICTION AND KINETIC FRICTION OF PTFE
FABRIC-LINED SPHERICAL BEARINGS AND DEFLECTION AND
PERMANENT SET UNDER STATIC LOADING

A66-31932

REMPE, W. H., JR.

PATERIALS FOR USE AS ROLLING-CONTACT BEARING
LUBRICANTS IN LIQUID HYDROGEN ENVIRONMENT
ASLE PREPRINT 65-LC-9

A66-12255

LUBRICANT MATERIALS FOR ROLLING CONTACT BEARINGS
OPERATING IN LIQUID HYDROGEN ENVIRONMENT
NASA-CR-69569 N66-15815

RENAUD, J. P.
MATERIALS FOR TIME MEASUREMENT INSTRUMENT PARTS
MANUFACTURE — GLASS, COATINGS, LUBRICATION, AND
CORROSION PROTECTION

REYNOLDS. H. W., JR.

CONSTANT OIL MONITORING SYSTEM USING ELECTRIC
CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS
TURBINE ENGINES
SAE PAPER 650814

A65-3469

CONSTANT OIL MONITORING SYSTEM USING ELECTRIC CONDUCTIVITY TESTER FOR EXTENDING OIL LIFE IN GAS TURBINE ENGINES
SAE PAPER 650814

A66-23844

REZNIKOV. B. I.
FRICTION AND HEAT FLOW DETERMINATION FOR
SELF-SIMULATING BOUNDARY LAYER PROBLEMS
N65-35856

REZNIKOV, V. D.

CALCULATING NECESSARY CONCENTRATION OF
NEUTRALIZING ADDITIVES IN MOTOR OILS WHEN
USING FUELS WITH LARGE SULFUR CONTENTS
N66-11119

RHODES, C. A.

PARTIAL POROUS METAL BEARINGS PERFORMANCE DURING
STEADY STATE OPERATION WITH FULL FILM OF
LUBRICANT, DETERMINING PRESSURE DISTRIBUTION
ASME PAPER 65-WA/LUB-3

RIABCHENKOY, A. V.

DEVICE FOR TAKING LONG TIME CORROSION FATIGUE
CURVES ON SMALL CROSS SECTION SPECIMENS AT HIGH
TEMPERATURES AND PRESSURES

A66-20433

RICE, L.

HASTELLOY F AND OTHER CORROSION RESISTANT
STRUCTURAL MATERIALS FOR CENTRIFUGE IN REACTOR
FUEL RECOVERY PLANT
ORNL-3787

N65-20708

RICHARDSON, G. A.

POUR POINT DEPRESSANT, POLYMER THICKENER,
CORROSION TEST, AND COMPONENT COMPOUNDING FOR
FIRE-RESISTANT HYDRAULIC FLUID
RMB-5

N65-2791

RICHMAN, R. B.
STATIC TESTING FOR CHEMICALS EFFECTIVE FOR
INHIBITING ALUMINUM AND STEEL CORROSION
BAMI - 29
N65-25472

RICHTER, K.
GALVANOSTATIC MEASUREMENTS OF DERIVATIVES OF
METHANE, ETHANE AND PROPANE IN AQUEOUS
ELECTROLYTES
A65-22368

RIDEOUT, S. P.
HOT SALT STRESS CORROSION CRACKING IN TITANIUM
ALLOYS — CHLORIDE CORROSION ROLE DETERMINATION
USING CHLORINE ISOTOPES AND RELATION BETWEEN
CRACK MORPHOLOGY AND ALLOY STRUCTURE
NASA-CR-60194
N65-23708

STRESS CORROSION RUPTURING OF TITANIUM ALLOY - FRACTURE MECHANICS N66-10876

RIDINGS. T. L.

DRY THIN-FILM LUBRICANTS AND SOFT-METAL LUBRICANTS
APPLIED TO BEARINGS AND GEARS FOR USE UNDER
HEAVY LOADS AND SLOW SPEEDS IN SPACE
ENVIRONMENTS
AEDC-TR-65-1

N65-17429

DRY COMPOSITE LUBRICATED BEARINGS FOR AEROSPACE

ENVIRONMENTAL CHAMBER AEDC-TR-65-35

N65-19527

DRY COMPOSITE LUBRICATED GEARS FOR AEROSPACE ENVIRONMENTAL CHAMBER AEDC-TR-65-45

N65-22375

RIENTSMA, L. M. EFFICIENCY EVALUATION OF CARBON REMOVERS FOR USE IN CLOGGED DIL PUMPS C66-155

RIPLING, E. J.
HIGH THERMAL STRESS SALT CORROSION CRACKING OF
HIGH STRENGTH STEEL AND TITANIUM ALLOYS IN
PRESENCE OF STRESS CONCENTRATORS
N65-2

HIGH TEMPERATURE STRESS CORROSION OF TITANIUM AND TITANIUM ALLOYS NASA-CR-69851 N66-16193

RIPPEL, H. C. STRUCTUREBORNE AND AIRBORNE VIBRATION STUDIES OF ROLLING ELEMENT AND SLIDING SURFACE BEARINGS

ROBERTS, R. W. IODINE-ANISOLE AND IODINE-ANISOLE-TURBINE OIL AS BOUNDARY LUBRICANTS FOR CHROME STEEL, NOTING FRICTION REDUCTION AND DECREASE IN WEAR A65-15681

ROBERTS, W. H.
WEAR AND FRICTION BEHAVIOR OF MOLYBDENUM-TUNGSTEN-CHROMIUM ALLOYS IN HIGH TEMPERATURE SODIUM ASLE PAPER 64-LC-25 A65-22789

ROBINSON, M. PITTING CHARACTERISTICS OF EARLY PHASE CAVITATION
DAMAGE TO TEST SPECIMENS IN VENTURI
ASME PAPER 64-WA/FE-2
A65-26503 A65-26503

ROCHE. T. K PROCUREMENT AND QUALITY EVALUATION OF NIOBIUM ALLOY FOR BOILING ALKALI METAL CORROSION STUDIES ORNL-TM-1179 N66-11700

TEXTBOOK ON CHARACTERISTICS OF PRINCIPAL METALLIC AND NONMETALLIC MATERIALS USED IN AIRCRAFT STRUCTURES A65-16908

RODIONOVA, V. I.
DISSOLUTION OF ZINC IN ALKALI
NASA-TT-F-252

N65-32968

ROENNQUIST, A.

STACKING FAULT ENERGIES IN AUSTENITIC STAINLESS
STEEL DETERMINED BY EXTENDED NODE MEASUREMENTS
A65-14 465-14713

HYDROGEN PEROXIDE VAPOR DECOMPOSITION ON METAL SURFACES AND ROLE IN ATMOSPHERIC CORROSION INVESTIGATED BY PHOTOGRAPHIC AND OPTICAL POLARIZATION METHODS A65-20347

STRESS-CORROSION TEST TO DETERMINE CRITICAL FLAM SIZE FOR REDUCTION OF EFFECTIVE FRACTURE TOUGHNESS S-23304 N66-11265

ROMANDY, V. V.
SOVIET TEXTBOOK ON BASIC METHODS FOR METAL A65-28653

CURVES AS QUANTITATIVE CRITERIA OF CORROSION FATIGUE OF METALS A65-A65-36015

ROMANS, J. B.
ETHYLHEXYLAZELATE BASED LUBRICANTS FOR BALL NRL-6356 N66-21121

RONZHIN, M. N. ELECTROCHEMICAL AND CORROSION BEHAVIOR OF

AL-BASED FE, NI, TI INTERMETALLIC COMPOUNDS TI. CU AND SB ALLOYS AND A66-20840

ROSENBERG, H. STRESS CORROSION CRACKING IN TITANIUM ALLOYS IN PRESENCE OF SALT, HIGH TEMPERATURE AND SUSTAINED AIAA PAPER 65-764 A66-13059

ROSENBLUM, L.
THEORY, TESTING, AND ANALYSIS OF LIQUID METAL
CORROSION - MERCURY AND PLUTONIUM LIQUID ALLOYS NASA-TM-X-54722 N65-29446

ROSSMASSLER, W. R.
CHROMATOGRAPHY FOR CORROSIVE GAS ANALYSIS KY-485 N65-32849

ROUGH, F. A. NIOBIUM BASE ALLOY FOR USE AS CLADDING OR STRUCTURAL MATERIAL RESISTANT TO CORROSION BY SUPERHEATED STEAM BMI-1700 N65-19464

RGULEAU, W. T.
M HD SQUEEZE FILM BEARINGS IN PRESENCE OF ELECTROMAGNETIC FIELD ASME PAPER 64-WA/LUB-3 A65-33854

PARTIAL POROUS METAL BEARINGS PERFORMANCE DURING STEADY STATE OPERATION WITH FULL FILM OF LUBRICANT, DETERMINING PRESSURE DISTRIBUTION ASME PAPER 65-WA/LUB-3 A66-15526

ATMOSPHERIC CORROSION OF URANIUM-CARBON ALLOYS CEA-R-2732 N66-15087

ROVINSKII, B. M.
STRUCTURAL CHANGES DURING FRICTION OF GRAPHITIZED
MATERIAL, COMPARING CRYSTAL SIZES AND INTEGRAL
LINE INTENSITY OF INITIAL AND WEAR PRODUCT A65-31529

ROYEZ, A. SYNERGISTIC ACTION OF DYNAMIC STRESSES AND FATIGUE CORROSION IN METALS

ROYSTER, D. M.
SALT STRESS CORROSION OF TI-8 AL-1 MO ALLOY SHEET
AT ELEVATED TEMPERATURES - SURFACE TREATMENT NASA-TH-X-56881 N66-29401

ROYTER. L. A.
ORGANIC AND INORGANIC MEDIA COMPOSITION EFFECTS
N66-26 N66-26154

ROZHKOV, I. V.
ADDITIVE EFFECT ON ANTIWEAR PROPERTIES OF JET FTD-TT-64-937/182 N65-22774

CORROSION INHIBITORS AND CLEANING TECHNIQUES FOR CONTAINERS AND TANKS FSTC-381-T65-673 N66-22684

RUBENSTEIN, C.
METAL WEAR RESISTANCE DEPENDENCE ON HARDNESS
DETERMINED BY RUBBING AGAINST ABRASIVE SURFACE A65-18629

RUCH. J. B. HYDROFLUORINATOR CORROSION RATE DETERMINATION DURING FUEL PROCESSING RUNS WITH ZIRCONIUM-URANIUM ALLOY ORNL-3623 N65-18428

RUMBARGER, J. H.
STRUCTUREBORNE AND AIRBORNE VIBRATION STUDIES OF ROLLING ELEMENT AND SLIDING SURFACE BEARINGS
N66-313: N66-31323

RUSSELL, J. A.

LOW TEMPERATURE BOUNDARY LUBRICATION BEHAVIOR OF
THIN ORGANIC FILMS, EXAMINING FRICTION AND WEAR
BELOW AND ABOVE FILM MELTING POINT
ASLE PAPER 64-LC-6
A65-1809

LUBRICANT EFFECT ON FATIGUE LIFE OF STATIONARY BALL ON FLAT CONTACT SUBJECTED TO OSCILLATORY NORMAL LOAD A66-15622

ASME PAPER 65-WA/CF-3

FATIGUE LIFE AND CONTACT WEAR IN TOOL STEEL EFFECTED BY DIESTER AND MINERAL OIL LUBRICANTS

- RUSTON. CLOSED LOOP SYSTEM FOR DYNAMIC CORROSION TESTS AT HIGH TEMPERATURE IN PRESSURIZED WATER REACTOR FUR-1744.F
- ALUMINUM ALLOY POWDER EXTRUSIONS EVALUATED FOR CORROSION RESISTANCE TO HIGH TEMPERATURE WATER FLOW, CONSIDERING RODS AND TUBINGS A65-22133
- RYAZAMOV. L. S.
 TESTING LUBRICATING DILS WITH ANTICORROSIVE
 ADDITIVES ON DIESEL ENGINES
 N66 N66-11122
- RYLANDER, H. G.
 LIQUID SOLID FILM LUBRICATION OF HYDRODYNAMIC
 BEARINGS, INCLUDING EFFECTS OF SOLID PARTICLES IN
 LIQUID BASE LUBRICANT A66-30412 ASLE PAPER 66AM 5DE
- RYPAR, V.

 RADIATION RESISTANCE OF AQUEOUS SODIUM NITRITE
 USED TO INHIBIT STEEL CORROSION

 N66-3 N66-31045 UJV-1453/65

S

- SACKMAN, J. F.
 CORROSION OF SOME URANIUM-PLUTONIUM-IRON ALLOYS N66-14170 AWRE-0-18/65
- SADYKHOV, K. I.
 SYNTHESIS OF SULFONATES OF ALKYL AROMATIC
 HYDROCARBONS FOR USE AS ADDITIVES TO DIESEL AND
 MOTOR LUBRICATING OILS
 N66-110 N66-11082
- STRESS CORROSION AND HIGH TEMPERATURE PROPERTIES OF MAGNESIUM-LITHIUM-SILICON ALLOYS N65-36228 FA-A64-31
- SAIBEL. E.
 NON- NEWTONIAN LUBRICANT FLOW IN SLIDER BEARING.
 USING CONSTITUTIVE EQUATION CONTAINING STRESS NONL INEAR ITIES A65-22797 ASLE PAPER 64-LC-17
- SALTO. S. TEST RIG FOR GAS-LUBRICATED JOURNAL BEARINGS MEASURING FRICTIONAL TORQUE, GAS FILM PRESSURE DISTRIBUTION, STATIC AND DYNAMIC ECCENTRICITY CHANGES. ETC
- SAKMAROV, G. S.
 SEIZING EFFECT AT INTERFACES SAP-SAP AND SAPAL, NOTING OPTIMUM THERMOMECHANICAL CONDITIONS A66-28196

INDIVIDUAL STRUCTURAL ELEMENTS CONNECTED INTO NONDETACHABLE STRUCTURES, USING SEIZING PHENOMENA, EXPERIMENTING WITH SINTERED ALUMINUM POWDER A66-28197 **FLEMENTS**

METAL FLOW, FRICTION AND LUBRICANT PERFORMANCE DURING STAMPING OF THIN TITANIUM ALLOY BLANKS A66-28202

THERMAL STABILITY, ADHESION PREVENTION, STRESS AND DIE WEAR REDUCTION AND AIR POLLUTION OF INDUSTRIAL A66-28207 LUBRICANTS

CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR SAKURAI, CORROSION MECHANISM ANALYSIS ASLE PREPRINT 65-LC-11 A66-12254

CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR

CORROSION MECHANISM ANALYSIS ASLE PREPRINT 65-LC-11

A66-24993

- SALMI, E. W.
 HEAT PIPE CHARACTERISTICS COVERING PERFORMANCE
 ANALYSIS AND EXPERIMENTAL RESULTS SUCH AS HEAT
 TRANSFER RATE, LIFE TESTS, WORKING LIQUID
 A66-1 SELECTION. ETC
- SALOMON. G. LIFE EXPECTANCY OF MOLYBDENUM DISULFIDE LUBRICANT FILM VARIES WITH PRESENCE OF DXYGEN AND ADDITION OF GRAPHITE ASLE PAPER 64-LC-30
- SAMSONOV, V. G.

 CORROSION RESISTANT POLYMERIC MATERIALS FOR USE AS PROTECTIVE COATINGS ON IRON AND STAINLESS STEEL JPRS-35452
- WEAR DURABILITY AND ABRASION RESISTANCE OF POLYTETRAFLUOROETHYLENE COATINGS ON ELASTOMERIC VULCANIZATES NRL-6298

SODIUM CHLORIDE CORROSION RESISTANCE OF MAGNESIUM AND ALUMINUM ALLOYS WITH PROTECTIVE COATING OF NRL-6353

- SANDSTEDE, G. GALVANOSTATIC MEASUREMENTS OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES A65-22368
 - COULOMETRIC-POTENTIOSTATIC MEASUREMENTS OF ANODIC OXIDATION OF DERIVATIVES OF METHANE, ETHANE AND PROPANE IN AQUEOUS ELECTROLYTES A65-22369
- SANIN, P. I.
 SYNTHESIS, PRODUCTION, AND EFFECTIVENESS OF
 ANTIOXIDANT AND MULTIFUNCTIONAL ADDITIVES TO
 NATURAL AND SYNTHETIC FUEL OILS COLLECTION OF
 ARTICLES
 N66-11 FTD-MT-64-213

ORGANO-PHOSPHORUS AND ORGANO-CHLORINE COMPOUNDS FOR USE AS OIL ADDITIVES TO REDUCE WEAR DUE TO N66-11084

DIALKYLDITHIOPHOSPHATES WITH SECONDARY HYDROCARBON RADICALS AS ANTIOXIDANT ADDITIVES N66-11087 FOR LUBRICATING DILS

THERMAL DECOMPOSITION OF ORGANIC PHOSPHORUS COMPOUND ADDITIVES FOR REDUCTION OF FRICTION

RADIDACTIVE TRACER INVESTIGATION OF REACTION MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH COPPER FILMS IN HYDROCARBON LUBRICATING OIL MEDIUM - FRICTION REDUCING ADDITIVES N66-11106

- SANNIER. J.
 MOLTEN SODIUM CORROSION OF AUSTENITIC STEEL N65-32983 CEA-2371
- SANYAL, 8.

 VOLATILE CORROSION INHIBITORS FOR FERROUS METAL
 SURFACES NITRITE SALTS OF VARIOUS AMINES
- CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR CORROSION MECHANISM ANALYSIS ASLE PREPRINT 65-LC-11

CHEMICAL REACTION BETWEEN IRON AND EXTREME PRESSURE AGENTS LIKE CHLORINE AND SULFUR FOR CORROSION MECHANISM ANALYSIS 466-24993 ASLE PREPRINT 65-LC-11

SAVAGE. H. W.
S NAP-8 CORROSION PROGRAM - HYDROGEN SOLUBILITY IN

SODIUM-POTASSIUM, PERMEABILITY OF HYDROGEN AND DEUTERUM THROUGH STAINLESS STEEL, AND PHASE EQUILIBRIA NASA-CR-63196

N65-25409

DIFFERENCES IN CORROSION AND MASS TRANSFER RATES IN CORROSION LOOPS FOR SNAP-8 SYSTEM AND EFFECTIVENESS OF COLD TRAPPING IN REDUCING HYDROGEN CONCENTRATION NASA-CR-67272 N66-22205

FORCED FLOW CORROSION-LOOP EXPERIMENTS AND

CORROSION-LOOP MATERIAL STUDIES IN SMAP-8
CORROSION PROGRAM
NASA-CR-76382
N66-30971

SAVELEVA, T. S.

CHROMIUM STEEL STRENGTH AND CORROSION RESISTANCE
IMPROVEMENT BY MOLYBDENUM AND TUNGSTEN ADDITION

A66-22747

SAVITSKIY, YE. M.
CORROSION RESISTANCE AND PLASTICITY OF STAINLESS
STEELS WITH ADDITIONS OF RARE EARTH METALS AND
OXIDES
N65-18737

SAMYER, C. T.

ENDURANCE AND CORROSION RESISTANCE TESTS OF
CATALYST FOR RECOMBINATION OF RADIOLYTIC DXYGEN
AND HYDROGEN
CEND-525
N66-20315

SCHENCK, G. F.
USE OF INTERNAL FRICTION METHODS TO DETERMINE THE PHYSICAL SITUATION OF OXYGEN IN NIOBIUM-ZIRCONIUM ALLOYS AND ITS EFFECTS ON CORROSION CNLM-6344

SCHEUERMANN, C. M.
REFRACTORY ALLOY CORROSION, DISCUSSING COLUMBIUM
AND TANTALUM BASE TUBING ALLOY RESISTANCE TO
REFLUXING POTASSIUM BETWEEN 1800 AND 2400 DEGREES
F.

CORROSION RESISTANCE OF NIOBIUM AND TANTALUM BASE ALLOYS TO REFLUXING POTASSIUM NASA-TM-X-52136 N65-34252

CORROSION RESISTANCE OF NIOBIUM AND TANTALUM
TUBING ALLOYS TO REFLUXING POTASSIUM
NASA-TN-D-3429 N66-25004

SCHEY, J. H.
INTERFACE FRICTION BETHEEN TOOL AND WORKPIECE
DURING HOT METAL DEFORMATION
IITRI-86027-2
N65-13989

FRICTION AT TOOL-WORK INTERFACE IN HOT METAL
DEFORMATION PROCESSING
IITRI-86027-3 N65-14222

SCHLAIN, D.
STRESS CORROSION CRACKING OF VANADIUM, MOLYBDENUM,
AND TITANIUM-VANADIUM ALLOY IN HYDROCHLORIC
ACID AND SULFURIC ACID SOLUTIONS
BM-RI-6680
N66-10098

CORROSION PROPERTIES OF MOLYBDENUM, TUNGSTEN, VANADIUM, AND SOME VANADIUM ALLOYS
BM-RI-6715
N66-16451

SCHLATTER, M. J.

OXIDATION OF LOW MOLECULAR WEIGHT PARAFFINS AND
OLEFINS AT PLATINIZED POROUS CARBON ANODES IN LOW
TEMPERATURE ACID ELECTROLYTE FUEL CELLS

A65-22370

SCHLEICHER, H. W.
MICROPROBE APPLICATION IN METAL ALLOY CORROSION
STUDIES
N65-31417

SCHMIDT, W. E.
INFLUENCE OF LUBRICATION ON ENDURANCE OF ROLLING
CONTACTS
AL641057
N65-14058

SLIDING CONTACTS IN ROLLER BEARINGS — WEAR TESTING MACHINE AND LUBRICANT TESTING

AL65L081

N66-14463

SCHMITZ, G. K.
STRESS CORROSION ON E GLASS FIBERS EXPOSED TO
WATER VAPOR
A66-23120

SCHOEFER, E. A.
HIGH ALLOY STEEL CASTINGS, DISCUSSING PHYSICAL AND
MECHANICAL PROPERTIES OF CORROSION— AND HEAT—
RESISTANT 8 PERCENT NICKEL AND/OR CHROMIUM
A65-34961

SCHROEDER, R.
SOLID LUBRICATION OF MANNED ORBITAL SPACE STATION
DOOR ACTIVATOR
N66-17443

SCHULZE, R. C.

CORROSION RESISTANCE OF IRON-BASE, NICKEL-BASE,
AND COBALT-BASE SUPERALLOYS TO LITHIUM FLUORIDE
AT CYCLIC ELEVATED TEMPERATURES
NASA-CR-54781

N66-1042

SCHWARTZ, A.
INFLUENCE OF LUBRICATION ON ENDURANCE OF ROLLING
CONTACTS
AL64T057
N65-14058

SCHWARTZ, C. M.
STRUCTURAL CHANGES ASSOCIATED WITH STRESS
CORROSION AND DELAYED FAILURE IN HIGH STRENGTH
STEEL
AD-468171
N65-31865

STRUCTURAL CHANGES IN HIGH-STRENGTH STEEL ASSOCIATED WITH STRESS CORROSION AND ITS RELATIONSHIP TO DELAYED FAILURE QPR-1

N65-32351

SCIBBE, H. W.
POLYPHENYL ETHER, POLYSILOXANE, SEBACATE, AND HIGH
VISCOSITY MINERAL OIL AS IMPREGNATED LUBRICANTS
IN BALL-BEARING RETAINERS AT .000010 TORR
NASA-TN-D-3259 N66-16058

SEDDON, W. E.
STRESS CORROSION OF IRRADIATED STAINLESS STEEL
AERE-R-5014 N66-15921

SELBY, C. L.

HOT SALT STRESS CORROSION CRACKING IN TITANIUM
ALLOYS - CHLORIDE CORROSION ROLE DETERMINATION
USING CHLORINE ISOTOPES AND RELATION BETWEEN
CRACK MORPHOLOGY AND ALLOY STRUCTURE
NASA-CR-60194
N65-23708

STRESS CORROSION RUPTURING OF TITANIUM ALLOY FRACTURE MECHANICS
NASA-CR-67710
N66-10876

SEMENIDO, YE. G.
MECHANICAL AND PHYSICAL PROPERTIES OF OILS
THICKENED BY VISCOUS POLYMER ADDITIVES
FTD-TT-64-1274/162
N65-28191

EFFECT OF VISCOSITY ON ANTIWEAR PROPERTIES OF OIL ADDITIVES N66-11129

OILS, LUBRICANTS, AND COOLANTS FOR DIESEL ENGINE, AIRCRAFT ENGINE, AND ROCKET ENGINE FTD-MT-64-382 N66-19816

SEMENOV, A. P.
FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA
A65-23565

FRICTION AND ADHESION OF GRAPHITE MATERIALS IN VACUUM AND IN ARGON, HELIUM AND NITROGEN MEDIA
A65-31530

SPONTANEOUS TRANSITION OF SLIDING FRICTION TO ROLLING FRICTION WITH REFRACTORY VANADIUM AND MOLYBDENUM CARBIDES AT HIGH TEMPERATURES NASA-TT-F-9499 N65-29738

SERGEEV, S. I.

GYROSCOPIC ROTOR VIBRATIONS EXCITED BY EFFECT OF
LUBRICATION LAYER IN SLIDING BEARINGS AND
STABILIZED WITH INTERVENING ELASTODAMPING

SUPPORTS, TAKING INTO ACCOUNT MOMENT OF INERTIA OF A66-32605

- SERGEEVA, G. G.

 HEAT RESISTANCE IN AIR OF FOUR INDUSTRIAL
 AUSTENITIC-FERRITE STEELS WITH LOW NICKEL CONTENT
 AT 750-1050 DEGREES C, NOTING OXIDE SCALE
 FORMATION
 A66-10988
- SETTERLUND, R. B.
 FRACTURE TOUGHNESS AND STRESS CORROSION RESISTANCE
 OF SEVERAL HEATS OF MARAGING STEEL COMPARED WITH
 RESULTS FOR LOW-ALLOY AND HOT-WORK DIE STEEL
 A66-16801
- SEYBOLT, A. U.
 HIGH TEMPERATURE CORROSION OF NICKEL AND NICKEL
 ALLOYS BY SODIUM SULFATE
 N66-28681

COBALT CORROSION IN HIGH TEMPERATURE SULFUR-OXYGEN N66-28682

- SHAMES, F. YA.

 REACTION MECHANISM OF ANTISCORING ADDITIVES IN

 LUBRICATING OILS FOR FRICTION REDUCTION

 N66-11107
- SHAPIRO, M. B.
 TITANIUM/CARBON RATIO AS DETERMINING FACTOR IN
 SUSCEPTIBILITY TO INTERCRYSTALLINE CORROSION IN
 STAINLESS STEELS
 A65-32945
- SHAPIRO, W.

 PERFORMANCE OF HYDRODYNAMIC, HYDROSTATIC OR HYBRID
 BEARINGS DETERMINED BY NUMERICAL SOLUTION OF
 REYNOLDS LUBRICATION EQUATION FOR INCOMPRESSIBLE
 FLUID FILMS
 ASME PAPER 66-LUBS-4

 A66-33186
- SHAPOVALOV, M. 1.
 ADDITIVE FOR SULFUROUS FUELS WITH CHROMIUM
 COMPOUND FOR PISTON CYLINDER WEAR RESISTANCE
 FTD-TT-65-1126/1&4
- SHARAPOV. V. I.

 EFFECT OF VISCOSITY ON ANTIWEAR PROPERTIES OF OIL

 ADDITIVES

 N66-11129
- SHATALDY. A. YA.
 CHLORIDEBENZYL QUINDLINE TO INCREASE CORROSION
 RESISTANCE OF IRON AND STEEL IN ACIDS
 FTO-TT-65-770/184
- SHAYESON, M.

 MINIATURE SINGLE TUBE HEAT EXCHANGER FOR MEASURING
 FUEL THERMAL STABILITY
 SAE PAPER 987A

 A65-17005
- SHCHEGOLEV, N. V.

 EFFECT OF VISCOSITY ON ANTIWEAR PROPERTIES OF OIL

 ADDITIVES

 N66-11129
- SHCHELKONOGOV, V. IA.

 DIFFUSION OF CARBON INTO TUNGSTEN AND MOLYBDENUM
 AT LOW CARBON CONCENTRATIONS AND HIGH TEMPERATURE
 A65-29870
- SHCHULEPNIKOV, M. N.
 MECHANISM BY WHICH PALLADIUM ADDITIONS INCREASE
 TITANIUM CORROSION-RESISTANCE STUDIED, USING
 RADIOCHEMISTRY
 A65-34980
- SHEARER, R. S.
 SYNTHETIC LUBRICANTS COMPOUNDED FROM ORGANIC
 ESTERS
 A65-25505
- SHELBY, J.

 CORROSION RESISTANT AND EMBRITTLEMENT

 CHARACTERISTICS OF TITANIUM-CADMIUM PLATING

 N65-22093
- SHELTON, R. V.

 LUBRICANT SELECTION FOR LUNAR MISSIONS AND MANNED
 SPACECRAFT BASED ON COMPATIBILITY WITH OXYGEN-RICH
 ENVIRONMENT, PROPELLANT, ANDDIC COATINGS AND
 SLIDING FRICTION BEHAVIOR IN VACUUM
 ASLE PAPER 66AM 7A2

 A66-30415

LUBRICANT SELECTION FOR APOLLO AND OTHER MANNED

SPACECRAFT - COMPATIBILITY CRITERIA NASA-TM-X-58002

N66-28033

- SHEN, Y.-T.

 OPERATING CONDITION AND GAP SIZE EFFECTS ON
 FRICTION COEFFICIENT FOR POLYMER PLASTIC
 BEARINGS MATERIAL TESTING
 FTD-TT-65-737/16264

 N66-12106
- SHEPELEVA, YE. S.

 ORGANO-PHOSPHORUS AND ORGANO-CHLORINE COMPOUNDS
 FOR USE AS OIL ADDITIVES TO REDUCE WEAR DUE TO
 N66-11084
- SHER. V. V.

 DIALKYLDITHIOPHOSPHATES WITH SECONDARY

 HYDROCARBON RADICALS AS ANTIOXIDANT ADDITIVES
 FOR LUBRICATING OILS

 N66-11087
- SHERSTOBITOV, I. I.

 CHARACTERISTICS OF FLEXIBLE CIRCULAR PLATE,

 CONSIDERING STRESS AND STRAIN IN FRICTION ZONE AT

 CLAMPED SECTION

 A66-11181
 - CHARACTERISTICS OF PARTIALLY CLAMPED CORRUGATED MEMBRANE, INVESTIGATING EFFECT OF FORCES OF CLAMPING FRICTION A66-11182
- SHEVCHENKO, R. P.
 HIGH TEMPERATURE BEARING LUBRICANT REQUIREMENTS
 FOR JET ENGINE LUBRICATION SYSTEMS
 SAE PAPER 660072
 A66-20157
- SHIDLOVSKAIA. I. I.

 GAS-LUBRICATED BEARING EQUATIONS DERIVED THAT ARE
 WALID FOR WIDE RANGE OF TEMPERATURE AND
 NUMBERS

 A66-14156
- SHIER. J. W.
 DRY FILM LUBRICATION MATERIALS AND BONDING
 INCLUDING GRAPHITE, SELENIDES, PTFE AND PARTICLE,
 RESIN OR SALT-BONDING
 A65-20150
- SHNEYEROVA, R. N.

DETERGENT ACTION OF UIL ADDITIVES, INVESTIGATING SORPTION OF CHARGED PARTICLES ON CARBONACEOUS PRODUCTS OF FUEL COMBUSTION AND OIL OXIDATION A65-18057 ASLE PAPER 64-LC-9 ELECTROKINETIC PROCESSES AND MECHANISM OF DISPERSION ACTION IN MOTOR OIL ADDITIVES DETERMINED BY RADIOACTIVE TRACERS

- SHOR, G. I.

 DETERGENT ACTION OF DIL ADDITIVES, INVESTIGATING
 SORPTION OF CHARGED PARTICLES ON CARBONACEOUS
 PRODUCTS OF FUEL COMBUSTION AND DIL OXIDATION
 A65-18057
 ASLE PAPER 64-LC-9
 - LUBRICANT RADIATION RESISTANCE DEPENDENT ON LUBRICANT CHEMICAL COMPOSITION AND INTENSITY AND TYPE OF IONIZING RADIATION
 FTD-TT-65-325/1&2&4

 N65-32852
 - ELECTROKINETIC PROCESSES AND MECHANISM OF DISPERSION ACTION IN MOTOR OIL ADDITIVES DETERMINED BY RADIOACTIVE TRACERS

 N66-11113
- SHORT. R. E.

 CADMIUM-TITANIUM CORROSION RESISTANT PLATING
 PROCESS FOR PROTECTING HIGH STRENGTH STEELS
 A65-18784
- SHROPSHIRE, J. A.

 FUEL CELL PERFORMANCE USING NITRIC ACID-DXYGEN
 REDOX CATHODES IN SULFURIC ACID AND CARBON OR
 NOBLE METAL ANODES

 A65-22363
- SHTERN, M. A.

 OPTIMUM CONDITIONS FOR SYNTHESIZING CHROMIUM
 PHOSPHATE FOR USE AS ANTICORROSION PIGMENT
 IN SEALERS
 FTD-TT-65-55/182 * N65-30048
- SHUKLA, J. B.
 HYDROMAGNETIC THEORY FOR SQUEEZE FILMS OF

CONDUCTING LUBRICANTS WITH REFERENCE TO ROLLER AND SLIPPER BEARING
ASME PAPER 64-LUBS-12
A65-20115

HYDROMAGNETICALLY SQUEEZED FILMS BETWEEN TWO CONDUCTING SURFACES USED AS LUBRICATOR, DISCUSSING LOAD CAPACITY, PRESSURE AND TIME OF APPROACH ASME PAPER 65-LUBS-6

CONDUCTING LUBRICANT IN EXTERNALLY PRESSURIZED BEARING WITH VARIABLE FILM THICKNESS IN PRESENCE OF MAGNETIC FIELD DETERMINING FLOW, LOAD AND ELECTRICAL CHARACTERISTICS

A65-32310

SURFACE ROUGHNESS EFFECTS IN HYDROMAGNETICALLY LUBRICATED EXTERNALLY PRESSURIZED BEARINGS AND HYDROMAGNETIC SQUEEZE FILM BETWEEN TWO CIRCULAR PLATES
ASME PAPER 66-LUBS-9

ASHE PAPER 66-LUBS-9 A66-33182

SHUMAKER: M. B.
STRESS CORROSION FRACKING OF HIGH STRENGTH
ALUMINUM ALLOYS
NASA-CR-74443
N66-23655

SHUMRATOVA, G. N.

HEAT TREATMENT EFFECT ON STRUCTURE, HARDNESS,
MICROHARDNESS AND CORROSION RESISTANCE OF VTI
TITANIUM AND OT4 TITANIUM MANGANESE-ALUMINUM
ALLOY SHEETS

A66-24900

PRESSURE DISTRIBUTION OF VISCOUS ELECTRICALLY
CONDUCTING FLUID IN LUBRICATING LAYER OF
CYLINDRICAL BEARING
A66-24425

SHVEIKIN, G. P.
INTERACTION OF CO WITH POWDERED AND SOLID
NIOBIUM, EMPHASIZING OXYCARBIDE FORMATION,
CHEMICAL STRENGTH, ACTIVATION ENERGIES AND
DIFFUSION COEFFICIENTS A65-28341

SIBLEY, L. B.

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC
RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING
CONFIGURATION FOR MINERAL DILS AND ESTERS
ASLE PREPRINT 65AM 4A4

A65-24250

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL OILS AND ESTERS

A66-18292

PERFORMANCE OF AIRCRAFT GAS TURBINE MAINSHAFT BALL BEARINGS, SEALS, AND LUBRICANTS UNDER SIMULATED SUPERSONIC TRANSPORT ENGINE CONDITIONS NASA-CR-54312 N66-15366

FAILURE MODE AND OPERATION LIFE OF BALL BEARINGS USING FLUID LUBRICANTS AT HIGH TEMPERATURES IN RECIRCULATING SYSTEM NASA-CR-74097

ANGULAR CONTACT BALL BEARING-FLUID LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS, AND HIGH TEMPERATURES

HIGH TEMPERATURES
NASA-CR-75582
N66-27931
DOROV, V. P.

SIDOROV, V. P.

DEVICE FOR TAKING LONG TIME CORROSION FATIGUE
CURVES ON SMALL CROSS SECTION SPECIMENS AT HIGH
TEMPERATURES AND PRESSURES

A66-20433

PITTING CHARACTERISTICS OF EARLY PHASE CAVITATION
DAMAGE TO TEST SPECIMENS IN VENTURI
ASME PAPER 64-WA/FE-2
A65-26503

SILS, R. KH.

ORGANIC METALLIC SALTS AS OXIDATION CATALYSTS IN
LUBRICATING OILS - CORROSION RESISTANT ADDITIVES
N66-11108

DETERMINING ANTIOXIDATION EFFECTIVENESS OF MOTOR OIL ADDITIVES N66-11114

SIMMONS, A. C.
COMPATIBILITY TEST OF NITROGEN TETROXIDE AND
TITANIUM ALLOY, STUDYING CORROSIVE ATTACK AND

IMPACT SENSITIVITY

A65-32404

SIMMONS, E. B., JR.
SODIUM CHLORIDE CORROSION RESISTANCE OF MAGNESIUM
AND ALUMINUM ALLOYS WITH PROTECTIVE COATING OF
TEFLON
NRL-6353
N66-21324

SIMMONS, V. G. F.
ETHYLHEXYLAZELATE BASED LUBRICANTS FOR BALL
BEARINGS
NRL-6356
N66-21121

SIMON-VERMOT, A.

LEVER ESCAPEMENT IMPROVEMENT - MATERIALS AND
LUBRICATION FOR TIME MEASUREMENT INSTRUMENTS

SIMON, A. C.
INTERGRANULAR CORROSION OF LEAD-ANTIMONY ALLOY
BATTERY PLATE GRIDS
NRL-6387
N66-31332

SIMS, C. T.
TESTING OF HOT-CORROSION-RESISTANT ALLOYS FOR
MARINE GAS TURBINES
MEL-131/66
N66-25844

SINCLAIRE, M.

AIRCRAFT CORROSION FAILURES AND SOLUTIONS
DISCUSSING HYDRAULIC LINES, ANGLE OF ATTACK
INDICATOR, HOT AIR DUCTING, CONTROL CABLE AND
BELLOWS

A65-35750

SINENKO, N. P.
TESTING OIL ADDITIVES ON DIESEL LOCOMOTIVE WHILE
OPERATING ON SULFUR BEARING FUEL
N66-1112

SINGER, A. R. E.
FRICTION COEFFICIENT AT ELEVATED TEMPERATURES
DETERMINED BY PLANE-STRAIN COMPRESSION TEST OF
SEVERAL LUBRICANTS
A65-18794

SINGLETERRY, C. R.
ETHYLHEXYLAZELATE BASED LUBRICANTS FOR BALL
BEARINGS
NRL-6356
N66-21121

SINGLETON, A. H.
LIQUID FLUORINE CORROSION OF METALS IN IMPURITYFREE DRY SYSTEM AND RESULTANT PRODUCTS, NOTING
EFFECT OF SURFACE CONTAMINANTS
A65-1925

SINITSYN, V. V.

RELATION BETWEEN CHAIN LENGTH IN SATURATED
ALIPHATIC ACIDS AND STRUCTURE OF PSEUDOGELS
THICKENED WITH THEIR LI AND CA SOAPS STUDIED FOR
LUBRICATING PURPOSES
A65-31216

SKARCHENKOV, K. Z.
STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER
BOUNDARY FRICTION CONDITIONS IN PRESENCE OF
SURFACE ACTIVE LUBRICANT ADDITIVES

A66-25884

SKLIBA, J.

MOTION EQUATION FOR GYROSCOPIC TURN INDICATOR
SUBJECT TO DRY FRICTION

A65-20040

SLINEY, H. E.
CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID
LUBRICANTS MEASURED AND TESTED FOR AEROSPACE
ENVIRONMENT
ASLE PREPRINT 65AM 5C5
A65-2424

CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE ENVIRONMENT ASLE PREPRINT 65AM 5C5

FLUORIDE SOLID LUBRICANTS FOR EXTREME TEMPERATURE AND CORROSIVE ENVIRONMENTS NASA-TM-X-52077

SMIRNOV, M. V.
ZIRCONIUM CORROSION IN MOLTEN EQUIMOLAR MIXTURE OF
POTASSIUM AND SODIUM CHLORIDES N66-17783

- SMITH, A. E.

 MEANS OF ASSESSING AVIATION TURBINE LUBRICANT
 QUALITY, CONSIDERING SPECIFICATION, MAINTENANCE,
 OPERATIONAL FACTOR AND EQUIPMENT STRIP APPROACH
 SAE PAPER 660074

 A66-20159
- SMITH, C. S.
 ROTATING MACHINES IN EXTREME ENVIRONMENT
 DISCUSSING CONDUCTORS, MAGNETIC MATERIALS,
 INSULATIONS, BEARINGS AND PERFORMANCE
 A65-31144

SMITH, E. A.

MOLYBDENUM DISULPHIDE-GRAPHITE ALLOY AS SOLID

LUBRICANT DEMONSTRATING VERY LOW COEFFICIENT OF
FRICTION

A65-36165

SMITH, J. A.

CATHODE PROTECTION, METALLIC AND STRESS CORROSION
RESEARCH, AND DEEP OCEAN TECHNOLOGY
N65-27111

SMITH, J. D.

GROWTH SUPPORT STUDIES OF SELECTED MICROORGANISMS
IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND
LIQUID ROCKET PROPELLANT
RTD-TDR-63-4117, PT. II N66-24820

SMITH, L. D.
POLYPHENYL ETHER, POLYSILOXANE, SEBACATE, AND HIGH
VISCOSITY MINERAL OIL AS IMPREGNATED LUBRICANTS
IN BALL-BEARING RETAINERS AT .000010 TORR
N66-16058

SMITH, R. K.
IGNITION INHIBITORS, SCREENING METHODS OF
CORROSION INHIBITOR SYSTEMS, AND FLASH AND FIRE
POINTS OF WATER GLYCOL HYRAULIC FLUIDS
BMR-4
N65-1676

CORROSION INHIBITORS IMPROVEMENT IN METALS FROM ATTACK BY WATER BASED. FIRE RESISTANT, HYDRAULIC FULLD N65-27926

SMITH, T. J.

STRESS CORROSION CRACKING MICROTOPOLOGY STUDIES ON THIN FILMS OF IRON-NICKEL-CHROMIUM BASE ALLOYS
EXPOSED TO BOILING MAGNESIUM CHLORIDE
COO-1319-36

SMITH, W. F.
MAVEGUIDE INSERTION LOSS DUE TO CORROSION BY
ACIDIFIED HYDROGEN SULFIDE AND SALT SPRAY TESTED
FOR VARIOUS COATINGS
A65-21893

SMOLKOTINA, Z. G.
CALCIUM SOAPS OF SYNTHETIC FATTY ACID FRACTION AS
METAL DRAWING LUBRICANT
FTD-TT-64-1197/1
N65-33475

SMYSLOV, YU. N.
FRICTION AND HEAT FLOW DETERMINATION FOR
SELF-SIMULATING BOUNDARY LAYER PROBLEMS
N65-35856

SNIEGOSKI, P. J.
SYNTHESIS, CHARACTERIZATION, AND ESTER-ESTER
INTERCHANGE STUDY OF MIXED ESTER 2-ETHYLHEXYL
BENZYL AZELATE FOR USE AS LOW TEMPERATURE
INSTRUMENT OILS
NRI-6149
NOS-22144

STABILIZATION OF SILICONE LUBRICATING FLUIDS AT 300 TO 400 DEG C BY SOLUBLE CERIUM COMPLEXES N65-22149

QUANTITATIVE CHEMICAL ANALYSIS, USING GAS CHROMATOGRAPHY, FOR ACYL COMPONENTS OF NEOPENTYL POLYOL ESTER AIRCRAFT ENGINE LUBRICANT NRL-6338

SODA, N.
TEST RIG FOR GAS-LUBRICATED JOURNAL BEARINGS
MEASURING FRICTIONAL TORQUE, GAS FILM PRESSURE
DISTRIBUTION, STATIC AND DYNAMIC ECCENTRICITY
CHANGES, ETC
A66-24929

- SCHOLOV, YU. A.
 SLIDING FRICTION JOURNAL BEARING FOR
 SURBOCOMPRESSOR AND OTHER HIGH SPEED MACHINES
 106-10873
 10-11-65-517/16264
- SOKOLOWSKI. T.

 HAVEGUIDE INSERTION LOSS DUE TO CORROSION BY
 ACIDIFIED HYDROGEN SULFIDE AND SALT SPRAY TESTED
 FOR VARIOUS COATINGS

 A65-21893
- SOLONIN, S. M.

 ACCELERATED COOLING OF FERRITIC-MARTENSITIC STEEL
 AND FERRITIC STEEL AFTER SINTERING, COMBINED WITH
 ADDITIONAL HEAT TREATMENT, INCREASES STRENGTH AND
 CORROSION RESISTANCE

 A66-16690

SOLONINA, O. P.

CORROSION RESISTANCE AND ELECTROCHEMICAL
PROPERTIES OF ALLOYS OF NIOBIUM-TITANIUM
A66-20838

CORROSION RESISTANCE, ELECTROCHEMICAL AND MECHANICAL PROPERTIES OF ALLOYS OF TITANIUM-NIDBIUM SYSTEM A66-20839

SOLOS. L. P.
GOLD PLATING COATED WITH DRY THIN TEFLON
LUBRICANT FILM SYSTEM FOR LONG LIFE SLIDING
ELECTRIC CONTACT ON MICROWAVE DEVICE
A65-24115

SOMEYA, T.
TRACK CURVE MADE BY PIVOT CENTER POINT OF
DYNAMICALLY LOADED CYLINDRICAL SLIDING BEARING OF
ARBITRARY CROSS SECTION
A65-21245

SOROKIN, YU. I.

EFFECT OF SODIUM NITRITE ON CORROSION OF TITANIUM
BY HYDROCHLORIC AND SULFURIC ACID
N66-10298

SOUTHWELL, C. R.
CORROSION OF ALUMINUM AND MAGNESIUM ALLOYS IN
TROPICAL ENVIRONMENTS
NRL-6105
NRL-6105

SPALVINS, T.
GOLD THIN FILMS OF 1800 ANGSTROMS TO BE USED AS LUBRICANTS MERE VAPOR-DEPOSITED ON NI, NI- CR AND NI- RE SUBSTRATES IN VACUUM

A66-15937

VAPOR DEPOSITED GOLD THIN FILMS TO OBTAIN ADHESION AND DURABILITY BETWEEN FILM AND SUBSTRATE ESSENTIAL AS LUBRICANTS IN HIGH VACUUM

A66-31979

VAPOR-DEPOSITED THIN GOLD FILMS AS LUBRICANT IN VACUUM
NASA-TN-D-3040
N65-3422

VACUUM DEPOSITION OF GOLD THIN FILMS ON NICKEL, NICKEL-CHROMIUM, AND NICKEL-RHENIUM SUBSTRATES FOR USE AS LUBRICANTS NASA-TM-X-52125 N65-36775

SPANILY, J.
TEMPERATURE EFFECT ON CHROMIUM-NICKEL STAINLESS
STEEL CORROSION IN PASSIVITY RANGES
FTD-TT-65-1223/1626364
N66-27891

SPENGLER, G.
SIMULATION OF LUBRICATING OIL CIRCULATION IN
AVIATION TURBINE ENGINES BY CONSTRUCTED MODEL,
NOTING CHANGE OF VISCOSITY, ACID NUMBER AND
ELECTRICAL CONDUCTIVITY AT HIGH TEMPERATURES
A66-23751

LUBRICATION AT SPACE CONDITIONS
DVL-434

N66-10521

- SPERGEL. J.
 THIN FILM LUBRICANT DEVELOPED FOR GOLD-PLATED
 ELECTRIC CONTACTS DISCUSSING CHARACTERISTICS,
 PERFORMANCE AND TESTING
 A65-30815
- SPIER, E. E.
 POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP
 SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR

BENDING THEORY ASME PAPER 65-AV-3

A65-23464

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR BENDING THEORY ASME PAPER 65-AV-3

A66-22470

SPIVAK, M. S.

EFFECT OF ULTRASONIC CLEANING ON CORROSION RESISTANCE OF PHOSPHATE-COATED STEEL PANELS N65-14411

SPRAGUE, T. P.
CHEMICAL COOLANTS FOR MACHINING URANIUM IN PRESENCE OF TRACE AMOUNTS OF CHLORIDE -CORROSION PREVENTION

N65-18429

N65~34319

SPURR, R. T.

FILMS ON SLIDING SURFACES INVESTIGATING EFFECTS ON SEIZURE, PRESSURE WELDING, SINTERING, FRICTION AND BOUNDARY LAYER LUBRICATION A65-15683

STRESS CORROSION CRACKING EXPERIMENTS WITH IRON-NICKEL-CHROMIUM ALLOYS C00-1319-24

STRESS CORROSION CRACKING IN CHROMIUM-NICKEL-IRON ALLOYS WITH FOURTH ELEMENT ADDED COO-1319-27

N66-17533

STRESS CORROSION CRACKING MECHANISM IN IRON-NICKEL-CHROMIUM ALLOY SYSTEM N66-25978

STRESS CORROSION CRACKING MICROTOPOLOGY STUDIES ON THIN FILMS UP IRON-NICKEL-CHROMIUM BASE ALLOYS EXPOSED TO BOILING MAGNESIUM CHLORIDE COO-1319-36 N66-31092

STALLINGS, L.
MILITARY SPECIFICATION FOR MULTIPURPOSE
AERONAUTICAL LUBRICATING GREASE

A65-34831

A66-24986

LUBRICANT PROPERTIES OF REACTION PRODUCTS FROM INTERACTION OF VOLATILE COMPOUND GENERATED VAPORS FOR HIGH SPEED BALL BEARING NAEC-AML-2107 N65-22046

STEARNS, R. S.
POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM OILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE **APPLICATION** ASLE PREPRINT 65-LC-1

POLYOLEFIN FLUIDS WITH WIDE VISCOSITY RANGE COMPARED WITH PETROLEUM OILS AND EXISTING SYNTHETIC LUBRICANTS FOR EXTREME TEMPERATURE APPLICATION ASLE PREPRINT 65-LC-1

STEFEC, R.

POTENTIODYNAMIC CURVES INDICATE THAT CHROMIUM STAINLESS STEEL CORROSION RESISTANCE MINIMUM OCCURS AFTER TEMPERING NEAR 500 DEGREES C

STEGER, P. J.
HYDROSTATIC BORING BAR AND PRODUCTION-SIZE
ATP REARINGS AND SPINDLE USE HYDROSTATIC AIR BEARINGS AND POROUS GRAPHITE BEARING PADS WITH APPLICATION AS LATHE COMPONENTS Y-DA-921 N66-15092

SLIDING CHARACTERISTICS OF POLYTETRAFLUOROETHYLENE / PTFE/ DRY LUBRICANT, EXAMINING EFFECTS OF TIME, TEMPERATURE AND ENVIRONMENT A66-30570

KINETICS OF POLYTETRAFLUOROETHYLENE /PTFE/ SLIDING ON PTFE, OBSERVED BY CONSTANT FORCE OF FRICTION AND MEASURING SLIDE VELOCITY ML-TDR-64-303 N65-27803 STEINBERG, G.
THIN FILM LUBRICANT DEVELOPED FOR GOLD-PLATED ELECTRIC CONTACTS DISCUSSING CHARACTERISTICS, PERFORMANCE AND TESTING A65-A65-30815

LOW CORROSION RESISTANCE OF IRON-ALUMINUM ALLOYS
IN FLUORINE ATMOSPHERE AT HIGH TEMPERATURE N65-13415

STEPANOV, V. N.
CONTACT FRICTION EFFECTS ON FATIGUE PHYSICAL LIMIT AND CYCLIC STRENGTH OF STEEL A65-14788

STEPHAN, E. F.
GAS SPARGE CORROSION PROTECTION FOR HYDROFLUORIC BMI-X-329 N66-18224

STERN. F. M. ENDURANCE AND CORROSION RESISTANCE TESTS OF CATALYST FOR RECOMBINATION OF RADIOLYTIC DXYGEN AND HYDROGEN CEND-525

STERNER, C. J. LIQUID FLUORINE CORROSION OF METALS IN IMPURITY-FREE DRY SYSTEM AND RESULTANT PRODUCTS, NOTING EFFECT OF SURFACE CONTAMINANTS A65-19259

STERNLICHT, B.

MEASURING PERFORMANCE CHARACTERISTICS OF LIQUID

METAL LUBRICATED TURBOMACHINE BEARING UNDER

STEADY STATE AND DYNAMIC LOAD CONDITIONS

STOCK, A. J.

ORY FILM LUBRICATION MATERIALS AND BONDING
CELEPIDES. PIFE AND PA INCLUDING GRAPHITE, SELENIDES, PTFE AND PARTICLE, RESIN OR SALT-BONDING

FOUR-BALL WEAR TESTER TO EVALUATE SOLID LUBRICANT DISPERSIONS INCLUDING MOLYBDENUM DISULFIDE A66-27774

STONEHOUSE, A. J.
CORROSION RESISTANCE OF BERYLLIUM AND CORROSION PREVENTION VIA DIFFERENT COATINGS

STRAUSZ, T.

FACTORS AFFECTING PERFORMANCE AND RELIABILITY OF
THIN FILM CAPACITORS NOTING CORROSION EFFECT AT
POINTS OF INTERMETALLIC MOUNTINGS

A65-235:

STROM, T. N. CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE ENVIRONMENT

ASLE PREPRINT 65AM 5C5 CHEMICAL AND THERMAL STABILITY OF FLUORIDE SOLID LUBRICANTS MEASURED AND TESTED FOR AEROSPACE

ENVIRONMENT ASLE PREPRINT 65AM 5C5

A66-18284

FLUORIDE SOLID LUBRICANTS FOR EXTREME TEMPERATURE AND CORROSIVE ENVIRONMENTS NASA-TM-X-52077

STRUNGE, B. N. TESTING OIL ADDITIVES ON DIESEL LOCOMOTIVE WHILE OPERATING ON SULFUR BEARING FUEL

STRUMKIN, V. A.

EFFECT OF HALOGENS ON CORROSION OF TITANIUM BY
HYDROHALIC ACIDS, CHEMICAL STABILITY OF TITANIUM
TO CHLORINE, BROMINE, AND IODINE, AND EFFECT OF
AROMATIC NITRO COMPOUND ON CORROSION OF TITANIUM N66-10297

STRUMSKII, M. G.
VOLTAGE AND DENSITY OF CONTACT-CORROSION CURRENT ARISING AT CONTACT SURFACE OF DIFFERENT METALS

PERSONAL AUTHOR INDEX

STUART, D. E.

STUART, D. E.
HELICOPTER GEAR LUBRICATION AND PROTECTIVE
COATINGS
N66

N66-12537

STUKIN, A. D.

LUBRICANT RADIATION RESISTANCE DEPENDENT ON

LUBRICANT CHEMICAL COMPOSITION AND INTENSITY AND

LYPE OF IONIZING RADIATION

FTD-TT-65-325/18284

N65-32852

STUPNICKI, J.

APPLICABILITY OF ELASTICITY THEORY EQUATIONS FOR CYLINDERS IN DRY CONTACT TO PRESSURE DISTRIBUTION AT ROLLER AND BALL BEARING CONTACT POINTS IN PRESENCE OF LUBRICATING FILM

A65-26533

SUGIYAMA, Y.

AL- ZN- MG ALLOYS SENSITIVITY AND RESISTANCE TO
WELDING AND STRESS CORROSION CRACKING

A65-16238

SUKHORUKOV, P. A.
FUEL DIL ADDITIVE WITH BARIUM NAPHTHENATE FOR WEAR
AND SCALE REDUCTION IN HIGH SPEED DIESEL ENGINE
FTD-TT-65-1125/184

SULZHENKO, N. K.

OLEIC ACID AND CRYSTALLINE IODINE MIXTURE AS
ANTICORROSION LUBRICANT FOR TITANIUM PARTS
FTD-TT-65-1193

SUNDBERG. A. G.
LABORATORY, COMPONENT AND ENGINE TESTS FOR
LUBRICANT PROPERTIES OF J-79 JET ENGINE INCLUDING
ELASTOMER VOLUME SWELL, OXIDATION-CORROSION,
LUBRICITY, ETC
SAE PAPER 650816

A66-10821

SWANN. P. R.
DISLOCATION INFLUENCE ON NUCLEATION AND PROPAGATION OF STRESS CORROSION CRACKS

A65-31684

STRESS-CORROSION FAILURE IN METAL ALLOYS,
DISCUSSING SURFACE AND ELASTIC ENERGY, ADSORPTION,
CRACK PROPAGATION, PITS AND TUNNELING
A66-19601

SWEENEY. G. G.
CORROSION FILM ON INCONEL AND AISI 304 STAINLESS
STEEL INVESTIGATION WITH SCANNING ELECTRON
MICROSCOPE AND SPINNING SOURCE MASS SPECTROGRAPH
MICROPROBE
WERL-1114-1
N66-18899

SWIKERT: M. A.

EVAPORATION RATES: FRICTION: AND WEAR OF
LUBRICATING MATERIALS UNDER VACUUM CONDITIONS
NASA-TM-X-52009

N65-35475

SYMM, G. T.
SURFACE TEMPERATURES OF FRICTIONAL CONTACTS
CONSIDERING TWO ROLLING/SLIDING CONTACTS, HEAT
SOURCE MOVING OVER SURFACE AT VARIOUS SPEEDS AND
REPEATED CONTACT
A65-25442

SYNIUTA, W. D.
ELECTRON MICROSCOPE STUDY OF SURFACE TOPOGRAPHY
CHANGES IN RUNNING TRACK IN ROLLING CONTACT
FATIGUE TESTER
ASLE PAPER 64-LC-29
A65-31715

SZYDLOWSKI, J.

CORROSION PROTECTION FOR REACTOR ROTATING
ASSEMBLIES COVERING REQUIREMENTS, COATING TESTS
A65-16168
AND MATERIALS

T

TABOADA, A.

S NAP-8 CORROSION PROGRAM - HYDROGEN SOLUBILITY IN SODIUM-POTASSIUM, PERMEABILITY OF HYDROGEN AND DEUTERUM THROUGH STAINLESS STEEL, AND PHASE EQUILIBRIA

NASA-CR-63196

N65-25409

DIFFERENCES IN CORROSION AND MASS TRANSFER RATES IN CORROSION LOOPS FOR SNAP-8 SYSTEM AND

EFFECTIVENESS OF COLD TRAPPING IN REDUCING
HYDROGEN CONCENTRATION
NASA-CR-67272
NASA-CR-67272

FORCED FLOW CORROSION-LOOP EXPERIMENTS AND CORROSION-LOOP MATERIAL STUDIES IN SNAP-8 CORROSION PROGRAM N66-30971

NASA-CR-76382

LEAD AND LEAD-SALT CORROSION IN THERMAL CONVECTION

LEAD AND LEAD-SALT CORROSION IN IMERRAL CONTESTION
LOOPS
ORNL-TM-1437

TABOR. D.

FRICTION, LUBRICATION AND WEAR INCLUDING ROLLING,
SLIDING AND ADHESION IN METALS AND NONMETALS AND
SURFACE TOPOGRAPHY STRUCTURE, USING ELECTRON
HICROSCOPY

A65-23509

FRICTIONAL AND VISCOELASTIC PROPERTIES OF PLASTICS
AND RUBBER SHOW RELATIONSHIP TO SLIDING SPEED AND
TEMPERATURE

A66-14247

ASME PAPER 65-LUB-15

FRICTION AND LUBRICATION OF POLYMERS

A66-26304

TAKAHASKI, T.

CR AND MN EFFECTS ON AGING MECHANISM AND
ANTICORROSION PROPERTIES OF AL- ZN- MG ALLOYS
A66-12723

TAKEYAMA, H.
TOOL MEAR IN MACHINING GRAPHITE, CONSIDERING SPEED
EFFECT
ASME PAPER 64-WA/PROD-7
A65-32933

TALLIAN, T. E.

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC
RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING
CONFIGURATION FOR MINERAL OILS AND ESTERS
ASLE PREPRINT 65AM 4A4

A65-24250

LUBRICANT FILM THICKNESS IN ELASTOHYDRODYNAMIC RANGE MEASURED AS FUNCTION OF SPEED IN ROLLING CONFIGURATION FOR MINERAL OILS AND ESTERS

TAMONOV, A. A.

PRESSURE EXPRESSIONS DERIVED FOR FLOW OF
PRESSURE EXPRESSIONS DERIVED FOR FLOW OF
NONLINEARLY VISCOPLASTIC LUBRICANT BETWEEN PLATES
A65-16350

FLOW OF NONLINEAR VISCOPLASTIC MEDIUM BETWEEN TWO N66-26219 PLATES

TANI. I. CORROSION CHARACTERISTICS OF AL- ZN- MG ALLOYS A65-30744

TANNER, M. C.

AMMONIA USED TO SUPPRESS DXYGEN PRODUCTION AND
CORROSION IN BOILING WATER REACTOR
AECL-2562

N66-28337

TANNER, R. I.
VISCOELASTIC NON- NEWTONIAN LUBRICANT FLOW
EQUATIONS WITH SQUEEZE FILM SOLUTIONS
ASLE PAPER 64-LC-10
A65-22795

TAO, F. F.
LUBRICITY PROPERTIES OF HIGH TEMPERATURE JET FUELS
N66-13426
QPR-1

TARANOVSKIY, S. V.
SELECTION, MANUFACTURE, CORROSION RESISTANCE, AND
PECULIARITIES OF ALUMINUM ALLOYS USED AS
STRUCTURAL BUILDING MATERIALS
N66-12735

TARARYSHKIN, N. YE.
THERMAL STABILITY AND CORROSION OF SULFUR ORGANIC
COMPOUNDS IN PETROLEUM FUEL
N65-19191

TARMANYAN, G. S.

ALKYLPHENOL ADDITIVES OF FORMALDEHYDE CONDENSATION
FOR USE IN LUBRICATING MOTOR OILS

N66-11079

TARMY, B. L.
FUEL CELL PERFORMANCE USING NITRIC ACID-OXYGEN
REDOX CATHODES IN SULFURIC ACID AND CARBON OR
A65-22 465-22363

ELASTOHYDRODYNAMIC LUBRICANT FILM EFFECTS IN ROLLING BALL TWO-BALL CONTACTS AL64T067

SLIDING CONTACTS IN ROLLER BEARINGS - WEAR TESTING MACHINE AND LUBRICANT TESTING AL65L081 N66-14463

TEPPER, F

MECHANISMS OF CORROSION ON SELECTED STRUCTURAL MATERIALS BY LIQUID CESIUM MSAR-64-27

CORROSIVE ATTACK MECHANISMS OF LIQUID CESIUM ON CONTAINMENT METALS AND TEMPERATURE GRADIENT MASS TRANSFER COMPARISON

MSAR-65-111

TERENTYEV, YA. K.
MOLYBDENUM DISULFIDE AS ANTIFRICTION COATING -

FTD-TT-64-1242/1

TERESHCHENKO. YE. R.
THERMAL STABILITY AND CORROSION OF SULFUR ORGANIC COMPOUNDS IN PETROLEUM FUEL

PHENOL RESIN AND POLYVINYL BUTYRAL PROTECTIVE PRIMER WITH HIGH CORROSION RESISTANCE FOR STEELS AND LIGHT ALLOYS ONI-TRANS-2060

TERMAN, T.

GRAPHICAL METHOD FOR OPTIMIZING BEARING SPAN WITH RESPECT TO REDUCING SHAFT BENDING AND BEARING DEFLECTION TO MINIMUM A65-25644

TETELBAUM, E. S.
ANTIOXIDATION, ANTICORROSION, AND DETERGENT
ADDITIVES FOR LUBRICATING OILS OBTAINED BY
TREATING PRODUCTS OF OXIDATION OF PARAFFIN WITH
PHOSPHORUS PENTASULFIDE

N65-224 N65-22440

THAMER, B. J.
STATIC AND ISOTHERMAL CORROSION TESTS OF
HASTELLOY N, INCOMEL 600, AND HYMU-BO IN
URANIUM CHLORIDE-POTASSIUM CHLORIDE EUTECTIC
N66-N66-30771

THEYSE, F. H.

HYDRODYNAMIC LUBRICATION EMPHASIZING THICKNESS OF LUBRICANT FILMS AND FORCES ON FILMS

465-1567Q

THOMAS, D. K.

EFFECT OF FINELY DIVIDED MATERIALS ON POLYDIMETHYL
SILICONE OIL - FILLER REINFORCEMENT IN SILICONE
LIQUID POLYMERS

N66-31918

THOMAS, K. C.
STRESS CORROSION THEORY USED IN MODEL FOR
PREDICTING EFFECT OF CATION AND ANION IN SOLUTION
ON SUSCEPTIBILITY TO STRESS CORROSION CRACKING
A65-2235) 465-22351

STRESS CORROSION FAILURE IN STAINLESS STEEL AND ZIRCALDY 4 FUEL ELEMENT CLADDING WCAP-3269-50 N66-30579

THOMPSON, C. J.
SYNTHESIS OF ALKYL, CYCLOALKYL, AND DICYCLOALKYL
SULFIDES TO PROVIDE REFERENCE COMPOUNDS
NECESSARY IN SEARCH FOR SIMILAR CLASSES OF BM-RI-6796 N66-28345

THOMPSON: D. R.
ULTRASONIC AGITATION OF CORRODENT SOLUTIONS AND
HOT FINISHED MILD STEEL TEST COUPONS USED TO
EVALUATE EFFECTS OF VARIABLES ON EFFECTIVENESS

OF TWO CORROSION INHIBITORS BM-R I-6696

N66-11939

THOMPSON, J. W.

HIGH ACTIVITY OF ALKALI METAL SALTS OF CARBOXYLIC ACIDS AND SUBSTITUTED PHENOLS AS SYNERGISTS FOR ARYLAMINE ANTIOXIDANTS IN ESTER-TYPE SYNTHETIC LUBRICATING DILS A66-2312:

THOMPSON, M. A.
COMPOSITION EFFECT ON PLUTONIUM METAL CORROSION
STUDIED BY SPECTROGRAPHIC ANALYSIS,
METALLOGRAPHY, AND ELECTRON MICROSCOPIC **EXAMINATIONS** RFP-511

N66-27404

THROPE, J.

PREVENTION OF WATER VAPOR CORROSION OF URANIUM
BY OXYGEN AND PROTECTIVE COATINGS

N66-1:

TIKHENKO, YU. N.
CORROSION RESISTANCE OF STRUCTURAL ALUMINUM ALLOY
BUILDING MATERIALS
N66-1273

TIKHONOV, A. S.

DEFORMATION RESISTANCE OF HIGH STRENGTH AND ANTICORROSION STEEL ALLOY CLADS DURJNG HOT

TILMAN, M. M.
EFFECTS OF SUBSTITUTING COBALT FOR NICKEL WN ACID
CORROSION RESISTANCE OF STAINLESS STEEL 8M-RI-6591

PUBLICATIONS ON LUBRICATION COVERING FLUID FILM, METAL MORKING, AUTOMOTIVE, GEAR, BEARING, FRICTION AND WEAR ASME PAPER 64-WA/LUB-1 A65-33853

TINER, N. A.

POLARIZATION CURVES OF STRESS CORROSION CRACKING
IN MARTENSITIC HIGH STRENGTH STEELS REPT.-132-07

TINSLEY, E. C.
REVISED ELECTROMOTIVE SERIES INCLUDING METALS AND ALLOYS RELATED TO CORROSION RIA-66-469 N66-29157

TISHKOVA, V. N.

MULTIFUNCTIONAL AND ANTIOXIDANT ADDITIVES SYNTHESIZED FROM DIESTERDITHIOPHOSPHORIC ACID -CHARACTERISTICS OF ALKYLPHENDLS AND DISULFIDES OBTAINED AS INTERMEDIATE PRODUCTS

TOKAREY, V. P.

EFFECT OF CORROSIVE AND SURFACE ACTIVE MEDIA ON
FATIGUE STRENGTH OF ALUMINUM ALLOYS WIDELY USED IN
AIRCRAFT CONSTRUCTION A66-25883

TOLSON, G. M.
LEAD AND LEAD-SALT CORROSION IN THERMAL CONVECTION ORNL-TM-1437

TOMASHOV, N. D.

DEFORMATION AND ANNEALING EFFECTS ON CORROSION
RESISTANCE OF PURE AND PALLADIUM-ALLOYED TITANIUM
IN SULPHURIC AND HYDROCHLORIC ACIDS

MECHANISM BY WHICH PALLADIUM ADDITIONS INCREASE TITANIUM CORROSION-RESISTANCE STUDIED, USING RADIOCHEMISTRY A65-34980

ALLOYING ELEMENTS EFFECT ON ANODIC CORROSION AND PASSIVATION OF STAINLESS STEELS

SURFACE HYDRIDE CORROSION FILM EFFECT ON ELECTROLYTIC CORROSION AND OXIDATION OF TITANIUM

CORROSION OF RHENIUM IN VARIOUS ACIDS AND HYDROXIDES IS ELECTROCHEMICAL IN NATURE AND DETERMINED BY KINETICS OF ANODIC AND CATHODIC

PROCESSES INVOLVED

A66-21748

TOMPKINS, J. F., JR.
LIQUID FLUORINE CORROSION OF METALS IN IMPURITYFREE DRY SYSTEM AND RESULTANT PRODUCTS, NOTING
EFFECT OF SURFACE CONTAMINANTS

A65-19259

TOPEKHA, P. K.
STRUCTURAL CHANGES IN METAL SURFACE LAYERS UNDER
BOUNDARY FRICTION CONDITIONS IN PRESENCE OF
SURFACE ACTIVE LUBRICANT ADDITIVES

A66-25884

TOVROG. T.
DIFFERENTIAL THERMAL ANALYSIS FOR STUDY OF THERMAL
DECOMPOSITION OF ORGANIC LUBRICANT SYSTEM
A66-31899

TOY, S. M.

POLARIZATION CURVES OF STRESS CORROSION CRACKING
IN MARTENSITIC HIGH STRENGTH STEELS
REPT.-132-07
N65-34370

TRIPLER. A. B., JR.
STRUCTURAL CHANGES ASSOCIATED WITH STRESS
CORROSION AND DELAYED FAILURE IN HIGH STRENGTH
STEEL
AD-468171
N65-31865

STRUCTURAL CHANGES IN HIGH-STRENGTH STEEL
ASSOCIATED WITH STRESS CORROSION AND ITS
RELATIONSHIP TO DELAYED FAILURE
N65-32351

TROSHIN, YA. K.

COMBUSTION AND DETONATION PHYSICS FOR MIXTURES
OF LUBRICATING OILS AND DXYGEN
FTD-TT-65-1106/18284 N66-18553

TRUBINSKAYA, R. A.

EFFECT OF MOTOR OIL ADDITIVES ON PITTING OF
HYDRAULIC LIFTERS

N66-11126

TRUMAN, J. E.
STRESS CORROSION CRACKING FAILURE OF STAINLESS
STEEL AT HIGH TEMPERATURE A65-33134

TSESARSKII, I. B.
HEAT TRANSFER FROM CYLINDRICAL SURFACE WITH DENSE
RIB NETWORK TO COOLING OIL N66-20193

TSEYTLIN, KH. L.
EFFECT OF HALOGENS ON CORROSION OF TITANIUM BY
HYDROHALIC ACIDS, CHEMICAL STABILITY OF TITANIUM
TO CHLORINE, BROMINE, AND IODINE, AND EFFECT OF
AROMATIC NITRO COMPOUND ON CORROSION OF TITANIUM
N66-1029

EFFECT OF SODIUM NITRITE ON CORROSION OF TITANIUM BY HYDROCHLORIC AND SULFURIC ACID

N66-10298

TSIGURD, T. A.

REACTION MECHANISMS OF OXIDATION RESISTANT
ADDITIVES IN OXIDATION PROCESS IN LUBRICATING
OILS - HYDROGEN PEROXIDE FORMATION
N66-11111

TSYGANCK, YE. I.
STEEL PIPE HOT ROLLING LUBRICATION BY GRAPHITE AND
SODIUM NITRATE SUSPENSION IN CALCIUM HYDROXIDE
SOLUTION

SOLUTION
FTD-TT-64-1086/1

TUBYNSKAYA, G. S.
TUBYNSKAYA, G. S.

TUBYANSKAYA, G. S.

COMPARISON OF VARIOUS POLYORGANOSILOXANE LIQUIDS
FOR USE AS BASES IN HIGH TEMPERATURE CONSISTENT
OILS
FTD-TT-65-322/16284
N65-3163

ORGANIC SILOXANE POLYMER LIQUIDS AS COMPONENTS OF HIGH TEMPERATURE LUBRICATING OILS FTD-TT-65-322/16264 N65-3594

SILICONE OIL STABILITY AND OXIDATION RESISTANCE EMMANCED BY CYCLOPENTADIENYL TRICARBONYL MANGANESE FTD-TT-65-520/164 N66-13754

TURSKII, YU. 1.
THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS
UF ANTIOXIDANT ADDITIVES IN LUBRICATING DILS ULS-S-R.
N66-13718

TYLER, J. C.

MOLYBDENUM DISULFIDE SOLID LUBRICANT PROPERTIES COMPRESSION, TENSION, TORSION, COHESION,
ADHESION, AND SLIDING FRICTION MEASUREMENTS
RS-460
N66-14469

u

UDYMA, P. G.
POLYMERS IN ANTICORROSIVE TECHNOLOGY
FTD-MT-63-54
N65-18284

UGAI, IA. A.

CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC

MG- ZN ALLOYS IN HALIDE SOLUTION

ULLRICH, O. A.

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED,
HEAVILY LOADED ROLLING CONTACTS - MEASUREMENT OF
DEFORMATION BY X-RAY TECHNIQUE
ASD-TDR-61-643, PT. V N65-30505

ULYANOVA, A. V.
THERMAL DECOMPOSITION OF ORGANIC PHOSPHORUS
COMPOUND ADDITIVES FOR REDUCTION OF FRICTION
CORFETCIENT N66-11104

RADIOACTIVE TRACER INVESTIGATION OF REACTION MECHANISM OF TRIBUTYLTRITHIOPHOSPHITE WITH COPPER FILMS IN HYDROCARBON LUBRICATING OIL MEDIUM - FRICTION REDUCING ADDITIVES

N66-11106

USHAKOV, G.
PISTON SHAPE CHANGED, BREATHING AND LUBRICATION
IMPROVED TO INCREASE LIFESPAN OF INTERNAL
COMBUSTION AIRCRAFT ENGINES
FTD-TT-65-723/18284
N66-12606

UTSMIYEVA, N. M.

MULTIFUNCTIONAL AND ANTIOXIDANT ADDITIVES
SYNTHESIZED FROM DIESTERDITHIOPHOSPHORIC ACID —
CHARACTERISTICS OF ALKYLPHENOLS AND DISULFIDES
OBTAINED AS INTERMEDIATE PRODUCTS

N68-1100

V

VALORI, R.
INFLUENCE OF LUBRICATION ON ENDURANCE OF ROLLING
CONTACTS
AL64T057
N65-14058

VALTIERRA, M. L.

MEAR AND GREASE LUBRICATION EFFECTS IN MATCHED
AIRCRAFT SPLINE SPECIMENS SUBJECTED TO OSCILLATORY
MOTION

A66-30572

EFFECT OF HYDROCARBON ANTIOXIDANTS ON SPLINE WEAR WHEN OPERATING SUBMERGED IN MINERAL OIL RS-485 N66-26576

VAN DER VLUGT, L. S.
CORROSION OF CAST IRON PIPES AS ELECTROBIOCHEMICAL
PROCESS IN ANAEROBIC SOIL
F03-3957/T-166-/
N65-32693

VANDEMBURGH, D. G.
STRESS CORROSION CRACKING OF HIGH STRENGTH
ALLWINUM ALLOYS
NASA-CR-74443
N66-23655

VANMOL. W.

CLOSED LOOP SYSTEM FOR DYNAMIC CORROSION TESTS AT
HIGH TEMPERATURE IN PRESSURIZED WATER REACTOR
EUR-1744.F

N65-32146

VANTOCH, P.
HIGH PERFORMANCE ROCKET AND RAMJET COMBUSTORS,
INTENSIFICATION OF COMBUSTION PROCESSES, AND
DEVELOPMENT OF FUEL ADDITIVES N65-23434

VARGO, E. J.
FORCED CIRCULATION, CROLDY 9 M MERCURY LOOP
DESIGNED TO INVESTIGATE CORROSION PRODUCT
SEPARATION TECHNIQUES
N65-

N65-21161

VASILCA, GH.
LUBRICATION PARAMETERS WITH RESPECT TO
EXPERIMENTAL VALUES AND REPRODUCIBILITY

A66-28465

N66-13268

VASILCHENKO, G.
PISTON SHAPE CHANGED, BREATHING AND LUBRICATION
IMPROVED TO INCREASE LIFESPAN OF INTERNAL
COMBUSTION AIRCRAFT ENGINES FTD-TT-65-723/18284 N66-12606

VASILYEV, B. A.
WEAR OF ELECTRIC CONTACTS DURING SWITCHING OF LOW VOLTAGE DIRECT AND ALTERNATING CURRENTS

VAUGHAN, D. A. STRUCTURAL CHANGES ASSOCIATED WITH STRESS CORROSION AND DELAYED FAILURE IN HIGH STRENGTH

STRUCTURAL CHANGES IN HIGH-STRENGTH STEEL ASSOCIATED WITH STRESS CORROSION AND ITS RELATIONSHIP TO DELAYED FAILURE

AD-468171

N65-32351

VAVUL, A. YA. EFFECTIVENESS OF ORGANO-MOLYBDENUM AND ORGANO-SULFUR COMPOUNDS AS ANTIHEAR ADDITIVES TO LUBRICATING OILS N66-11085

VEDENEEVA, M. A.

CORROSION RESISTANCE AND ANODIC BEHAVIOR OF

KH18 N9 STEELS WITH VARIOUS NICKEL-MANGANESE—

CARBON-TITANIUM CONTENTS

A66-1/ A66-10987

VELIKOVSKIY, D. S.
EFFECTS OF HIGH-POLYMER ADDITIVES AND CHEMICAL
COMPOSITION OF OILS ON PETROLEUM VISCOSITY
NA6-30 N66-30273

SODIUM CHLORIDE CORROSION RESISTANCE OF MAGNESIUM AND ALUMINUM ALLOYS WITH PROTECTIVE COATING OF TEFLON NRL-6353

OIL OXIDATION EFFECT ON RUNNING-IN PROCESS OF RING-SOCKET PAIR IN INTERNAL COMBUSTION ENGINE FTD-TT-65-1039/18284 N66-2: N66-23581

MOLYBDENUM SULFIDE AND TEFLON AS SOLID FILM LUBRICATING MATERIALS FOR SPACECRAFT APPLICATIONS CONSIDERING LOW FRICTION COEFFICIENT, WEAR RATE, A65~23318

VIALATTE, M.
CORROSION PROTECTION FOR REACTOR ROTATING
ASSEMBLIES COVERING REQUIREMENTS, COATING TESTS A65-16168

VIGOOROVICH, V. I.
CORROSION MECHANISM FOR EUTECTIC OR NEAR-EUTECTIC
MG- ZN ALLOYS IN HALIDE SOLUTION
A66-26020

A66-26026

N66-29690

N66-21324

VILENKIN, A. V.

NEW METHOD OF EVALUATING EFFECTIVENESS OF ANTIABRASIVE PROPERTIES OF FUEL AND OIL

FRICTION MACHINE USED FOR EVALUATING EFFECTIVENESS OF ACTION OF ANTI-SCORING ADMIXTURES TO DILS AND FUELS FTD-TT-65-1491/16264

VILYANSKAYA, YE. D. FIRE RESISTANT LUBRICANT FOR TURBINES USING PHOSPHOROUS COMPOUNDS AS BASE FTD-TT-64-1291/1 N65-28723 CHEMICAL KINETIC MECHANISMS IN OXIDATION RESISTANT ADDITIVES TO LUBRICATING DILS N66-11110

VINOGRADOV, G. V.
SLIDING VELOCITY AND TEMPERATURE EFFECT ON LUBRICATING PROPERTIES OF POLYETHYLSILOXANE SOLUTIONS IN PETROLEUM A65-20015

NATURE OF POLYSILOXANES RELATED TO IMPROVEMENT OF LUBRICATING EFFECTS OF HYDROCARBONS FTD-TT-64-1268/162 N65-2 N65-28845

VACUUM FRICTION MACHINE INVESTIGATIONS FOR FRICTION REDUCTION BY LUBRICATING DILS WITH DXYGEN AND OTHER GAS ADDITIVES N6 N66-11105

POLYSILOXANES AS ANTIFRICTION AND ANTIWEAR ADMIXTURES TO PETROLEUM GREASES FTD-TT-65-316/16264 N66-12375

OIL ADDITIVE ACTION ON WEAR RESISTANCE AND ANTIFRICTION PROPERTIES OF POLYSILOXANE COMPOUNDS - U.S.S.R. N66-13717

EFFECTS OF ORGANIC ADDITIVES CONTAINING SULFUR, CHLORINE, AND PHOSPHOROUS ON POLYSILOXANE LUBRICANTS FSTC-381-T65-553 N66-20010

VINOGRADOV, I. E.
REACTION MECHANISM OF ANTISCORING ADDITIVES IN LUBRICATING DILS FOR FRICTION REDUCTION N66-11107

VOHR, J. H. STATIC AND DYNAMIC LOAD RESPONSE TESTS ON TILTING-PAD AND FLOATING-RING JOURNAL BEARINGS AND FUNDAMENTAL PROCESSES OF LUBRICANT FLOW NASA-CR-54259 N65-16201

VOLIKOVA, I. G. TITANIUM/CARBON RATIO AS DETERMINING FACTOR IN SUSCEPTIBILITY TO INTERCRYSTALLINE CORROSION IN STAINLESS STEELS

CHLORIDEBENZYL QUINOLINE TO INCREASE CORROSION
RESISTANCE OF IRON AND STEEL IN ACIDS
FTD-TT-65-770/164 N66-10787

VOLODIN, V. P.
ZIRCONIUM CORROSION IN MOLTEN EQUIMOLAR MIXTURE OF
POTASSIUM AND SODIUM CHLORIDES
N66-17783

VON DEN STEINEN, A.
CHROMIUM AND ALUMINUM SURFACE DIFFUSION INTO LOWCARBON UNALLOYED STEELS FOR IMPROVING CORROSION
AND SCALE RESISTANCE
A65-2754 A65-27545

VON MOLZOGEN KUHR, C. A. H.

CORROSION OF CAST IRON PIPES AS ELECTROBIOCHEMICAL
PROCESS IN AMAEROBIC SOIL
FD3-3957/T-166-/
N65-32693

WACHENDORFER, C. J.
TOOL STEEL BEARING LUBRICANT ENDURANCE AT HIGH
SPEEDS AND TEMPERATURES NASA-CR-57445

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND HIGH TEMPERATURES NASA-CR-57982 N65-21303

ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND TEMPERATURES ON BEARING LUBRICANT NASA-CR-62341 N65-22166

BEARING LUBRICANT ENDURANCE CHARACTERISTICS AT HIGH SPEEDS AND TEMPERATURES NASA-CR-64183 N65-31051

FAILURE MODE AND OPERATION LIFE OF BALL BEARINGS USING FLUID LUBRICANTS AT HIGH TEMPERATURES IN RECIRCULATING SYSTEM NASA-CR-74097 N66-23670

ANGULAR CONTACT BALL BEARING-FLUID LUBRICANT

ENDURANCE CHARACTERISTICS AT HIGH SPEEDS, AND HIGH TEMPERATURES NASA-CR-75582 N66-27931

WAGNER, L. H.
CORROSION RESISTANCE OF BLACK OXIDE COATINGS ON
MILD AND CORROSION RESISTANT STEELS
RIA-64-3580
N65-3001

ANDDIC PASSIVATION OF STAINLESS STEEL BY ELECTROCHEMICAL OXIDATION OF METAL SURFACE ~ CORROSION RESISTANCE RIA-65-1190 N65-36739

MANLBERG, A.

ADAPTABILITY OF FABROID LOW FRICTION, SELFLUBRICATING BEARING MATERIAL FOR OUTER SPACE
ENVIRONMENT APPLICATION
RR-8-3008

N65-17697

LIQUID MERCURY AND ALKALI HALIDE METALS LODP FOR LIQUID METAL LUBRICATED ROTOR BEARINGS -SNAP MTI-64TR72, REV.-2 N66-11728

WALLERSTEIN, S.

POWDER LUBRICANT ADAPTATION TO SPACE POWER UNIT
REACTOR / SPUR/ GEAR OPERATION UNDER HIGH SPEED
AND HIGH TEMPERATURE ENVIRONMENTAL CONDITIONS
AFAPL-TR-65-24
N65-2656

WALLNER, R. L.
COMPATIBILITY TEST OF NITROGEN TETROXIDE AND
TITANIUM ALLOY, STUDYING CORROSIVE ATTACK AND
IMPACT SENSITIVITY
A65-32404

WALDWIT+ J. A.

MICROIRREGULARITY LUBRICATION TO IMPROVE
RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE
SEAL
ASME PAPER 65-LUB-11
A66-14244

MICROIRREGULARITY LUBRICATION TO IMPROVE
RELIABILITY OF LIQUID LUBRICATED ROTARY SHAFT FACE
SEAL
ASME PAPER 65-LUB-11
A66-24550

ELASTOHYDRODYNAMIC LUBRICATION ON HIGH SPEED,
HEAVILY LOADED ROLLING CONTACTS - MEASUREMENT OF
DEFORMATION BY X-RAY TECHNIQUE
ASD-TDR-61-643, PT. V N65-30505

WALTERS, J. G.
LIGHT OIL ANALYSIS FROM FLUIDIZED COAL
CARBONIZATION USING GAS CHROMATOGRAPHY
BM-R1-6709
N66-16581

WANG, J. Y. N.

CORROSION TESTING OF THORIUM ALLOYS IN DISTILLED

MATER AT HIGH TEMPERATURES — INVESTIGATION OF

THORIUM-URANIUM ALLOYS AS POSSIBLE REACTOR FUEL

ANI-7006

N65-23103

WARD, B. W.

MOLYBDENUM SULFIDE AND TEFLON AS SOLID FILM
LUBRICATING MATERIALS FOR SPACECRAFT APPLICATIONS
CONSIDERING LOW FRICTION COEFFICIENT, WEAR RATE,
ETC.

A65-23318

WARZEE, M.
SURFACE TREATMENT EFFECT ON STAINLESS AND CARBON
STEEL CORROSION IN HIGH TEMPERATURE WATER AND
STEAM — AUTOCLAVE TESTS
FURAFC-103B N65-23867

DYNAMIC CORROSION TESTS OF CARBON STAINLESS STEEL IN PRESSURIZED WATER EUR-2688.F N66-26057

WATERHOUSE, R. B.
HARDNESS EFFECTS OF STEEL BRIDGES ON ADHESION TO
COLD DRAWN MILD STEEL AS INITIAL STAGE OF FRETTING
PROCESS IN INITIATION OF FATIGUE CRACKS
A65-18627

WATSON, W. H.
FAILURE OF W C- CO COATED ROD-GLAND BEARING
CAUSED BY FRETTING AND PROTECTION MEASURES,

EXAMINING HYDRAULIC ACTUATORS AS PRECISION POSITING DÉVICES A65-18628

WATY• J.

SURFACE TREATMENT EFFECT ON STAINLESS AND CARBON
STEEL CORROSION IN HIGH TEMPERATURE WATER AND
STEAM - AUTOCLAVE TESTS
EURAEC-1038

N65-23867

CLOSED LOOP SYSTEM FOR DYNAMIC CORROSION TESTS AT HIGH TEMPERATURE IN PRESSURIZED WATER REACTOR EUR-1744.F

DYNAMIC CORROSION TESTS OF CARBON STAINLESS STEEL
IN PRESSURIZED WATER
EUR-2688.F N66-26057

WEATHERFORD, W. D., JR.

MEAR AND GREASE LUBRICATION EFFECTS IN MATCHED

AIRCRAFT SPLINE SPECIMENS SUBJECTED TO OSCILLATORY

MOTION

A66-30572

EFFECT OF HYDROCARBON ANTIOXIDANTS ON SPLINE WEAR WHEN OPERATING SUBMERGED IN MINERAL OIL RS-485 N66-26576

WEEKS, J. R.
THEORY, TESTING, AND ANALYSIS OF LIQUID METAL
CORROSION - MERCURY AND PLUTONIUM LIQUID ALLOYS
NASA-TM-X-54722
N65-29446

WEHNER, E. H.

LABORATORY, COMPONENT AND ENGINE TESTS FOR
LUBRICANT PROPERTIES OF J-79 JET ENGINE INCLUDING
ELASTOMER VOLUME SWELL, OXIDATION-CORROSION,
LUBRICITY, ETC
SAE PAPER 650816

A66-10821

WEIGEL, J.

CORROSION PREVENTION COATING BY ELECTROCHEMICAL

OXIDATION / ELOXAL/ METHOD FOR ALUMINUM AIRCRAFT

SURFACES

A65-20692

WEIMAN, S. M.
TITANIUM CORROSION IN AQUEOUS SOLUTIONS
N66-24565

WEINBERG, B.
FLUID FILM SHAFT BEARINGS FOR LIQUID METAL PUMP SNAP-50/SPUR POWERPLANT
TIM-916
N66-1181

WEINBERG, J. H.
VOLATILE CORROSION INHIBITORS FOR IMPROVING
PRESERVATIVE CHARACTERISTICS OF STANDARD
OPERATING OILS
RIA-64-3577 N65-21177

WEINSTEIN, W. D.
FLEXURE-PIVOT BEARING TYPES, SPRING RATE AND
SINGLE STRIP DESIGN USEFUL FOR LIMITED ANGULAR
MOVEMENT
A65-25992

WEISZ, MSTRESS LEVEL FOR CRACK INITIATION AND PROPAGATION
AND DELAYED FAILURES IN STAINLESS STEEL USED FOR
BOLTS
A66-33442

WELLS, L. D.

EFFECTS OF LUBRICANTS ON MACHINE CUTTING TOOL LIFE
R1A-65-1491 N66-11372

WERNICK, R. J.

NUMERICAL SOLUTION TO STRESSES IN LUBRICATED
ROLLER BEARINGS WITH ARBITRARY DISTRIBUTED
NORMAL AND TANGENTIAL LOADS
MTI-65TR61

N66-19381

WESTERMAN, R. E.
HIGH TEMPERATURE GAS CORROSION OF ADVANCED TEST
REACTOR / ATR/ STRUCTURAL MATERIALS
BNWL-100 N65-3502

CORROSION RESISTANCE OF HIGH TEMPERATURE ALLOYS
FOR NUCLEAR APPLICATIONS
BNWL-155 N66-27101

STWOOD, A. R. C. STRESS-CORROSION CRACKING, RATE OF WEIGHT LOSS AND SURFACE CONDITION OF 70-30 COPPER ZINC ALLOY IN CONCENTRATED AQUEOUS AMMONIA A66-18519

WHALEY. D. K. S NAP-8 MATERIALS RESEARCH - MERCURY CORROSION CAPSULE TESTS OF FERRITIC ALLOYS FOR MASS TRANSFER, STRESS CORROSION, MODE OF ATTACK, AND MECHANICAL PROPERTIES NASA-CR-62379 N65-22558

WHEELER, E. L. PRANOTL MIXING-LENGTH THEORY USED TO PREDICT PERFORMANCE OF JOURNAL BEARINGS OPERATING IN TURBULENT REGIME ASME PAPER 65-LUB-17 A66-14249

TAKER, A. F.
SLIDING FRICTION TESTS AT ULTRAHIGH LOAD OF EIGHT WHITAKER, A. GREASES AND 18 DRY LUBRICANTS AND VARIOUS BASE ASLE PREPRINT 65-LC-23 A66-12249

SLIDING FRICTION TESTS AT ULTRAHICH LOAD OF EIGHT GREASES AND 18 DRY LUBRICANTS AND VARIOUS BASE MATERIALS ASLE PREPRINT 65-LC-23 466-30571

HIGH LOAD, LOW SPEED SLIDING FRICTION TESTS ON FLUID LUBRICANTS AND DRY LUBRICANTS FOR DETERMINING COEFFICIENT OF FRICTION NASA-TM-X-53331 N66-10669

WHITAKER, A. V. COMPUTER METHOD FOR ISOTHERMAL PROBLEM OF RIGID AND ELASTIC CYLINDERS LUBRICATED BY CONSTANT AND VARIABLE PROPERTY FLUID, DISCUSSING FILM THICKNESS ASLE PAPER 64-LC-22

WHITESON, B. V.
ELECTRON MICROSCOPY APPLICATIONS TO FRACTURE
MECHANICS FOR DETERMINING CRACK PROPAGATION
DIRECTION, AND CHARACTERISTIC DIFFERENCES
BETWEEN STRESS CORROSION AND HYDROGEN **EMBRITTLEMENT** SM-49150 N66-22627

WHYTE, R. B.
LOW TEMPERATURE CHARACTERISTICS OF MULTIPURPOSE

N65~20571

PHENOL RESIN BONDED, WOVEN GLASS AND TEFLON FIBER LUBRICANT FOR J-2 ROCKET ENGINE GIMBAL SYSTEM NASA-TM-X-53379 N66-16158 N66-16158

WILLEY, L. A.
HIGH STRESS CORROSION RESISTANCE OF 7075- 173 ALUMINUM ALLOYS VERIFIED BY SOLUTION POTENTIAL AND ELECTRIC CONDUCTIVITY MEASUREMENTS A65~22215

WILLFORTH, F. J., JR.
PUBLICATIONS ON LUBRICATION COVERING FLUID FILM, METAL WORKING, AUTOMOTIVE, GEAR, BEARING, FRICTION AND WEAR ASME PAPER 64-WA/LUB-1 A65-33853

WILLHELM, A. C.
PROTECTIVE COATING EFFECT ON STRESS CORROSION
PROPERTIES OF SUPERSONIC TRANSPORT SKIN
MATERIALS — BENDING-DUCTILITY EVALUATION NASA-CR-63784 N65-28201

PROTECTIVE COATINGS EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN NASA-CR-67014

N65-33871 PROTECTIVE COATING EFFECT ON STRESS CORROSION PROPERTIES OF SUPERSONIC TRANSPORT SKIN MATERIALS NASA-CR-74414

COMPATIBILITY TEST OF NITROGEN TETROXIDE AND TITANIUM ALLOY, STUDYING CORROSIVE ATTACK AND IMPACT SENSITIVITY A65-32404 WILLIAMSON, E. L. CHROMATOGRAPHY FOR CORROSIVE GAS ANALYSIS N65-32849

WILLIAMSON, J. G. STRESS CORROSION CRACKING SUSCEPTIBILITY OF AM-355 STAINLESS STEEL ALLOY FOR USE IN SATURN LAUNCH VEHICLES NASA-TM-X-53317

WILLIS, D. P., JR.
HIGH HEAT CAPABILITY AND FRICTIONAL PROPERTIES
MAKE TEFLON-LUBRICATED PHENOLIC RESIN COMPOUNDS DESIRABLE FOR BEARINGS

WILSON, A. R.
ELASTOHYDRODYNAMIC LUBRICATION THEORY, COMPARING
OIL-FILM THICKNESS PREDICTED BY DOWSON AND
HIGGINSON WITH MEASUREMENTS FROM DISK MACHINE
LUBRICATED BY VARIOUS FLUIDS
A65-3276 A65-32764

GROWTH SUPPORT STUDIES OF SELECTED MICROORGANISMS IN JET FUELS, PURE HYDROCARBONS, LUBRICANT, AND LIQUID ROCKET PROPELLANT RTD-TDR-63-4117, PT. II

SPARK IGNITER THAT SUCCESSFULLY OPERATES AT 50 TO 120 PSIG CHAMBER PRESSURE AND 2300 TO 3000 DEGREES K WITHOUT OBSERVABLE THERMAL SHOCK OR ELECTRODE FROSTON A66-18838

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR BENDING THEORY ASME PAPER 65-AV-3

POSTBUCKLING BEHAVIOR OF METAL PLATE STRIP SUBJECTED TO OPPOSING AXIAL LOADS, USING NONLINEAR BENDING THEORY ASME PAPER 65-AV-3 A66-22470

WILSON, R. J.
FRICTION COEFFICIENTS AND WEAR CHARACTERISTICS FOR
X-15 AIRCRAFT SKID LANDING GEAR
N66-18172

WINEGARDNER, W. K.
ZIRCALDY CORROSION IN SIMULATED PLUTONIUM
RECYCLE TEST REACTOR FUEL ELEMENT SURFACE

ZIRCALOY-2 LOCALIZED CORROSION BY WEAR AND CREVICE **EFFECTS**

N66-18889 TT, M. W.
DESIGN AND MAINTENANCE OF AIR TRANSPORT LANDING
GEAR NOTING WEIGHT FACTOR, JOINTS, BUSHINGS AND
CORROSION RESISTANCE
SAE PAPER 650842
A65-348

PUBLICATIONS ON LUBRICATION COVERING FLUID FILM, METAL WORKING, AUTOMOTIVE, GEAR, BEARING, FRICTION AND WEAR

ASME PAPER 64-WA/LUB-1 ZINC USED AS PROTECTIVE COATING FOR STEEL ALLOY IN STRESS CORROSION CONTROL

WOLKOWITZ, W.
FRICTION AND WEAR BETWEEN UNLUBRICATED METAL AND
NONMETAL SURFACES

WOLLITZER, G.
FACTORS AFFECTING PERFORMANCE AND RELIABILITY OF
THIN FILM CAPACITORS NOTING CORROSION EFFECT AT
POINTS OF INTERMETALLIC MOUNTINGS A65-23538

WOOD, W. NUCERITE, CERAMIC-METAL COMPOSITE WITH HIGH

N66-23647

RIA-65-152

7

MECHANICAL STRENGTH AND ABRASION RESISTANCE NOTING CRYSTAL STRUCTURE, APPLICATION, PROPERTIES, ETC A66-11742

WOOD, W. D.

MEASUREMENT OF SURFACE EMITTANCE OF SURFACE
COATINGS FOR SELECTED METALS, PROVIDING LOWTHERMAL EMITTANCE CHARACTERISTICS IN IR SPECTRUM
FOR THERMAL AND CORROSION CONTROL
AIAA PAPER 66-18

WOODWARD, J. M.
SALT STRESS CORROSION CRACKING OF RESIDUALLY
STRESSED TITANIUM ALLOY BRAKE FORMED SHEET FOR
SUPERSONIC TRANSPORT
NASA-TM-X-1082
N65-20483

MOZADLO, G. P.
CORROSION OF MATERIALS FOR FUEL CLADDING IN
SUPERHEAT REACTOR SYSTEMS
GFAP-4760
N65-31797

MU. K. C.

OPTIMUM WELDING CONDITION OF RESISTANCE SPOT
WELDING OF TI ALLOY FOR SUPERSONIC AIRCRAFT
STRUCTURES
A65-33624

WUNSCH. F.
LUBRICATION AT SPACE CONDITIONS

N66-10521

WYMA, B.

ALUMINUM ALLOYS WITH IMPROVED CORROSION AND
ABRASION RESISTANCE BY NEW PRODUCTION AND
FABRICATION TECHNIQUES

A65-30467

Υ

YAMASHITA, J.

CR AND MN EFFECTS ON AGING MECHANISM AND
ANTICORROSION PROPERTIES OF AL- ZN- MG ALLOYS
A66-12723

YAMBURENKO, V. S.
FUEL DIL ADDITIVE WITH BARIUM NAPHTHENATE FOR WEAR
AND SCALE REDUCTION IN HIGH SPEED DIESEL ENGINE
FTD-TT-65-1125/184

YEVDOKIMOV, YU. A.
LOW TEMPERATURE EFFECT ON ANTIFRICTION PROPERTIES
OF CERTAIN POLYAMIDES
N66-22761

YOUNG. R. L.
RESIN BONDED SOLID FILM LUBRICANT EFFECTIVENESS
AND CORROSION PROTECTION STUDY RESTRICTED TO STEEL
SURFACES
A65-20033

COMPARISON OF AUTOMOTIVE LUBRICATION GREASES
RIA-64-3578
N65-19419

WEAR CHARACTERISTICS AND PHYSICAL PROPERTIES OF LUBRICATING GREASES RIA-TR-65-2812 N66-19769

YOUNG: R. S.
MASS TRANSFER AND CORROSION RATES OF MATERIALS IN
N66-24268

YOUNG, M. C.
PROPERTIES, CHARACTERISTICS AND PERFORMANCE OF
LUBRICANTS AND SELF-LUBRICATING MATERIALS USED IN
SPACECRAFT SYSTEMS INCLUDING OILS, GREASES,
PLASTICS, CERMETS, MOLYBDENUM SULFIDE, ETC
A65-22744

YOUNG, W. E.
LUBRICANT MATERIALS FOR ROLLING CONTACT BEARINGS
OPERATING IN LIQUID HYDROGEN ENVIRONMENT
NASA-CR-69569 N66-15815

YOUNGBLOOD, E. L.
HYDROFLUORINATOR CORROSION RATE DETERMINATION
DURING FUEL PROCESSING RUNS WITH ZIRCONIUMURANIUM ALLOY
ORNL-3623
N65-18428

ZAAT, J. H.

LIFE EXPECTANCY OF MOLYBDENUM DISULFIDE LUBRICANT
FILM VARIES WITH PRESENCE OF OXYGEN AND ADDITION
OF GRAPHITE
ASLE PAPER 64-LC-30

A65-22793

ZAGAYURA, F. YA.

DETERMINATION OF WEAR RESISTANCE OF FRICTION
COUPLINGS BY MEASUREMENT OF CONSUMPTION OF
WORKING MEDIUM
FTD-TT-65-69/1&2

N65-31718

ZAJIC. V.

RADIATION RESISTANCE OF AQUEOUS SODIUM NITRITE
USED TO INHIBIT STEEL CORROSION
N66-31045

ZAKHAROV, G. V.
TEST METHODS AND MEASURING APPARATUS FOR RAPID
APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL
OILS, LUBRICATING OILS, AND ADDITIVES - SCALE
MODELS AND MICROANALYSIS
N66-11112

ZARETSKY, E. V.

MEASURING APPARATUS FOR STUDYING BALL BEARING
SPINNING FRICTION
NASA-TN-D-2796
N65-23819

ROLLING CONTACT LUBRICATION CHARACTERISTICS OF POLYPHENYL ETHERS AND MINERAL OILS AT REDUCED PRESSURES
NASA-TN-D-3130
N66-12

EFFECT OF STEEL COMPONENT HARDNESS DIFFERENCES ON BEARING FATIGUE AND LOAD CAPACITY N66-27083

FRICTION DUE TO BALL MOTION IN ANGULAR CONTACT
BALL BEARING
NASA-TM-X-52207
NASA-TM-X-52207

ZARUBIN, A. P.

TEST METHODS AND MEASURING APPARATUS FOR RAPID
APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL
OILS, LUBRICATING OILS, AND ADDITIVES - SCALE
MODELS AND MICROANALYSIS
N66-11112

ZARUBIN, P. 1.

OIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR
TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK
FLECTRODES

A65-29311

DIFFUSIVE CORROSION PROCESSES CAUSED IN CIRCULAR TUBES BY REACTIVE FLUID SIMULATED BY ROTATING DISK ELECTRODES A66-31597

ZASLAVSKIY, YU. S.

DETERGENT ACTION OF OIL ADDITIVES, INVESTIGATING
SORPTION OF CHARGED PARTICLES ON CARBONACEOUS
PRODUCTS OF FUEL COMBUSTION AND OIL OXIDATION
ASIE PAPER 64-LC-9

A65-18057

LUBRICANT RADIATION RESISTANCE DEPENDENT ON LUBRICANT CHEMICAL COMPOSITION AND INTENSITY AND TYPE OF IONIZING RADIATION N65-3285

ELECTROKINETIC PROCESSES AND MECHANISM OF DISPERSION ACTION IN MOTOR OIL ADDITIVES DETERMINED BY RADIOACTIVE TRACERS N66-11113

ZATS, E. L.

CARBON STEEL CORROSION RESISTANCE IN WATER
INCREASED BY ZIRCONIUM ADDITION AFFECTING BOTH
ANODIC AND CATHODIC PROCESSES

A65-23440

ZAVELSKIY. V. S.

EFFECT OF OIL ADDITIVES ON CORROSIONAL WEAR OF
LEAD ALLOY BEARINGS

N66-11117

ZEEDIJK, H. 8.

OXIDE AND CARBIDE CORROSION PRODUCTS IN MATRIX AND SURFACE OF STEEL PLATE BY ELECTRON DIFFRACTION N66-18080 M65-933

ZELEMETSKAYA, I. S.
USE OF LUBRICATING CIL ADDITIVES FROM SULFUR

PERSONAL AUTHOR INDEX

BEARING CRUDE OILS IN DIESEL LOCOMOTIVE ENGINES N66-11125

ZHUK, N. P. ALUMINUM ADDITIONS EFFECT ON TITANIUM CORROSION RESISTANCE AND ELECTROCHEMICAL CHARACTERISTICS WHEN IMMERSED IN SULFURIC ACID SOLUTIONS A65-36014

HEAT RESISTANCE IN AIR OF FOUR INDUSTRIAL AUSTENITIC-FERRITE STEELS WITH LOW NICKEL CONTENT AT 750-1050 DEGREES C, NOTING OXIDE SCALE FORMATION

CORROSION RESISTANCE OF TITANIUM AND ITS ALLOYS IN SOLUTIONS OF ACETIC AND NITRIC ACIDS AS AFFECTED BY ALUMINUM ADDITIONS

A66-16608

ZIMMERMAN, C. A.
STAINLESS STEEL CORROSION REACTIONS AND MECHANISMS
IN SODIUM-POTASSIUM SERVICE

ZINOVYEV, V. A.
INFLUENCE OF NICKEL SULFATE ADDITIONS ON CORROSION
PROPERTIES OF TITANIUM ALLOYS IN SULFURIC ACID
N66-10295

ZISMAN, W. A. REDUCTION OF POLYMERIC FRICTION BY MINOR CONCENTRATIONS OF PARTIALLY FLUORINATED COMPOUNDS NRL-6227

N65-26290

ZOELLER, M. W.

SHOT PEENING FOR RESISTANCE TO STRESS CORROSION CRACKING OF HIGH STRENGTH STEEL AND ALUMINUM ALLDYS AND TO IMPROVE FATIGUE LIFE OF LANDING GEARS. WING SPARS. JET ENGINE COMPONENTS AND OTHER STRUCTURAL PARTS

ZOZULIA, V. D.

OPERATING LIFETIME OF POROUS BEARINGS, DISCUSSING DEPENDENCE ON QUALITY OF IMPREGNATING LUBRICANT

A66-3314:

SKUY, V. M.
ELECTRIC STRAIN GAUGE FOR HIGH TEMPERATURE OR
CORROSIVE ENVIRONMENTS AND ELECTROMAGNETIC
FIELDS — TENSOMETER
FTD—TT—64-872/162
N65-N65-19200

THIN FILM CHROMATOGRAPHY FOR QUALITATIVE ANALYSIS OF ANTIOXIDANT ADDITIVES IN LUBRICATING DILS -U.S.S.R.

ZUCHOWICZ, K.

WEAR RESISTANCE OF BRUSHES OF AIRBORNE ELECTRIC
GENERATORS

A65-159

ZUPKUS, C. J.

ROLLING FRICTION STUDIES OF INTERMETALLIC AND
ZIRCONIUM OXIDE FOR CONTROL SURFACE BEARINGS FOR
SPACE REENTRY VEHICLE

A66-304

SCREENING OF HIGH TEMPERATURE BEARING ELEMENTS

TEST RIG FOR RELIABILITY, DESIGN OF SLIDING FRICTION TEST SPECIMEN, AND CALIBRATION TECHNIQUE - HIGH TEMPERATURE BEARING ELEMENTS INVESTIGATION N65-31079

ZUSEVA, B. S.
TEST METHODS AND MEASURING APPARATUS FOR RAPID APPRAISAL OF PERFORMANCE CHARACTERISTICS OF FUEL DILS, LUBRICATING DILS, AND ADDITIVES - SCALE MODELS AND MICROANALYSIS

N66-111

Collections of NASA Documents

NASA is dépositing its technical documents and bibliographic tools in eleven Federal Regional Technical Report Centers. Each center, located in one of the organizations listed below, is prepared to furnish the general public such services as personal reference, interlibrary loans, photocopy service, and assistance in obtaining retention copies of NASA

California: University of California,

Berkeley

Colorado: University of Colorado,

Boulder

District of Columbia: Library of

Congress

Georgia: Georgia Institute of

Technology, Atlanta

Illinois: The John Crerar Library.

Chicago

Massachusetts: Massachusetts Institute

of Technology, Cambridge

Missouri: Linda Hall Library, Kansas City

New York: Columbia University, New York Pennsylvania: Carnegie Library of

Pittsburgh

Texas: Southern Methodist University. Dallas

Washington: University of Washington, Seattle

NASA publications are currently being forwarded to the public libraries in the cities listed below:

Alabama: Birmingham

Alaska: Anchorage Arizona: Phoenix

Arkansas: Little Rock

California: Los Angeles, Oakland,

San Diego, and San Francisco

Colorado: Denver

Connecticut: Hartford and Bridgeport

Delaware: Wilmington

Florida: Miami

Louisiana: New Orleans Massachusetts: Boston

Michigan: Detroit

Minnesota: St. Paul

Missouri: Kansas City and St. Louis

New Jersey: Trenton

New York: Brooklyn, Buffalo, and Rochester

North Carolina: Charlotte

Ohio: Cleveland, Cincinnati, Dayton, and

Toledo

Oklahoma: Oklahoma City Pennsylvania: Pittsburgh

Tennessee: Memphis

Texas: Fort Worth and San Antonio

Washington: Seattle Wisconsin: Milwaukee

In addition, NASA regularly sends its publications to the Enoch Pratt Free Library located in Baltimore, Maryland.

An extensive collection of NASA and NASA-sponsored scientific and technical publications available to the public for reference purposes is maintained at the Technical Information Service, American Institute of Aeronautics and Astronautics, 750 Third Avenue, New York, New York 10017.

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other nonaerospace applications. Publications include Tech Briefs; Technology Utilization Reports and Notes; and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546